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Abstract 

Single-cell RNA sequencing (scRNA-seq) has become a very powerful technology for biomedical 
research and is becoming much more affordable as methods continue to evolve, but it is unknown 
how reproducible different platforms are using different bioinformatics pipelines, particularly the 
recently developed scRNA-seq batch correction algorithms. We carried out a comprehensive 
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multi-center cross-platform comparison on different scRNA-seq platforms using standard 
reference samples. We compared six pre-processing pipelines, seven bioinformatics 
normalization procedures, and seven batch effect correction methods including CCA, MNN, 
Scanorama, BBKNN, Harmony, limma and ComBat to evaluate the performance and 
reproducibility of 20 scRNA-seq data sets derived from four different platforms and centers. We 
benchmarked scRNA-seq performance across different platforms and testing sites using global 
gene expression profiles as well as some cell-type specific marker genes. We showed that there 
were large batch effects; and the reproducibility of scRNA-seq across platforms was dictated both 
by the expression level of genes selected and the batch correction methods used. We found that 
CCA, MNN, and BBKNN all corrected the batch variations fairly well for the scRNA-seq data 
derived from biologically similar samples across platforms/sites. However, for the scRNA-seq data 
derived from or consisting of biologically distinct samples, limma and ComBat failed to correct 
batch effects, whereas CCA over-corrected the batch effect and misclassified the cell types and 
samples. In contrast, MNN, Harmony and BBKNN separated biologically different samples/cell 
types into correspondingly distinct dimensional subspaces; however, consistent with this 
algorithm’s logic, MNN required that the samples evaluated each contain a shared portion of 
highly similar cells. In summary, we found a great cross-platform consistency in separating two 
distinct samples when an appropriate batch correction method was used. We hope this large 
cross-platform/site scRNA-seq data set will provide a valuable resource, and that our findings will 
offer useful advice for the single-cell sequencing community.   

Introduction 

Rapidly developing single-cell RNA sequencing (scRNA-seq) technologies allow interrogation of 
the transcriptome in unprecedented detail1-3, 4, but questions arise as to how accurate and 
reproducible different platforms are; and benchmarking and validation studies using standard 
reference samples have not appeared. Ziegenhain et al. reported a study comparing six different 
scRNA-seq library construction protocols and methods, but did not investigate the effects of 
bioinformatics factors such as different normalization and batch effect correction methods, not 
even mentioning that they only studied 583 mouse embryonic stem cells5.  Because many of the 
factors influencing the results of single cell analyses-including stochastic events occurring during 
cell culture or cell isolation, single cell capture, library construction, and sequencing etc.6, remain 
to be identified, batch effects are a major, but underappreciated issue in scRNA-seq when 
comparisons need to be made between single-cell RNA-seq analyses within one laboratory or 
between laboratories6, 7. Batch effects may be derived from both technical and biological 
resources. The suitability and performance of limma and ComBat, the two batch correction 
algorithms originally developed for bulk cell RNA-seq data, for scRNA-seq data analyses have 
been questioned7.  In 2018, four novel batch-effect-correction algorithms were reported for 
scRNA-seq data: Canonical Correlation Analysis (CCA)7, Mutual Nearest Neighbors (MNN)6, 
Scanorama8, 9, and Batch-Balanced k-Nearest Neighbors (BBKNN)10, 11 worked well for scRNA-
seq batch effect corrections on scRNA-seq data under certain conditions8, 10.  Tian et al. took an 
integrated computational analysis approach, evaluating three batch correction methods using four 
scRNA-seq datasets derived from two batches of mixtures of lung cancer lines from a single 
laboratory12.  However, no systemic cross-platform comparison or performance evaluation of 
these newly developed batch correction algorithms using standard reference samples from which 
scRNA-seq data were generated across different centers has been reported.  
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Under the umbrella of the 2nd phase of the FDA Sequencing Quality Control (SEQC-2) 
Consortium, we exploited a comprehensive study design including four scRNA-seq platforms: 
10X Genomics Chromium, Fluidigm C1, Fluidigm C1 HT, and WaferGen, across five testing sites 
with seven different scRNA-seq data sets, using two well-characterized (see the companion 
manuscripts submitted to Nature Biotechnology), but biologically distinct reference cell lines, a 
human breast cancer cell line with a matched “normal” control cell line derived from B lymphocytes 
from the same patient13. Our goals were: 1) to evaluate the reproducibility of scRNA-seq across 
different platforms and sites using different bioinformatics pipelines and batch correction 
algorithms; 2) to establish benchmarking and quality control metrics for scRNA-seq; 3) to 
interrogate and benchmark certain cell type specific gene markers, in terms of the consistency 
across different scRNA-seq technologies and sites.   

