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Abstract 23 

Enset (Ensete ventricosum (Welw.) Cheesman) is a drought tolerant, vegetatively propagated 24 

crop that was domesticated in Ethiopia. It is a staple food for more than 20 million people in 25 

Ethiopia. Despite its current importance and immense potential, enset is among the most 26 

genetically understudied and underexploited food crops. We collected 230 enset wild and 27 

cultivated accessions across the main enset producing regions in Ethiopia and applied amplified 28 

fragment length polymorphism and genotype by sequencing (GBS) methods to these 29 

accessions. Wild and cultivated accessions were clearly separated from each other, with 89 30 

genes found to harbour SNPs that separated wild from cultivated accessions.  Among these, 17 31 

genes are thought to be involved in flower initiation and seed development.  Among cultivated 32 

accessions, differentiation was mostly associated with geographical location and with 33 

proximity to wild populations. Our results indicate that vegetative propagation of elite clones 34 

has favoured capacity for vegetative growth at the expense of capacity for sexual reproduction.  35 

This is consistent with previous reports that cultivated enset tends to produce non-viable seeds 36 

and flowers less frequent than wild enset.  37 

Keywords: GBS, cultivated enset, wild enset, SNP, Genotyping By Sequencing, MSAP, 38 

population structure, domestication 39 
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Introduction 41 

Plant domestication and breeding can alter and shrink genetic diversity (Miller & Schaal, 2006; 42 

Martínez-Ainsworth & Tenaillon, 2016). In some crop species, this entails a shift from sexual 43 

to vegetative propagation (Silvertown, 2008). Enset (Ensete ventricosum Welw.) Cheesman), 44 

often referred as false banana) is a hapaxanth diploid (2n=18) plant (Cheesman, 1947)  that 45 

belongs to the Musaceae family (Shumbulo et al., 2012).  In the wild, enset propagates by seed 46 

(Haile et al. 2014). The native distribution of wild enset encompasses the eastern coast Africa, 47 

from South Africa to Ethiopia, and extends west into the Congo (Borrell et al., 2019). In 48 

Ethiopia, which is considered to be the centre of origin of E. ventricosum, wild enset grows 49 

mainly along riversides and deep forest, extending into cultivated land and gardens in some 50 

regions (Olango et al., 2015; Eshetae et al., 2019).  51 

 52 

Despite the wide distribution of wild enset, enset has been domesticated only in the Ethiopian 53 

highlands (Borrell et al., 2019; Heslop-Harrison et al., 2019) and it is now grown as a crop 54 

mainly  in the southern and south-western parts of Ethiopia (Olango et al., 2014; Guzzon & 55 

Müller, 2016). In these regions, cultivated enset is propagated vegetatively from suckers. 56 

Ethiopia maintains more than 600 accessions of cultivated enset via vegetative propagation 57 

(Harrison et al., 2014). 58 

 59 

Due to its importance  for food security in Ethiopia (Yemataw et al., 2014; Guzzon & Müller, 60 

2016; Yemata, 2020), enset has been called “the tree against hunger” (Brandt et al., 1997a). 61 

Enset is known for its high yield, drought tolerance, high shade potential, broad agro-ecological 62 

distribution and long storage capacity (Brandt et al., 1997b; Quinlan et al., 2014). Despite these 63 

positive features, enset has received little research attention (Borrell et al., 2019) and its genetic 64 
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diversity is under threat from diseases such as bacterial wilt and from pressures associated with 65 

human population growth (Birmeta, 2004; Guzzon & Müller, 2016).  66 

  67 

Genetic analysis of intraspecific variation in enset has mainly relied upon data for ‘anonymous’ 68 

molecular markers, such as amplified fragment length polymorphisms (AFLP) (Tsegaye & 69 

Struik, 2002), random amplified polymorphic DNA (RAPD) (Birmeta et al., 2004), inter simple 70 

sequence repeats (ISSR) (Tobiaw & Bekele, 2013) and microsatellites (simple sequence repeat 71 

(SSR) polymorphisms (Getachew et al., 2014; Olango et al., 2015; Gerura et al., 2019). Given 72 

that enset is vegetatively propagated, genetic divergence among cultivars may be minimal 73 

(McKey et al., 2010) and could be difficult to detect using these marker types.  74 

