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Abstract 
 
Identification and study of human-essential genes has become of practical importance with the realization 
that disruption or loss of nearby essential genes can introduce latent-vulnerabilities to cancer cells. 
Essential genes have been studied by copy-number-variants and deletion events, which are associated 
with introns. The premise of our work is that introns of essential genes have characteristic properties that 
are distinct from the introns of nonessential genes. In this paper, we identified several novel properties of 
introns of essential genes, finding that their structure protects against deletion and intron-loss events, and 
that these traits are especially dominant in the first intron. We showed that GC density is increased in the 
first introns of essential genes, allowing for increased enhancer activity, protection against deletions, and 
improved splice-site recognition. Furthermore, we found that first introns of essential genes are of 
remarkably smaller size than their nonessential counterparts, and to protect against common 3’ end 
deletion events, essential genes carry an increased number of (smaller) introns. We provided support for 
our observations by training a deep learning model on introns of essential and nonessential genes and 
demonstrated that introns alone can be used to classify essential and nonessential genes with high 
accuracy (AUC of 0.857). We further demonstrated that the accuracy of the same deep-learning model 
limited to first introns will perform at an increased level, thereby demonstrating the critical importance of 
introns and particularly first introns in gene essentiality. 
 
Introduction 
 

Essential genes, those where a single-gene-knockout results in lethality or severe loss of fitness, 
have been well studied in many bacterial genomes to develop therapeutic targets for pathogens. Now, 
stemming from the discovery that the loss of an essential-nearby gene can introduce latent-vulnerabilities 
specific to cancer cells, the study of human-essential genes has come of practical importance​1​. This 
importance is magnified as essential genes for cancer-cell growth are found to be located close to 
target-deletion genes ​1​. Therefore, identifying properties of essential genes can further therapeutic 
developments.  
 

Older genes, with earlier phyletic origin, are more likely to be essential, as well as genes that are 
hubs in major protein-protein interaction networks ​2,3,4​. Essential genes are highly connected with many 
protein systems, and thus, consistent transcription timing, maintenance of transcript length, and 
conservation of gene regulation is of high importance​5​. Identification of human essential genes has been 
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approached through the use of single-gene-knockouts, high-throughput mutagenesis, RNAi, and in most 
recent work, CRISPR–Cas9 editing​6​.  
 

However, moving towards an ​in vivo ​analysis of gene essentiality, to lend more practical 
therapeutic insights, studies have focused on the close link between duplication and gene essentiality​7,8​. 
Duplication is a biological mechanism employed throughout evolution to generate new genetic material​7​. 
A positive association between singleton, highly-expressed, developmental genes and essentiality is 
observed, suggesting that essential genes resist duplication events ​7,9​. Stemming from these results, 
copy-number-variants, which result from unequal-crossing-over, retroposition, or chromosomal 
duplication, were included in efforts to identify essential human genes ​1,10​. Intron loss, occurring at an 
especially greater rate after gene duplication, is the most frequent copy-number-variant in humans, 
suggesting a likely link between introns and gene-essentiality​11,12​. 

 
Introns, which make-up over half of the non-coding genome, have important regulatory and 

evolutionary functions. Intron losses and deletions can modulate gene expression patterns and even alter 
gene function​11​. Typically occurring at the 3’ end of a gene, losses and deletions arise from mediated 
recombination of a gene with the reverse-transcribed RNA during duplication events or through irregular 
splice sites ​10,13​. Furthermore, intron deletions are most common to longer introns ​12​. Intron 1, typically the 
longest intron, has frequent intron deletions (30.4% of all known deletions) which are especially serious 
as the first intron preferentially contains regulatory regions and exhibits the highest density of chromatin 
marks allowing for gene expression​13,14,15​. GC patterns in intronic sequences are associated with an 
increase in enhancer activity, correct splice site recognition, and protection from intronic deletions ​12,16,17​. 
 

It has been suggested that in highly-expressed-genes, selection has resulted in smaller introns that 
reduce transcriptional cost, which agrees with reports of shorter introns in essential genes ​12,18​. Adding to 
the seeming importance of introns in essential genes, intron deletions in three-essential-yeast genes 
drastically decreased RNA levels and caused major growth defects ​19​. 
 

Owing to the capability of intron losses and deletions to alter gene duplication, expression, and 
transcription timing, we hypothesize that essential genes, which demand consistency, have developed 
systems to minimize these events. We thus aim our study to (i) identify whether essential gene introns 
differ from those of nonessential genes and (ii) characterize the unique properties of essential gene introns 
to allow for later therapeutic developments.  
 