We also evaluated the effects of sequencing method and depth on the reproducibility of scRNA-
seq and compared six different scRNA-seq data preprocessing pipelines, seven normalization 
methods, and seven different batch correction algorithms using our unique 20 scRNA-seq data 
sets derived from both mixed and non-mixed cell lines. Our analyses indicated that batch effects 
existed and the reproducibility of scRNA-seq across platforms and sites was dictated by both 
genes selected and bioinformatics pipelines, i.e. batch correction algorithms used. We found the 
performance of the newly developed CCA7, MNN6, Harmony16, 17, and BBKNN10, 11 batch 
correction algorithms depended on the nature of the biological samples or composition of cell 
types, consisting of either biologically similar/identical or distinct samples or cells. In summary, 
we found good cross-platform consistency in separating two distinct samples as long as an 
appropriate batch correction method was used.  

Results 

1. Study design, overall data generated, and data QC assessments 

Figure 1a shows our overall study design. It included four scRNA-seq platforms: 10X Genomics 
Chromium, Fluidigm C1, Fluidigm C1 HT, and WaferGen, across four testing sites (10X_LLU, 
10X_NCI, C1_FDA_HT, C1_LLU, and WaferGen), using two well-characterized reference cell 
lines, a human breast cancer cell line (sample A) and a matched control normal B lymphocyte cell 
line (sample B) derived from the same patient13. Overall, we generated seven different scRNA-
seq data sets including 4 different 3’-transcript scRNA-seq datasets (10X_LLU, 10X_NCI, 
10X_NCI_M (modified shorter sequencing protocol), C1_FDA) and three different full-length 
transcript scRNA-seq datasets (C1_LLU, WaferGen_PE, and WaferGen_SE) (Fig. 1a and Table 
1). For the 10X single-cell platform, we compared the standard sequencing protocol (26x98 bp) 
to the modified sequencing (26x56 bp) using the same scRNA-seq libraries. For the WaferGen 
platform, we also compared paired-end (75x2 bp) to single-end but much deeper sequencing (150 
bp). For the scRNA-seq data, we applied 3 different pre-processing pipelines for the 3’-transcript 
scRNA-seq and three different pre-processing pipelines for the full-length scRNA-seq (Suppl. 
Table 1 & 2).  We also evaluated seven different normalization methods and six different batch 
effect correction algorithms (Fig. 1a).  
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Figure 1. Overall study design and scRNA-seq mapping and numbers of detected genes across platforms. 