 75 

Here, we report on the application of both AFLP and next-generation sequencing (NGS) 76 

methods to 230 enset accessions (192 cultivated and 38 wild). Data collected using these 77 

methods were used to investigate population structure of cultivated and wild enset accessions 78 

and to identify signatures of selection and domestication within the enset genome.  To our 79 

knowledge, this is the first application of NGS to a large number of accessions of wild and 80 

cultivated enset collected from a large geographic area.  81 

 82 

Results  83 

AFLP analysis  84 

Based on the analysis of presence/absence data for 111 AFLP amplicons with lengths ranging 85 

from 51 bp to 350 bp, the heterozygosity and Shannon’s Index were higher for cultivated 86 

accessions (0.193±0.02 and 0.298±0.029) than for wild accessions (0.186±0.02 and 87 

0.285±0.029). However, the average genetic distance between cultivated accessions was lower 88 

(0.026±0.002) than between wild accessions (0.047±0.007). The average percentage of 89 
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polymorphic peaks for cultivated and wild accessions were 45.75% ± 3.25% and 41.7%±6.18 90 

respectively. 91 

  92 

Analysis of molecular variance (AMOVA) showed that that the majority (87-89%) of enset 93 

genetic variability is explained by within-region differences, while 11-13% can be attributed 94 

to variation between regions (Table 2). Principal coordinate analysis (PCoA) using AFLP 95 

markers showed that wild and cultivated enset accessions formed clusters with considerable 96 

overlapping of individuals from the two groups (Fig. 2a). Mantel test analysis showed 97 

significant correlation (r = 0.7; P< 0.0001) between genetic and geographic distances among 98 

cultivated and wild enset accessions (Supplementary Fig.1).  99 

 100 

SNP discovery and analysis 101 

Genotyping by sequencing of 149 (125 cultivated and 24 wild) enset accessions generated a 102 

total of 569,324,179 reads with 74 bp length and 50% of GC content. Eight samples were 103 

removed because of high SNP missing ratio, leaving 141 samples (120 cultivated and 21 wild) 104 

for analysis. 105 

 106 

A total of 3,743,487 tags passed mapping criteria when physically mapped to the Musa 107 

malaccensis (wild banana) genome. This reference genome based SNP calling generated 108 

22,884 SNPs showing locus coverage lower than 0.1 and minor allele frequency lower than 109 

0.01. After filtering to remove SNPs with missing value greater than 20% and missing ratio 110 

greater than 30%, 5169 high quality SNPs remained.  Of these, 4282 SNPs (83%) physically 111 

mapped to one of the 11 chromosomes of the Musa malaccensis genome and the remaining 112 

887 SNPs were physically mapped to Musa malaccensis genome scaffolds (Table 3).  The 113 

number SNPs per chromosome ranged from 251 in chromosome 2 to 465 in chromosome 4 114 
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(Table 3), with an average 389 SNPs per chromosome. The highest density of SNPs was 115 

detected on chromosome 4 (65.05 kb/SNP) and the lowest on chromosome 10 (91.5 kb/SNP). 116 

A/G transitions presented the highest frequency (29.06%) followed by C/T transitions 117 

(28.03%) and A/C transversions (11.30%) (Table 5).  118 

 119 

Genetic relatedness and population structure of cultivated and wild enset accessions 120 

PCA using the 5169 SNP markers indicated that all but one of the wild enset accessions 121 

clustered separately from the cultivated enset accessions (Fig.2b). UPGMA based phylogenetic 122 

tree (Fig.3) showed that the cultivated and wild enset accessions formed two clearly separated 123 

clades. The cultivated enset accessions formed multiple subclades within the cultivated enset 124 

population.  125 

 126 

DAPC analysis showed a clear separation of enset accessions into three clusters (Fig.4a). 127 

Cluster 1 was comprised of 24 cultivated accessions and one wild accession. Among the 24 128 

cultivated accessions in this clade, 17 accessions (71%) were collected from areas in which 129 

only cultivated enset was found. Cluster 2 contained 96 cultivated accessions, 67% of which 130 

were collected from areas which have both cultivated and wild enset accessions. Cluster 3 131 

contained only wild enset accessions. STRUCTURE analysis with the ΔK method indicated 132 

the most informative number of subpopulations is two (K =2) (Fig. 5b). Individuals were 133 

considered part of a cluster when the probability of membership was 0.5 or greater. With K=2, 134 