Results 
 

We extracted 1992 introns of human essential genes, 69371 introns of human conditional genes, 
and 109640 introns of human nonessential genes from the Ensembl database​20,21​. Human gene essentiality 
data was gathered from the database of Online Gene Essentiality (OGEE)​3,6​. OGEE gathers data from 18 
databases of large-scale experiments; conditional genes are genes where experiments have disagreed on 
essentiality. 
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Fig. 1: Details of convolutional neural network and testing results  

 

 
 
a​, Our model uses a convolutional architecture to predict intron essentialities. The convolutional layer 
contains multiple filters that detect motifs within the intronic sequence. Then, the pooling layer 
averages each filter’s response across the sequence to determine the cumulative presence of motifs. The 
resulting values are fed into a fully-connected layer followed by a two-value softmax output layer 
corresponding to the probabilities of the intron being part of an essential or nonessential gene. The 
best-performing model from our hyperparameter search used 128 convolutional filters with a window 
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size of 24 and a fully connected layer with 128 neurons. We found best results when training with an 
L2 regularization parameter of 10​-6​ and a dropout rate of 0.2. We trained two models, one on the first 
1000 bp of introns and one on the last 1000 bp. This includes the 5’ splice site in the first 1000 bp, as 
well as the 3’ splice site and the branch site in the last 1000 bp. In all following results, these models 
are tested on their respective sections of the intronic sequence. ​b, ​ Our model, trained on the first 1000 
bp of introns, had an AUC of 0.747. Our model, trained on the last 1000 bp of introns, had an AUC of 
0.739. We predicted gene essentiality using a majority classifier on all introns of a gene. The majority 
classifier of the model trained on the first 1000 bp of introns saw an AUC of 0.843, and the majority 
classifier of the model trained on the last 1000 bp of introns saw an AUC of 0.824. We further 
improved accuracy by averaging the outputs of both majority classifiers. This combined classification 
strategy achieved an AUC of 0.857. ​c, ​ As the first intron is known to have unique properties, we 
separately tested the models on only first introns, seeing improved accuracy. On first introns, the model 
trained on the first 1000 bp of introns had an AUC of 0.792 and the model trained on the last 1000 bp 
of introns had an AUC of 0.791. We further improved first intron essentiality prediction by averaging 
the outputs of both models to make a dual average prediction, achieving an AUC of 0.835. 

 
We trained a convolutional neural network, based on DeepBind, to predict gene essentiality based 

on recurring base-pair motifs of  1000 bp long intronic sequence input​22 ​(Figure 1). We trained two 
separate models using the first and last 1000 bp of introns and combined these models by a double 
classifier which averages essentiality scores from all introns of a gene given by both models. The double 
classifier optimizes the area under the curve (AUC) of the receiver operating characteristic (ROC) curve 
used to quantify the diagnostic ability of the model. For the purposes of the neural network, we sought to 
predict either essentiality or nonessentiality, and thus classified conditional genes from the database as 
essential if over 50% of experiments agreed on essentiality; we will call these genes conditional–essential. 
If introns of essential genes and nonessential genes have no markedly-characteristic properties, we would 
expect an AUC of 0.5. Rather, our double classifier achieved an AUC of 0.838 (Figure 1). We identified 
the basis used to filter introns, giving a set of 128 sequences of 24 bp long, for each model, that were used 
to differentiate between essential and nonessential introns (Supplemental Figure 1).  
 

Our results support that introns of essential and nonessential genes have unique properties. To 
identify unique properties we used a computational approach. We also found that the model performs 
slightly better at classifying introns of strictly essential or nonessential genes, suggesting that 
conditional–essential genes do not fit well in either essential or nonessential motifs. Therefore, we now 
include all OGEE classified ‘conditional genes’ as separate entities in our computation to characterize 
properties of introns by essentiality. 
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Fig. 2: Introns of essential genes differ from introns of nonessential genes by size, 
number, and position 