(a). Schematic overview of the study design. Two well-characterized reference cell lines (sample A of a breast cancer 
cell line & sample B of a matched control normal B lymphocyte cell line) were used to generate scRNA-seq data across 
four platforms (10X Genomics, Fluidigm C1, Fluidigm C1 HT, and WaferGen), five testing sites (10X_LLU, 10X_NCI, 
C1_FDA_HT, C1_LLU, and WaferGen) using standard manufactures’ protocols. At 10X_LLU and 10X_NCI sites, mixed 
singe-cell capture and library constructions were also prepared with either 10% or 5% cancer cells spiked into B 
lymphocytes.  At the NCI site, single-cell capture and library construction was also performed in fixed and mixed cells 
(5% cancer cell spiked into B lymphocytes). One set of 10X scRNA libraries from NCI was also sequenced using a 
shorter modified sequencing method. Bulk cell level RNA-seq data were also obtained from these cell lines, each in 
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triplicate. All scRNA-seq data were subject to 3 different pre-processing pipelines for either 10X or C1/WaferGen 
technologies, respectively. We evaluated seven normalization methods such as Scran Deconvolution, CPM, LogCPM, 
TMM, DESeq, Quantile, and linnorm and seven batch effect correction algorithms including CCA, MNN, Scanorama, 
BBKNN, Harmony, limma, and ComBat. The cross-platform and cross-center performances were evaluated further by 
t-SNE, UMAP, modified alignment score, and both dot and feature plotting on certain selected marker genes. 
Abbreviations and notations for Fig. 1a: 10X_LLU, single cells were captured using 10X Genomics Chromium 
controller and scRNA-seq were sequenced at LLU Center for Genomics using the standard 10X Genomics protocol 
(26x98 bp); 10X_NCI_M, 10X Genomics scRNA-seq libraries were prepared and sequenced at NCI sequencing facility 
using a modified 10X sequencing protocol (26x56 bp); 10X_NCI, the same 10X Genomics scRNA-seq libraries were 
prepared at the NCI sequencing facility but sequenced at LLU using the standard 10X sequencing protocol (26x98 bp);  
C1_FDA_HT, single cells were captured using Fluidigm C1 HT IFC and the scRNA-seq libraries were sequenced at 
the FDA/CBER sequencing facility (75x2 bp); C1_LLU, single cells were captured using Fluidigm C1 IFC chip and the 
scRNA-seq libraries were sequenced at the LLU Center for Genomics (150x2 bp, ~4-4.77M reads/cell); WaterGen_PE, 
single cells were captured using the ICELL8 chip (Takara Bio) and scRNA-seq libraries were sequenced at paired ends 
(75x2 bp) at Takara Bio; WaterGen_SE, the same scRNA-seq libraries generated at Takara Bio were sequenced at 
the LLU Center for Genomics (150x1 bp, ~1M reads/cell). See Table 1 for detail on the numbers of single cells captured 
and sequencing read depths in each platform and each site.   
(b). For both the breast cancer cell line (A) and normal B lymphocyte cell line (B) across 7 data sets, percentage of 
reads mapped to the exonic region (blue), non-exonic region (orange), or not mapped to the human genome (gray).  
For UMI methods (10X genomics platform), dark blue indicates the exonic reads with UMIs.  
(c). Median number of genes detected per cell at different sequencing read depth. Solid line represents the breast 
cancer cell line (A). Dashed line represents the normal B lymphocyte cell line (B). 
 
Table 1 summarizes the overall cell numbers and sequencing reads of single cells captured 
across four different sites, which provided seven different scRNA-seq data sets. A total of 25,265 
single cells with whole transcriptomic scRNA-seq data were captured (Table 1 & Suppl. Fig. 1). 
Across all the platforms and data sets, over 94.0% of the reads were mapped to the exonic and 
non-exonic regions except for sample A of 10X_NCI_M (modified shorter sequencing), which had 
a mapping rate of 80.3% (sample A) and 88.5% (sample B) (Fig. 1b). However, there were 
variations in the mapping rates to exonic regions across platforms and sites, with WaferGen and 
Fluidigm C1 full-length transcript being higher (19.6%) than 3’-transcript scRNA data in tumor 
cells (A) (C1_LLU_A, 83.1%; WaferGen_PE_A, 84.0%; WaferGen_SE_A, 80.7%). The UMI 
(unique molecular identifier) data generated by the 10x platform showed that 34.8% of the exonic 
reads were derived from non-PCR amplified transcripts in tumor cells (sample A), and 26.4% of 
the exonic reads were derived from non-PCR amplified transcripts in normal B cells (sample B). 
We also noticed that the exonic mapping rates were slightly lower for the 10X genomics 
technologies when using a modified shorter modified sequencing protocol (26x56 bp vs. 26x98 
bp).  Nevertheless, many overlapping genes were detected (96.6%-97.3%) with a high correlation 
(R=0.997-0.998) between the normal and modified sequencing protocol for the 10X genomics 
scRNA-seq (Suppl. Fig. 2).  