46 cultivated enset accessions clustered together with 20 wild enset accessions. With K=3, the 135 

pattern was similar (Fig.5a). At higher values of K, wild accessions continued to group together 136 

and the cultivated accessions grouped into three main clusters.  137 

 138 

 139 
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Genetic diversity of cultivated and wild enset  140 

The average PIC and gene diversity were similar for cultivated and wild accessions.  Cultivated 141 

enset accessions exhibited higher heterozygosity than wild accessions, while the average major 142 

allele frequency was higher for cultivated than for wild accessions (Table 4). The average 143 

genetic distances and average Fst values among cultivated and wild accessions were 144 

0.33±0.001(SE) and 0.11±0.005 (SE), respectively.   145 

 146 

Analysis of genome-regional patterns of nucleotide diversity using 500 kb non-overlapping 147 

sliding windows showed that the average nucleotide diversity was higher in wild enset 148 

accessions (0.32±0.005 (SE)) than in cultivated enset accessions (0.27±0.006 (SE)) (Fig.6). 149 

Calculation of the degree of diversification (Fst) between cultivated and wild enset accessions 150 

identified a total of 29 genomic subregions with high degree of diversification (Fst>0.2) and 76 151 

genomic subregions with low Fst (Fst<0.02) (Fig.6). Chromosomes 3, 5 and 10 presented the 152 

highest number of genomic subregions with high Fst. On the other hand, chromosome 1 153 

presented the highest number of low Fst genomic subregions (11 subregions), while 154 

chromosomes 2, 3 and 5 showed the lowest number of low Fst genomic subregions (4 155 

subregions). 156 

 157 

Genomic regions under selection pressure 158 

The genome scan approach (LOSITAN-based Fst-outlier detection method) implemented in 159 

this study identified 158 (2.56%) SNPs which frequency was significantly different between 160 

cultivated and wild enset populations which are dispersed throughout the 11 chromosomes of 161 

the wild banana reference genome (Fig. 7). Chromosome 3 and 10 harbour highest number of 162 

outlier SNPs (16 outlier SNPs each). Chromosome 1 contains the lowest number of outlier 163 

SNPs (4 SNPs), despite containing the highest number of SNP markers. Mapping of outlier 164 
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SNPs to the  reference genome (Musa acuminata subsp. malaccensis) genome identified  89 165 

genes containing one or more SNPs within their protein coding region (Supplementary Table 166 

4). Of these, 19 genes were found to be associated to sexual reproduction traits, i.e. flowering 167 

(8 genes), seed development and germination (9 genes) or domestication (2 genes) 168 

(Supplementary Table 6). The function of these genes were annotated based on comparative 169 

genomics (one gene), deduced from protein containing domains as putative function (five 170 

genes) and experimentally validated (14 genes) in other plants such as Arabidopsis thaliana, 171 

rice, soybean and tomato.   172 

 173 

Discussion 174 

Genetic diversity of enset in Ethiopia  175 

The results presented here indicate that cultivated and wild enset accessions exhibit similar 176 

gene diversity and polymorphic information content (PIC) (Table 4). This is similar to what 177 

has been reported based on SSR marker analysis of enset genetic diversity (Gerura et al., 2019), 178 

but differs from what has been reported by Olango et al. (2015), which reported that higher 179 

gene diversity in cultivated enset population (0.59) than wild enset population (0.40), but 180 

similar hetrozygosity for cultivated and wild enset populatons (0.5). The genetic diversity for 181 

both cultivated and wild enset reported in the current study (Table 4) is lower than previous 182 

enset genetic diversity studies conducted using SSR makers (Getachew et al., 2014; Olango et 183 

al., 2015; Gerura et al., 2019). These differences and discrepancies might be due to the nature 184 

of the different types of markers used. SSRs and microsatellite are multi-allelic and are more 185 

polymorphic than SNP markers, which are usually bi-allelic. The genetic diversity detected 186 

here for enset is higher than what has been reported for some other vegetatively propagated  187 

plants such as Cassava (de Albuquerque et al., 2018; Kamanda et al., 2020), and out-crossing 188 
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plants such as sunflower (Mandel et al., 2011) but lower what has been reported for Japonica 189 

rice (Becerra et al., 2017).  190 

 191 

Our observations that cultivated ensets exhibited higher heterozygosity and Shannon's Index 192 

than wild enset resemble what have been reported for enset based on SSR markers study  193 