 

 
a,​ The dashed-green line represents the mean and the notches are calculated using a 
gaussian-based-asymptotic approximation to represent confidence intervals around the medians (orange 
lines). The first introns for essential (p=0.0001), conditional (p<0.00001), and nonessential (p<0.00001) 
genes are larger than the later introns; however, essential gene first introns are longer than the later 
introns to a lesser degree than those of nonessential introns. The nonessential first intron is much longer 
(mean three times greater) than the essential first intron (p<0.00001). For later introns, nonessential are 
longer than essential (p<0.00001), but these lengths are closer than the disparity between first intron 
sizes. Conditional introns typically fall within the middle. ​b, ​ Essential genes have a greater number of 
introns than both conditional (p=0.0383) and nonessential (p=0.0003) genes ​c, ​ However, essential 
genes have a lesser total length of intronic sequence than both conditional (p<0.00001) and 
nonessential (p<0.00001) genes. 
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While introns of essential genes differ from introns of nonessential genes by size and number 
(Figure 2), they also differ by base specific traits. GC density is significantly greater in the first introns of 
essential genes (Figure 3). Eukaryotic intron 5’ and 3’ splice sites for pre-RNA processing, 5’-GU-AG-3’ 
boundaries, are highly conserved, while some minor classes of introns have different boundaries ​23​. We 
report that essential gene first introns are less likely to have an unusual 5’ or 3’ splice site when compared 
to first introns of conditional and nonessential genes. The same trend is true of later introns, to a lesser 
degree (Figure 3). 
 
 

Fig. 3: Introns of essential genes differ from introns of nonessential genes by GC density 
and lower frequency of unusual 5’ / 3’ splice sites 

 

 
a,​ The first introns of essential (p<0.00001), conditional (p<0.00001), and nonessential (p<0.00001) 
genes have a higher GC density than the later introns. Essential (p=0.003) and conditional (p<0.00001) 
genes have a higher density of GC regions in their first introns than nonessential first introns. The 
proportion of GC density of the first intron to later introns for nonessential genes is 1.1, for conditional 
genes is 1.2, and for essential genes is 1.3. GC density is greater in first introns of essential genes. ​b, 
Essential gene introns less frequently have unusual sequences at the 5’ splice site than conditional 
introns which in turn have less frequent unusual sequences at the 5’ splice site than nonessential 
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introns. The first intron of essential genes is less likely to have an unusual 5’ splice site than conditional 
or nonessential first introns. Additionally, essential first introns are less likely to have an unusual 5’ 
splice site than essential later introns. A conditional first intron is less likely to have an unusual 5’ 
splice site than nonessential first introns, so we see that this effect correlates with essentiality. The first 
intron of nonessential genes is most likely to have an unusual 5’ splice site. ​c, ​ The first intron of 
essential genes is less likely to have an unusual 3’ splice site than conditional genes which in turn are 
less likely to have an unusual 3’ splice site than first introns of nonessential genes. We see that this 
effect again correlates with essentiality. 

 
 

There exists a minor class of introns, U12, which involves using minor 
U12-dependant-spliceosomal equipment, and is a rate-limiting-step in gene expression​24​. While only 2.7% 
of all human genes studied contained at least one U12-type intron, essential genes had an increased 
frequency of U12-intron-containing genes than conditional genes, which in turn had an increased 
frequency than nonessential genes. It appears that essential genes that contain a U12 intron generally 
contain more introns and have a larger amount of total intron bp in that gene. The increase in average 
number of introns in a U12-containing gene is consistent with both conditional (p<0.00001) and 
nonessential (p<0.00001) genes. The increase in average total intron bp in a U12-containing gene is 
consistent with both conditional (p=0.0106) and nonessential (p<0.00001) genes. It is possible that 
essential introns have a greater frequency of U12-introns, especially for genes with many introns, in order 
to increase the timing of transcript processing by the U12-spliceosome so as to allow for better error 
correction in long transcripts of essential genes. 
 
Discussion 
 

While essentiality is not wholly an intrinsic property of a gene, the ability of our model to predict 
essentiality or nonessentiality from just intronic sequences suggests that there exist characteristic motifs 
unique to introns of essential genes. The model’s accuracy for selecting essential introns increases when 
only testing the first intron as demonstrated by the greater AUC. This suggests that the first intron of 
essential genes has especially unique motifs when compared to the first introns of nonessential genes. We 
followed up on these results with computational analysis of intronic sequences of essential, conditional, 
and nonessential genes with regard to all introns, only first introns, and only later introns. The conclusive 
findings can be summarized in that (i) first introns of essential genes are much shorter than first introns of 
unessential genes, (ii) essential genes have more introns per gene but these later introns are markedly 
shorter than the later introns found in nonessential genes, (iii) essential first introns have a greater GC 
density than first introns of nonessential genes as well as later essential introns, (iv) essential first introns, 
with essential later introns slightly less so, infrequently have unusual 5’ or 3’ splice sites compared to the 
first introns of nonessential genes. 
 