To investigate the effect of sequence depth on the number of genes detected across all platforms 
and scRNA-seq data sets, we down-sampled reads to varying depths on the data derived from 
all the platforms to assess the number of detected genes as well as the saturation level at the 
same sequence depth (Fig. 1c). We observed that for both tumor cells (A) and normal B-
lymphocytes (B), the full-length cDNA transcript-based technologies (C1_LLU and WaferGen) 
displayed sequencing saturation at much lower sequence depth (~50k) compared with 3’ scRNA-
seq technologies, for which numbers of detected genes increased continuously with sequencing 
depth up to 250k reads (Fig. 1c).  
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For benchmarking scRNA-seq data, we determined and identified a large number of differentially 
expressed genes (DEGs) between the two cell lines at the population level (Suppl. Data 1, using 
fold-change (≥ 2) plus P-value (≤ 0.01, FDR= 0.05).  Supplemental Figure 3 shows the overall 
QC mapping of the population cell RNA-seq data for two cell lines (Suppl. Fig. 3). 

2. Effects of data pre-processing  

For the UMI based scRNA-seq data, we used three pipelines for preprocessing data: Cell Ranger 
(10X Genomics)18, UMI-tools19, and zUMIs20 to assess the consistency of the number of barcoded 
cells captured and the number of genes detected per cell (Fig. 2a & 2b, Suppl. Table 1). For the 
non-UMI based scRNA-seq data, we used three pre-processing pipelines: FeatureCounts21, 
Kallisto22, and RSEM23 to assess the consistency (Fig. 2d & Suppl. Table 2), which included 
trimming processes (cutadapt or trimmomatic), alignment (STAR and Kallisto), and gene counting 
(FeatureCounts, Kallisto, and RSEM). For simplicity, we used FeatureCounts, Kallisto, and RSEM 
to refer to the 3 non-UMI-based pipelines in this paper. We observed that, for the UMI-based 
scRNA-seq data, although both the number of cells and number of expressed genes per cell 
derived from each pre-processing pipeline were very similar, there were variations across three 
pipelines in all UMI based scRNA-seq data sets (Fig. 2a & 2b). Cell Ranger was the most 
conservative method for barcode cells selection. zUMIs showed the highest number of genes 
detected per cell. In addition, the gene expression level and the consensus genes per cell were 
highly correlated between any 2 pipelines for UMI-based pre-processing pipelines; Umi-tools and 
zUMIs showed the highest concordance.  

 
Figure 2. Effects of pre-processing pipelines on the number of genes detected with UMI- (a-c) and non-UMI-

based (d-e) scRNA-seq platforms/data. 
(a-c) Effect of three pre-processing pipelines (Cell Ranger, UMI-Tools, zUMIs) on the UMI-based (10X) technology. 
Libraries from the two cell lines were constructed and sequenced by two sites (LLU and NCI). (d-e) Effect of three pre-
processing pipelines (FeatureCounts, Kallisto, RSEM) on the non-UMI based technologies (C1 full transcript, C1 HT, 
and WaferGen full transcript). Libraries from the two cell lines were constructed and sequenced by three sites (C1_LLU, 
C1_FDA_HT, and WaferGen). (a) Barplot of the number of cells captured with UMI-based technology. (b) and (d) 
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Boxplot of the number of genes detected per cell in UMI-based and non-UMI based technologies. (c) and (e) Violin plot 
of the gene expression correlation and consensus genes [represented by IoU (Intersection over Union)] per cell 
between any two pipelines in UMI-based and non-UMI based technologies. 
 