(Gerura et al., 2019) and for other plant species, including Camellia sinensis (Yang et al., 2016) 194 

and C. taliensis (Zhao et al., 2014). The high heterozygosity of cultivated enset might be due 195 

to vegetative propagation maintaining heterozygosity across clonal generations. In addition, 196 

the wild enset habitat has been sharply declining in Ethiopia because of population growth and 197 

deforestation (Birmeta et al., 2004; Olango et al., 2015). This reduction in effective population 198 

size might have contributed to the observed lower heterozygosity due to the increase of chances 199 

of inbreeding in wild enset populations.  However, genetic distances were greater among  wild 200 

accessions than among cultivated accessions, possibly because wild populations remained 201 

isolated by distance or geographical barriers (Tobiaw & Bekele, 2013), while cultivated 202 

materials were more readily transferred between regions through regular long-distance 203 

accessions exchange between farmers (Brimata et al.,2020). Limited genetic distances among 204 

cultivated enset accessions could also be due to recent separation (fragmentation) of the 205 

varieties, without sufficient evolutionary time to generate variation (Burgos-Hernández et al., 206 

2013).  207 

 208 

Population structure and genetic relationship between cultivated and wild enset 209 

accessions in Ethiopia 210 

PCA and phylogenetic analysis revealed that cultivated and wild enset accessions separated 211 

into genetically distinct clusters despite being morphologically similar members of the same 212 

taxonomic species. This indicates that cultivated enset accessions has been domesticated from 213 
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a limited number of wild progenitors (Brimeta et al.,2004). It is also possible that currently 214 

cultivated enset and the currently available wild enset in Ethiopia originated from different 215 

ancestral materials. Bayesian clustering program STRUCTURE indicated that cultivated 216 

population grouped into three clusters and this is similar to previous SSR marker based enset 217 

genetic diversity study (Olango et al., 2015). The genetic sub-clustering within cultivated enset 218 

corresponds with geographical distance between the accessions and proximity to wild enset. 219 

Cultivated enset accessions collected from areas where wild enset grows showed higher 220 

admixture and weaker clustering than those collected from areas where wild enset does not 221 

grow. Some cultivated accessions clustered with wild accessions, possibly indicating recent 222 

introgression of wild enset into farming systems.  In the Omo region, particularly in the Ari 223 

sub-region, wild enset growing in gardens have been adopted by farmers as a cultivated crop 224 

and propagated (Shigeta, 1990; Hildebrand, 2001a). Thus, multiple domestication events 225 

and/or frequent introgression from wild enset could explain the high genetic diversity and 226 

overlapping spatial distributions of wild and cultivated enset (Borrell et al., 2019). Mantel test 227 

showed significant correlation (r=0.7, P=0.0001) between genetic and geographic distances 228 

separating wild and cultivated populations. Our results support Olango et al (2015) and Brimeta 229 

et al (2004) reports of a limited possibility of gene flow due to the natural distribution of wild 230 

enset and farming management.   231 

 232 

Loci under selection signature 233 

Improved understanding of the genetic adaption of enset could facilitate genetic improvement. 234 

Fst outlier tests for detecting extreme allele frequency differentiation can detect genomic 235 

regions that have evolved under adaptation and selection (Beaumont & Balding, 2004; 236 

Lotterhos & Whitlock, 2014). Here, application of an Fst outlier test identified 158 outlier SNP 237 

markers that show significant (P<0.01) genetic differentiation between cultivated and wild 238 
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enset. Mapping of these outlier markers to the diploid banana genome led to the identification 239 

of 89 genes under selection during enset domestication. 19.1% of these genes were found to be 240 

related to the regulation of flowering (Zhong & Ye, 2004; Gunesekera et al., 2007; Ishida et 241 

al., 2008; Uehara et al., 2019; Kang et al., 2020), or seed development (Swain et al., 2005; 242 

Wen et al., 2008; Li & Li, 2014; Ma et al., 2018). Interestingly, another 2.3% of the genes 243 

found to be under selection have been previously associated to domestication in other species 244 