From these results, essential genes appear to exhibit intronic characteristics that protect their first 
introns from loss and deletions. The first intron is crucial for regulation of gene expression; for essential 
genes which are central to PPI hubs, any deletion in the first intron has the potential to disrupt an entire 
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network​3,14​. Because deletions occur in longer introns at much higher frequency, essential first introns are 
on average over three times less the size of nonessential first introns ​12​. First introns of essential genes 
have a greater GC density which allows for an increase in enhancer activity, correct splice site 
recognition, and protection from intron deletions ​12,16,17​. Similarly, as unusual splice sites can allow for 
alternative splicing, introns of essential genes, especially the first introns, have the lowest frequency of 
unusual 5’ and 3’ splicing sites ​25​. Furthermore, as the majority of deletions occur at the 3’ end, essential 
genes have an increased number of introns. These later introns however, are smaller than the average 
nonessential intron, avoiding long introns in essential genes so as to limit any intron loss or deletions. 
Because deletions in introns of essential genes would alter transcript length and thus interrupt the timing 
of a complex molecular network, the unique properties of essential introns appear to have been selected to 
avoid intron losses and deletions. 
 

Conditional genes are correlated between essential and nonessential genes, suggesting a middle 
ground for both gene stability and alterations of gene functionality. This middle ground is necessary for 
successful evolution of the genome. We hypothesize that this reflects the desire of the genome to both 
innovate its genes as well as to conserve its most essential genes. While selecting for deletion-adverse 
essential intron systems promotes basic network stability, selecting for long, first introns of nonessential 
genes allows deletions to alter regulation of nonessential genes and even alter gene function. 

 
The results presented here introduce the concept that essential genes have characteristically 

unique introns from nonessential genes. These differences, as outlined above, can be exploited to target 
tumors by disrupting nearby essential genes ​1​. Interrupting the complex safety net around the first intron 
can alter regulation and thereby disrupt a network necessary for tumor growth. Similarly, using targeted 
CRISPR–Cas9 therapies to force deletions of introns within carefully selected essential genes could 
likewise stunt cancers. We further identify sequences that characterize the motifs used to differentiate 
between essential and nonessential introns, that can be exploited with future research in this selective 
targeting (Supplemental Figure 1).  

 
We demonstrate a deep learning model in this paper that can differentiate between essential and 

nonessential genes with 1000 bp inputs of intronic sequences from the gene-in-question. Essential genes 
are located close to target-deletion genes in cancer therapies. Using the double-classifier model (AUC of 
0.838) to identify essential genes in cancer genomes can accelerate efforts to locate target-deletion genes 
for cancer therapies.  
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Methods 
 
Model 
 

Our deep learning model is a convolutional neural network based on DeepBind, a predictive 
model that has shown state-of-the-art performance in predicting sequence specificities of 
DNA–and–RNA-binding proteins ​1​. Our model predicts the essentiality of the gene of an intronic sequence 
‘s’​ by calculating an essentiality score ​f(s) = net(pool(rect(conv(s)))) ​. Figure 1 depicts our model 
architecture. Our model accepts 1000 bp sequences encoded as one-hot vectors. The convolutional layer 
(​conv ​) contains multiple filters that detect motifs within the intronic sequence. We apply the ReLU 
activation function (​rect ​), then the pooling layer (​pool ​) averages each filter’s response across the sequence 
to determine the cumulative presence of motifs. The resulting values are fed into a small neural network 
(​net ​) consisting of a fully-connected layer followed by a two-value softmax output layer corresponding to 
the probabilities of the parent gene being essential or nonessential. The fully-connected layer also uses the 
ReLU activation function, and the softmax function is applied to the output to normalize prediction 
probabilities. We prevent our model from overfitting by using L1 and L2 regularization as well as 
dropout​26​. 
 
Data 
 

Human DNA sequences and annotations were collected from the Ensembl genome database 
project​20,21,27​. For each gene, we used the longest transcript so as to avoid alternative splicing products. We 
thus preferentially used the transcript whose sequence was verified by both Ensembl and Havana. We 
used the provided annotations to separate out intronic sequences.​ Before training, the intronic sequences are 
transformed using one-hot ​encoding such that each sequence is represented as an ​Lx4 ​ matrix for a sequence 
of length ​L ​.  

 
We assign labels using gene essentiality information from OGEE, which ​gathers data from 18 

databases of large-scale experiments ​to provide a reference of how many studies found a gene essential or 
nonessential​3,6​. For the model, due to the ambiguity of conditional genes, we discard all conditional genes 
that have been found to be essential in less than half of studies. Genes are assigned binary labels of 
essential or nonessential, where the remaining conditional genes are grouped with essential genes. 

 
We trained two models, one on the first 1000 bp of introns, and one on the last 1000 bp. This 

includes the 5’ splice site in the first 1000 bp, as well as the 3’ splice site and the branch site in the last 
1000 bp. These are the three best characterized regions of eukaryotic introns and are the sites that are 
most directly involved in spliceosomal modification of the transcript to form mRNA.  
 
Training Procedure 
 

We separate the data into training and testing sets by a randomized 80/20 split of introns, ensuring 
that all the introns of a gene lie in the same set so that no gene-specific information affects the validity of 
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our accuracy on the test set. At training time, we balance our training set by equally sampling from the 
essential and nonessential classes so that the model does not overfit to a specific class. We selected our 
model’s hyperparameters by performing a grid search of our model’s dropout rate, convolutional layer 
window size, activation function, and L2 regularization strength. We assessed 36 potential models based 
on three-fold cross-validation, and we chose the hyperparameters of the best performing model. We 
trained the final model on the entire training set. We trained all models using Adam gradient descent and 
a cross-entropy loss minimization objective​28​. The model is trained for 30 epochs with a batch size of 64. 
We implemented our model using the Keras library running on Tensorflow, and trained on an NVIDIA 
Tesla M60 GPU. 
 
Prediction and Evaluation 
 

We evaluate our model on our test set using the area under the curve (AUC) of the receiver 
operating characteristic (ROC) curve, which measures how well our model distinguishes between 
essential and nonessential classes. The model produces an essentiality score corresponding to the 
predicted confidence in the essentiality of the gene of an intron, and the ROC curve is generated by 
measuring the sensitivity and specificity of the model at varying prediction thresholds of the essentiality 
score. We also took advantage of both of our models in order to better classify an intron by averaging the 
scores produced by our two models on the first and last 1000 bp of the intron. 

 
Our model can be extended to classify entire genes with even better accuracy. Rather than 

classifying the essentiality of individual introns, we classify whether an entire gene is essential or 
nonessential by combining information from all of its introns. To classify in this manner, we introduce a 
majority classification method. We accept the list of all intronic sequences of a specific gene and run each 
individual intron through the model to get the essentiality score of each intron. Then we calculate a gene’s 
essentiality score as the mean of the essentiality scores of its introns. 

 
We attained our highest AUC using a double majority classifier which uses both the first 1000 

and last 1000 bp of each intron to classify a gene. We run the first and last 1000 bp from each intron 
through the models trained on the first and last 1000 bp of each intron, respectively. Then we similarly 
calculate a gene’s essentiality score as the mean of the essentiality scores of its introns from both models. 
By combining information from multiple parts of multiple introns, the double majority classifier achieves 
the highest accuracy. 
 
Code 
 

All the code used for data processing, figure generation, and model training, as well as the 
weights of our final models, are provided at ​https://github.com/evendrow/Intron-Essentiality/ 
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Supplementary Information 
 

Supp. Fig. 1: Optimized 24 base pair sequences for each of the 128 filters in convolution 
(left trained on first 1000 bp of intron, right trained on last 1000 bp of intron) 
 

AGTATATAGAGTGGTTTAGTCCGG 
CCCCCCCCCCCCCCCCCCCCCCCC 
TACCGTGTAAAGCCTGTACCGGCC 
CGATTCCCACGATCATATCCGATG 
CCGGGGGGGTCCTACACAAACCCA 
GTAGTACCGTGCTCGCGTGTCGTA 
AGCCTCCGCTGAGAGTATGGGAAA 
AGCGCCAGGAAAGCAGCGAAGCAG 
GCTTAGGTCTGGTGATACGAAACT 
GTCGTCTTAGACGTTCTCGCTGTG 
CCCACAACGGGAAGCGACCGACAA 
CCTTTAGTACATACTAGGTACGGT 
CAATCAATGGAATGCTCAATGGCC 
CACCCCCACACACACCAACGCGAA 
GTGCGGTGGGGGTGGTGGGGGGGT 
GATCCCGAATCCATCTTCAATGGC 
CAATTACTTCCAATGACTCACCCC 
AAAAAAAAAAAAAAAAAAAAAAAA 
CACAATATCCCCCCGGGAACCTCA 
CCCCTTTTCCTATCTCCTTTCCCT 
CAAGGAAAGTTTCCCTGGGAGTCC 
TACGTCGTCTTTGTCGGTAGTGCG 
GGGGGGGGGGGGGGGGGGGGGGGG 
TTTACGTAGCGAGTAGACAGTGTA 
CTGTAGCGCCGTTACGTTGCGTTA 
CCCCCCCCCCCCCCCCCCCCCCCC 
ATTATACTGTAGTGCCGTCGCAGC 
GTTTAGTACCGTAAACGGACCGTT 
CCCAACACTGAATCCTTATTCAAT 
ATTGTAGAGTAGTAGCAGCGTACC 
CCCCCGGGCCCCCGCGCCCCCGCG 
GACTAACTCTATGGAAATCTCCAC 
GGCATCAAAGGGATGCTCCATGGA 
GGGGGGTGCTGTGGGTGGGGGGTT 
GTGGCTCCTGTGGGTCTGGGGAAG 
TATAATTTTTCTCTAGATATATAT 
TCCAAATGGCCATGCAAACCACAA 
GACACGGTGGCGCGTTGCAGTTCG 