(Chakrabarti et al., 2013; Jan et al., 2013; Li et al., 2017). Flowering and seed development 245 

are important characteristics that differentiate cultivated and wild enset (Borrell et al., 2019). 246 

Wild enset flowers more frequently and has larger flowers  (mean basal girth 186cm)  than 247 

cultivated enset (mean basal girth 106cm) (Shigeta, 1990; Hildebrand, 2001b). Wild enset is 248 

highly prolific,  producing thousands of large (about 12 mm diameter) hard black seeds, while 249 

cultivated enset plants bear fewer seeds, which are small (3 mm), soft, pale and incompletely 250 

developed (Hildebrand, 2001b). It has been previously suggested that these traits could be due 251 

to reduced fitness resulting from a subsequent selection and domestication bottleneck (Heslop-252 

Harrison et al., 2019). The proportion of genes found to be under selection in cultivated enset, 253 

certainly indicate that selection associated to domestication could be the driver of those traits. 254 

 255 

In addition, the calculation of degree of diversification (Fst) between cultivated and wild enset 256 

accessions enabled the identification of genomic subregions (500 kb non-overlapping) with 257 

high (Fst > 0.2) degree of diversification (Fig 6). Genomic subregions with high Fst  may contain 258 

or associated to potential genes that are related to plant domestication and adaptions, and 259 

provide an indication of the functional genes involved (Lam et al., 2010). In the current study, 260 

Fst outlier based scan for candidate genes under putative selection and adaptation has found 261 

promising results and is an important step forward to further studies on gene mapping and 262 

identification, and designing enset breeding program. to better understand enset genome and 263 
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use our result, it is necessary to conduct further gene mapping and genome-wide association 264 

studies with large sample size covering all the enset producing regions of Ethiopia.  265 

 266 

Materials and methods 267 

Study area 268 

Samples were collected from six of the major enset producing regions in Ethiopia: Dawro, 269 

Guragie, Keffa, South Omo, Sheka and Sidama (Fig.1). Within each of these regions, samples 270 

were collected from subregions and from two or three districts within each subregion (Table 271 

1). Within each district, samples of domesticated enset were collected from five to ten 272 

households, selected based on recommendations from local agricultural extension experts. 273 

Samples of wild enset were collected around farming areas, along riversides and in deep 274 

forests. For each sampling location, latitude and longitude (degrees, minutes, seconds) were 275 

collected using GPS essentials mobile app  (https://downloads.tomsguide.com/GPS-276 

Essentials,0301-49666.html) and then transformed to standard Universal Tranverse Mercator  277 

coordinates (UTM) using a geographic unit converter 278 

(http://www.rcn.montana.edu/Resources/Converter.aspx) (Supplementary Table 1). 279 

 280 

Sample collection and DNA extraction 281 

Leaf samples were collected from 230 (192 cultivated and 38 wild) enset plants, each of which 282 

was between one and two years old (based on the farmer’s information) (Supplementary Table 283 

1). Each sample consisted of a 5 cm * 5 cm fragments of the leaf blade of the most recently 284 

unfurled leaf. Each sample was placed in a 50 ml tube and stored on ice during transportation, 285 

then stored at -80 oC until DNA extraction. Each subsample (80-90 mg) were milled using a 286 

mortar and pestle immersed in liquid nitrogen. DNA extractions were performed using DNeasy 287 

Plant Mini Kits (Qiagene Inc.) according to the manufacturer’s instructions. DNA 288 
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concentration was measured using the QuantiFluor(R)dsDNA System(a) (Promega, USA) 289 

following manufacturer’s instructions, then adjusted to 20 ng/µl using molecular biology grade 290 

water (Sigma). 291 

 292 

Amplified Fragment Length Polymorphism (AFLP) preparation and analysis 293 

AFLP reactions (Vos et al., 1995) were performed for all 230 samples using a modification of 294 

the protocol described by López et al. (2012). Briefly, samples containing 55 ng of genomic 295 

DNA were enzymatically digested in a 12.5 reaction volume containing MseI, EcoRI (NEB) 296 

and ligated to MseI and EcoRI adaptors (Supplementary Table 4) at 37o C for 2 h in a T100TM 297 