CCCCCCCCCCAAAAAAAAAAAAAC 
TTCTCCATGGAACGATGAGAGCGT 
AAGGGGGGGACAAGGAGCCCCAAC 
CCCCCCCCCCCCCCCCCCCCTCCC 
TAACCGTACCGAGAAACGGTTTTT 
TACTTTAGGGTCGTGAGGTACTAG 
ACGGTTTTTTACAGTTAGCAGTTG 
TCTCCATCCACTGAAGAATGCGAC 
CCCCCCCCCCCCCCTCCCCCCCCC 
AAAAAAAAAAATAATAAAAAAAAA 
CCTGGGTAGCGGCGCCTAGTAGTG 
GGCCGTGTTACCGTTTAGTTGTTC 
TGAAACCATACCTAATGTTGCCTT 
AAATTATCCTTCACTATCTAAGGA 
AGTCCCCTACAATGTCCCAGACAC 
AATGTGAGTGCGGGACCGCGGGGG 
CGCTTTTAAGGCGTCGTTGTTTAG 
GGGGGGGGGGGGGGGGGGGGGGCC 
ACGGGGAGGGACCAAAAGAGAGCA 
GGTACGGAGCCCTTGTACTGTATG 
ACAATCCCTCTATCACTACCCCGG 
AAACCCTCCATCACTCATCCCCCC 
ATCCGACGGTCAATGTCATTCCCC 
GCAGCAGTGCCGAGTTAGGCCTGC 
AACCATCTATCAATGGCCAAATCG 
ATTCCTCCTATGGGACCCGAGAAG 
CCGCGAGCCGGCCTAGTCGCTTAA 
CGATGAATCTAAGCGCCCAATGGC 
AGGTGTGTAGGGAGTAGTGTAGTA 
TCAATGAAATGCTCCCTTGGACAA 
TTAGTAGCCGTTCGTAGTAGTCGT 
ACAATTAAATCACTGCCAATTCCA 
TCCGCCCCCCAAAAAAAAATTCCG 
AATCCTCCGATTAATATTGCTCCA 
CCTTTGTGGTGGTAGTGTCTTGCG 
CTCAATCTCCCCCCAATGACGCCA 
TACTTGAGTCGCCAGCCCCAGTAG 
CCCCCCCAAAAAATTTTTTATCCC 
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AGAATCATCACTCTATGTCTCAGA 
GTTGCGGTCAGTAGAGACCAGTCG 
GGGGGTGCCTATGGGTGGGGGGTT 
TGTATTACGTGGTAGTCGTTAGGT 
AGGCGTTAACGCTGTTTAGGCGTT 
GGGTGTTGGGGGTGGGGGCGGGGT 
TTTTTTTTTTTTTTTTTTTTTTTT 
TCGATTATCGCAATCAATCCAGGC 
CGGGTCGACAATCAGAGTGAGGAC 
TTACGGCGTAACGTAGTCGTCTGT 
CATTCAATATCACTGACTAGAGGC 
CGTTATTCCTTCCTTTTCGTCCGG 
GTAAATCGCTTGTAGGCCTTTAGT 
CCCGCCCCCGCGGGGGCGCCCGCC 
GCGTCATCAATGCATAGTCCGACA 
CAATCAATCTCATCCTAGCACAAG 
GGGGCAAATCCTCCAATCAATAGC 
TTTGGTGGCTGGTTGTTTGGTGGG 
CGTCGCGTCTGAGGCCTGCAGCCC 
CAGGCACTGGAGGCACCTGCAAAA 
CGTAGTAGTCGTTACCCGTTTGCC 
AACGCATCAATGGCTCCATATCAA 
GGGGGGGGGGGGGGGGGGGGGGGG 
TCACTCCCACCATAACTCCCATAA 
CCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCCCCCCCCCCGGGGGG 
GCACCGTAGTCGTAAGTCGTCGTG 
TGTAAGTACGTAGTTATCGCGGTA 
AGGATCCCACCGCGGCGGGCCCCC 
GTTACCGTTCAGCGTAGTAACGGT 
AGCCAATGATCTGATAAATTCCAA 
TAGGCCGTACGGTTTACCCTAGGT 
CCTGTAACAGACTTAAGGTCGTTG 
GTAATAGCCGTAACGTCGTCTTAA 
GGGCTGAATCCACGTCCAATCCTC 
CCAATTCCCAACGAGGAGCCCCAT 
GGGGGGGGGGGGGGGGGGGGGGGG 
GGGGGGGGGGGGGGGGGGGGGGGG 
AGTACTTAAGATTTTGTTGACTTG 
CCAACTCTAACGATCACAATCCCT 
TGAGTCGTTAGACAATCGAGGCTG 
AAGTCGCCACGGACATCCCCTCTC 
TTTTTTTTTTTTTTTTTTTTTTTT 

GTAAAGAAATAGGGTTTAGTTTTT 
GTTAACCCGTCTTAATAGACTTGT 
GTTAGTAGTTAAACCCGTTGGCGG 
GAGCCGTTGAGTTAACGGGTTGTT 
CCCAAACCAAAACGTGGTAACTGC 
TAAAAACTTGAGTGTATGCTTGTT 
AAGGGGCTTTCAAGGGGCCAACCC 
GGGGGCGGGGGGGGGGGGGCCGCG 
AGCTTGTCTATCCTCACGAGAGGT 
GGCGTAGTACTTTATACCTAGCGT 
GAATAGTAGTGAGGCAGTTGTGTT 
TTTTGTGGCGTTGGTGGTGTTGTT 
ACATGCGACAAATGCGACGACCAA 
GCAGTATAGCCGACTCGTGGTAGT 
ACTACCACACTTTATTATTCCCCA 
GTTATCGCTCCGTAGTAGTCGCGA 
CACCAACGATGGATCAACGAGAAA 
CCCTGCCTGGGCCCTGGGTCGCGG 
GCAGTACGCTCCAGCCGAGCTAGC 
CATTTCATTATCAATATCCCAGCC 
TGTGCGCGCTATTGGGGGTGTGCG 
GAACAGTAGACGTAAACCGGGTAT 
CCTCCCCCCTCCATCACTCCCCCC 
AATGACTTATCATTCTCTATTAAC 
AGCTTTAAACAGTTTAGGTACCGG 
CTTGTTTGGGCCGTAGTAGCGAGC 
ATTACTCTCCATTATTCATGACCG 
ACTTCAAGTCAATTTCTATGGCCA 
CCCAAATGTCAATGCCAAATGCAC 
TCAATCAATCCAATGGGCACTCTG 
CAATCACTTACCATTCAATCACCA 
ATGCAAGGACTGAAAGACATTCCC 
GTGGTGGTGGTTGTTGGTGGTGGG 
AATTCCCCTGCCGGATTCCAAGGC 
GGGTGGGGGGGTGTGGGTGGGGGG 
CCCCCCCCCCCCACACACACCCAC 
TTTTTTGTGGTTGTTGTTGTTTTT 
ATTTCAAACACGCAACTTCAATGC 
GTAGTTGTTGGACGCCGTACTTAG 
GTCGTGTCGTTCCAGGCTTTCGCT 
ACAAAGTTCTCCATGTCAACTCGC 
GAAAAGTAGTAGATAGTAGTTTAA 
ACCAAAACCTTTCAATGCCAAAAG 
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CTATCCCATCTGGGGGTGCCAATG 
CCGGTAGTACGTAGTACGCGTATA 
GTAACTAGTCTTGCGGGGTCCGAG 
ATTTCCTCGGTGGATGTACGGAGG 
GGCCCGCGGCCCCCGCGCCCCCCC 
CGTAATGAGTGTACAGTGTAAGCG 
CCCCACCACCCACAACAACGCCCA 
CTGTATCGCTTAAGTTCGAAAGGG 
GAGTCTGGTATGGTTACGTACCGT 
TAAATCAATCACTACTGCTTCAAT 
GTAAGACCTTAAAAACCCTTTTTT 
AAATTTGCCCCGGAGGACATCTAT 
TAACTGGCTTACCTCGTTCAGATC 
ATCAATCAATCAATGCTACGTCAA 
GTTAGCGTACCTGCTAGTGGCGGG 
AAAAAAAAAAAAAAAAAAAAAAAA 
AGCCCCGCAAAATTTCCCCGGGGG 
GTCGTTCAGTAGCAGTACTCCTGT 
CCCCGCCCCCCCCCCCCCCCCCCC 
GCTGCTGCGTTCTCCGCTGCGCTC 
TAGGTAGTGTGCCCGGATCGTACG 
CACTAATAGTCGTAGCCGGTCAGT 
AATGTCCACCAGGCTATCTCATGG 
TGTAAGCCAGACCGGCCTACAGTC 
CAGCATGAATCCCTGGACATTCAC 
GCAGTGTAGTACTTAAGGAGGTAG 
CTTCAATTCCTATGCACGCAAAGC 
AAACTCTATCATCATTTTCATATG 
CGTTATTGCCACGTCGTAGACGTG 
GTTCGTAGGCTTGTCGTATATAGA 
CCCCCCCCCCCCCCCCCCCCCCCC 
CCCTTGACGCTTTAGTAGGGCTTA 
CAATTCCAATGACTCAATTTCTAG 
GGGGGGCCCGGGGCGCGGGGCCCC 
CGACGACATATCCAAAGCCCCATA 
AAGAGGCGGGGACAGAAAAAAAGA 
GTACGTAACGGTAGCGTATACTTT 
ATCATCAATGACGTGCGATCTATC 
AGGTGAGCGTTTTTTTGAGAAACG 
TTGTCGCTTAGGCACTAGTACCTT 
ACGTCAGTGTTGTACGTTAGTCGC 
ATCAAATTCCAACCACAACATCAA 
AAACCAAAAAAAAAAAAAAAAAAA 