Thermal cycler (Bio-Rad Laboratories, Hercules, CA). Success of the digestion/ligation 298 

reaction was confirmed on 1.5% of agarose gel electrophoresis. Pre-selective PCR 299 

amplification was carried out using primers containing a 3’ selective nucleotide (i.e., EcoRI=A 300 

and MseI=C). Selective amplification was then conducted using a primer combination with 301 

three selective nucleotides at the 3’ ends (EcoRI =ACG) and MseI =CAA). Selective bases were 302 

chosen according to previous work on enset (Negash et al., 2002). PCR products were separated 303 

using Applied Biosystems 3130/3130xl Genetic Analysers (Applied Biosystems Life 304 

Technologies). 305 

 306 

AFLP profiles were analysed using GeneMapper® Software v4.0. Clear and unambiguous 307 

polymorphisms were considered and were scored on a presence/absence basis for each marker. 308 

Clearly polymorphic peaks were verified manually and scored as present (1) or absent (0) for 309 

each sample. The level of AFLP polymorphism  and genetic diversity across enset accessions 310 

were examined using GenAlEx 6.502 (Peakall & Smouse, 2012) based on average band 311 

frequency, Nei’s unbiased genetic distance, principal coordinate analysis (PCoA) and analysis 312 

of molecular variance (AMOVA). To examine possibility of gene flow between cultivated and 313 
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wild enset accessions, the correlation between genetic distance (ΦPT) and geographic distance 314 

(km) was estimated using a Mantel test (Mantel, 1967) implemented in GenAlex using 10,000 315 

random permutations.  316 

 317 

Genotyping by sequencing (GBS) preparation and analysis  318 

Genotyping-by-sequencing was conducted for 149 enset samples (125 domestic and 24 wild; 319 

Supplementary Table 2) that were selected to capture the genetic diversity shown by AFLP. 320 

The GBS library preparation was carried out as described by Xie et al. (2017) including a water 321 

negative control as described by Konate et al. (2018). The DNA concentration of each 322 

individual library was normalized to 5 ng/µl. Two pooled libraries were created, each by 323 

pooling the individual libraries from 75 uniquely barcoded samples (25 ng per sample) 324 

(Supplementary Table 2). Each pooled library was then amplified in 10 PCR reactions, each 325 

containing 10 µl of digested/ligated DNA library, 12.5 µl of NEB MasterMix, 2 µl of 10 µM 326 

forward and reverse Illumina_PE primers (Supplementary Table 4) and 0.5 µl of molecular 327 

biology grade water (Sigma). The amplification reaction was carried using a T1000 328 

Thermocycler at 95oC for 30 s, 16 cycles of (95oC for 30 s, 62oC for 20 s, 68oC for 30 s) and 329 

72oC for 5 min. Amplification products were pooled together and cleaned using AMPure XP 330 

beads (Beckman Coulter, Australia) (1:1 ratio) to remove excess primers and unremoved 331 

adaptors. Libraries were sequenced using an Illumina NextSeq High Output 75 bp single-end 332 

run (Illumina 1.9 Inc., San Diego, CA, United States) at the Australian Genome Research 333 

Facility (AGRF, Adelaide, SA, Australia). 334 

 335 

GBS SNP calling 336 

SNP calling was performed using two pipelines: de novo-based (reference genome 337 

independent) TASSEL-UNEAK pipeline (Lu et al., 2013) and the reference-based TASSEL-338 
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GBS pipeline (Glaubitz et al., 2014; Torkamaneh et al., 2016). Only sequences containing 339 

identical matches to the barcodes followed by the expected sequence of three nucleotides 340 

remaining from a MspI cut-site (5’-CGG-3’) were selected for the identification of SNPs. 341 

FASTQ files containing barcoded sequence reads were demultiplexed using unique barcodes 342 

for each sample and trimmed to 64 bp (not including the barcodes).  Identical sequence reads 343 

were collapsed into tags and sequencing tags from the four NextSeq Illumina sequencing lanes 344 

were merged to form one master tag.  These sequence tags were mapped to the wild (diploid) 345 

banana (Musa acuminata ssp. malaccensis) genome sequence (D’hont et al., 2012) to deduce 346 

their genomic position. Tags with single base pair mismatches between samples were 347 

considered as SNPs and were generated in Hapmap format.   348 

 349 

Genetic diversity and population structure analysis  350 

Genetic diversity and genetic differentiation (Fst) were calculated using PopGenome R package 351 

(Pfeifer et al., 2014).  Heterozygosity (the proportion of heterozygous individuals in the 352 

population), gene diversity (expected heterozygosity) and polymorphic information content 353 

(PIC) were calculated using Power Marker V3.25 (Liu & Muse, 2005). To examine the 354 

relationship between cultivated and wild enset accessions, PCA plots and phylogenetic tree 355 

(UPGMA) were built using TASSEL 5 (Bradbury et al., 2007).  GenGIS (Parks et al., 2009) 356 

was used to display the phylogenetic tree with the geographic regions of sample collection.  357 

 358 

Population structure was analysed using descriptive analysis of principal components (DAPC) 359 

(Jombart et al., 2010) and STRUCTURE (Pritchard et al., 2000) . The software STRUCTURE 360 

was used to analyse the hierarchical population structure by setting the length of the burn-in 361 

period to 50,000 iterations and number of the MCMC replications after burn-in to 50,000. 362 

Between two to nine population clusters (K) were considered, with 10 iterations conducted for 363 
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each K-value. The best K-value was determined using Structure Harvester (Earl, 2012) based 364 

on delta K (ΔK) (Evanno et al., 2005) and  maximum log likelihood L(K) (Rosenberg et al., 365 

2001) 366 

 367 

Genome-wide nucleotide diversity (average pairwise nucleotide differences) and population 368 

differentiation (Fst) within and between wild and cultivated populations were calculated using 369 

a 500 kb non-overlapping sliding window. To obtain genetic diversity per window, nucleotide 370 

diversity was divided by number of SNPs per sliding window. These statistics  were calculated 371 

using R package PopGenome  (Pfeifer et al., 2014) and plotted using Circos (Krzywinski et 372 

al., 2009) to visualize the pattern of genetic diversity across the whole enset genome.  373 

 374 

To detect loci under selection during enset domestication and adaptation, the FDIST2 method  375 

adopted by Beaumont and Nichols (1996) was applied using lositan software (Antao et al., 376 

2008).  Fst value was calculated for each SNP using allele frequencies conditional on expected 377 

heterozygosity (He), and P-values for each SNP were calculated.  SNPs within tags assigned 378 

to one of the wild banana chromosomes were used to identify Fst outliers.  Fst outlier analysis 379 

was carried out with 50,000 interactions at 99% confidence interval. Then we searched for 380 

genes containing these outlier SNPs in the wild banana genome to identify potential genes 381 

under selection during enset domestication using magrittr R package (Bache & Wickham, 382 

2014) and generated gene ID. The putative function of these genes were searched using 383 

UNIPROT database (https://www.uniprot.org/) based on the gene ID.   384 

 385 

 386 

 387 

 388 
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 628 

 629 

Table 1:Summery of cultivated and wild enset accessions sampled from six regions in South 630 

and South Western Ethiopia.  631 

Region 
Sub-

region 

Number of 

households 

Number of samples Total 

samples cultivated  wild  

Dawro 
Loma 7 16 1 17 

Mareka 5 7 2 9 

Guragie 
Cheha 5 7 0 7 

Gumer 8 22 0 22 

Holeta Holeta 1 11 0 11 

Keffa 

 Chena 

 
7 20 4 24 

Decha 8 25 13 38 

Omo South Ari 10 36 6 42 

Sheka 
Benji  0 4 4 

Tepi  0 8 8 

Sidama 
Shebedino 6 19 0 19 

Korcchie 7 29 0 29 

   Total  64 192 38 230 

 632 

 633 

  634 
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Table 2: Analysis of Molecular Variance (AMOVA) using AFLP markers for 192 accessions 635 

of cultivated enset collected from seven regions  636 

Source df SS MS Est.Var. % of variation P-Value 

Among 

Populations 

5 173.32

0 

34.664 0.915 13% 0.0001 

Within 

Populations 

186 1175.024 6.317 6.317 87%  

Total 191 1348.344  7.232 100%  

df, degree of freedom; Est.Var, estimated variance; SS, sum of squares; %, the % of variance 637 

explained by within and across regions 638 

 639 

Table 3: Total number of filtered and unfiltered SNP markers distributed across 11 640 