TCCAATCACCCTCCATGGAGAAGA 
AGAAATGGGCGACGGGAATCGGGA 
CAGTCCTGTCGCAGTAAGCCTTCT 
CGGCACTCTCCTGGCGGTCGGGTT 
TACGTAGCCGTTACCCTGTTGTAG 
TTTCTCTTCTTCTTCTTGTGTTTT 
AAACGCCCTCAAGGACGACCCCGC 
CCGGCACCCAGTAGTGATCGTGTT 
GTTCGAGTATAGTAAAACTGTACC 
GATCTCAGACATACGAGTCCCGAA 
GCATAGTTGGTAGTCGCTTAGGCT 
CCGTAGTCTTTCCGCCCGGTACTT 
CTTAACCTCGTATAGAGACGTGGT 
CCTACCGTAAACCTTGTTTTGTAA 
GGGGGGGGGGGGGGGGGGGGGGGG 
CTTTGGTATTTAAACAGGAAAGGG 
ACAAACGACCAATAGGAAGCCCAA 
CAGTTCTTTGCTACCAGCCCCACC 
GTAAGGATTGCAAACGCCTTTGTG 
CGTGGTAGTCGTTACCGACTTGGC 
GTATTGCTAGCGAAACCTTGAGGT 
GGGGGGGGGGGGGGGGGGGGGGGG 
AAATGCCCCCATCCAAGCGATGAC 
GTAAACCCTTGTAAAGAACCCTGT 
GAGAGGGAGGGAGGGAGGGAGAAA 
CCGTCACAGTATCGTGGTAGTACC 
TAAGGAGTAGGGGTTGGTTTTTGT 
GTTTTTTGGACGTTGGACCGTTTA 
TCATGGAGTCGTTCCAGTTCAGTT 
AATGTGAGTGCAAGGACGTGGGGG 
CTGGCAAGCAATGCATTCCCCGAC 
CCTTGCTCCAAAAGATAGACGTCC 
TCTCACTCCATATATCCACGGGCA 
GCCCAGTGTTGTGTCGCTGTTTAT 
TCAATATCCCTCAGGCAACTTCAA 
CATTCCCTATTCAATAGCCTCAAA 
ACAGTAGCAAAACTGTTAGGTTGT 
CGCGGTAGCGGAACCGTTTAGTAG 
GTAGACTCGTAAGGTTTAGCGGTT 
TCGGCCGCCCCAGCCGCGCCAGCC 
TTTTTAAAAAAAAAAAAAAAAAAA 
GATCATACTTTCACTATCGATTCC 
TAGGGAAGCTGGGTAGCGGTTTTT 
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CGGTATCGGTGTTGTACCTTAGCC 
CTCATAATTACTATAATACTCAAA 
CAATGGAGCTCAAGGGCCACCAAT 
GCTGCACATGTGGGCACAGAAAGA 

CCCCCCCCCCCCCCCCCCCCCCCC 
AGAAAAGGCGGACCCAAAACGCAG 
GGAGGGGCACACAGAGATCAACAC 
ACAGGGCCGATAAAACAGAGTGGG 
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