chromosomes and chr_unknown (SNPs within contigs that had not been assigned to a 641 

chromosome in the assembly).  642 

  Number SNP markers 

Chromosome Unfiltered Filtered 

1 1644 422 

2 1262 251 

3 1801 387 

4 1978 462 

5 1702 399 

6 2056 417 

7 1732 410 

8 1955 442 

9 1709 396 

10 1708 368 

11 1536 327 

ChrUn_random 3800 887 

Total 22883 5169 

 643 

 644 

  645 
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Table 4: Genetic diversity analysis of cultivated and wild enset accessions collected from six 646 

major enset producing regions of Ethiopia, analysed using 5169 GBS-based SNP markers  647 

 648 

 649 

 650 

Table 5: Number and proportion of nucleotide combinations of the 5169 SNP markers  651 

Allele Number Proportion (%) 

A/C 567 10.97 

A/G 1502 29.06 

A/T 431 8.34 

C/G 504 9.75 

C/T 1449 28.03 

G/T 580 11.22 

multiple allele 136 2.63 

Total 5169 100 

 652 

 653 

 654 

  655 

Category  

Sample 

Size 

Major allele 

frequency 

Gene 

Diversity Heterozygosity PIC 

Cultivated 120 0.71±0.002 0.40±0.003 0.26±0.003 0.35±0.003 

Wild  21 0.68±0.002 0.42±0.002 0.21±0.002 0.37±0.002 
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 656 

Fig.1. Sampling regions and sub-regions located in Southern Nation, Nationalities and People 657 

Region (SNNPR), Ethiopia. 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 
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 673 

 674 
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 676 

 677 

Fig.2. a) Principal Coordinate Analysis (PcoA) of 192 cultivated and 38 wild enset samples 678 

which are selected (141) and not selected (89) for GBS analysis. b)  Principal Component 679 

Analysis (PCA) of 120 cultivated and 21 wild of enset accessions collected six top enset 680 

producing regions of Ethiopia, using GBS-based genome-wide SNPs 5169 SNP markers 681 

 682 
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 683 
Fig.3. UPGMA phylogenetic tree of 120 cultivated (blue clades) and 21 wild (red clades) of 684 

enset accessions using GBS-based genome-wide SNPs 5169 SNP markers.   685 

 686 

 687 

Fig.4. Genetic structure of 141 enset accessions using 5169 genome-wide SNP markers a) 688 

Population genetic structure using Discriminant Analysis of Principal Components (DAPC). 689 

b) GenGIS plot for the three clusters plotted with phylogenetic tree combined with the 690 

corresponding regions of collection. Samples were collected from different regions, regions 691 

with both domestic and wild, only domestic and only wild enset accessions.  692 
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 693 

Fig.5. a) Estimated population structure of 141 cultivated and wild enset accessions analysed 694 

using the software STRUCTURE. Each accession is represented with vertical line, which is 695 

partitioned into coloured segments which represent the estimated membership fraction in the  696 

K clusters b) Evanno plot of Delta K calculated from K ranging from 2 to 9 (each K repeated 697 

10 times) analysed using Structure-Harvester (Evanno et al., 2005). 698 

 699 

 700 
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 705 

 706 

 707 

Fig.6. Summary of genetic diversity and genetic differentiation of cultivated and wild enset 708 

accessions measured within 500kb sliding window drawn using circos plot.  a) The 11 709 

Chromosomes (Mb) portrayed along the perimeter of each circle, b) Genetic diversity of 710 

cultivated (blue) and wild (red) enset accessions, genetic diversity for each sliding window was 711 

calculated nucleotide diversity divided by number of markers.  c) Fst less than 0.02 (red) and 712 

greater than 0.2 (blue), d) total count of SNP markers per window, dots near the centre 713 

represent a low number of SNPs and the dots further out represent high numbers of SNPs.  714 

 715 
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 716 

Fig.7. Fst values of 5169 SNP loci, displayed according to their genomic positions within 5 Mb 717 

intervals on the 11 chromosomes.   718 

 719 

 720 

 721 

Supplementary Fig.1 Mantel test to estimate correlation between genetic (ΦPT) measured 722 

using AFLP markers and geographic distance (Km) of cultivated and wild enset samples, 723 

including the regression formula, accuracy (r) and significance test (P).  724 

 725 

 726 
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