For non-UMI based scRNA-seq data, much larger variation was observed in the number of genes 
detected across three pre-processing pipelines in all scRNA-seq data (Fig. 2d). Interestingly, we 
found that Kallisto identified a significantly higher number of genes per cell in the full-length 
transcript scRNA-seq, C1_LLU and WaferGen, whereas it detected of the fewest genes per cell 
in the C1-FDA_HT (3’ counting) dataset (Fig. 2d). In addition, the consensus genes per cell from 
the Kallisto pipeline varied significantly compared with the gene list from the other two pipelines 
for the C1-HT 3’ method, suggesting that the performance of alignment based (STAR) and 
alignment-free tools (Kallisto) might be inconsistent when preprocessing scRNA-seq data from 
3’-based technologies. Overall, we found that the gene expression (counts) and the fraction of 
consensus genes per cell were highly variable across three pre-processing pipelines, both for the 
UMI- and non-UMI based scRNA-seq data (Fig. 2c & 2e). To simplify our comparison, we used 
the Cell Ranger for UMI-based and the FeaturesCounts for non-UMI-based pre-processing 
pipelines derived gene counts for all of our subsequent analyses.  

3. Effects of normalizations 

One special characteristic of scRNA-seq is sparsity of the data, which characteristically include 
high proportions of zero read counts24. The zero inflation can occur due to both biological (e.g., 
bi-stable gene regulation) and technical reasons (e.g., ‘drop out’ due to Poisson sampling 
limitations or limited efficiency of reverse transcription), which make the normalization of scRNA-
seq data very challenging. Global scaling normalization methods developed for bulk RNA-seq 
data have been used for scRNA-seq data; these include CPM (Counts per Million), UQ (upper 
quantile), TMM (trimmed mean of M-value), and DESeq etc25. Regression based methods have 
also been proposed to remove the known nuisance factors in scRNA-seq data. It has been 
popular to regress out cell-cell variation in gene expression driven by cell alignment rate, the 
number of detected molecules, and mitochondrial gene expression after CPM normalization. 
There are also methods that are specifically tailored to scRNA-seq data sets, such as scran, 
SCnorm26, and Linnorm27 etc.  

We used an algorithm, Silhouette width, to evaluate the performance of 7 different normalization 
methods: Scran deconvolution28, CPM, LogCPM, TMM, DESeq, quantile, and Linnorm (Fig. 3a-
g & 3h-n). The Silhouette width is based on how well the two samples from the same cell are 
grouped with each other (see Methods). We observed good consistency in silhouette scores for 
all these methods both breast cancer cells and normal B-lymphocyte cells except for TMM and 
quantile, which failed to normalize the samples as they both had scores similar to the un-
normalized raw data (Fig. 3a-g & 3h-n). A similar observation was confirmed using the 10X_LLU 
sample B dataset with different sequencing read depths (subsampled datasets, data not shown).  
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Figure 3.  Silhouette scores of different normalizations in different scRNA-seq datasets.  

Evaluation of seven normalization methods, Scran Deconvolution, CPM, LogCPM, TMM, DESeq, Quantile and Linnorm 
with the silhouette width across different platforms and data sets.  For each dataset, reads of each cell were 
downsampled to two different read depths (10K and 100K per cell) before calculating the silhouette width values. lgCPM 
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is good enough for accurate clustering analysis. Two normalization methods developed for bulk RNA-seq had the 
lowest scores (TMM and Quantile). DESeq has similar performance as LogCPM 
(a-g) Boxplot of silhouette values stratified by seven normalization methods across seven datasets, including 10X_LLU 
(a), 10X_NCI (b), 10X_NCI_M (c), C1_FDA_HT (d), C1_LLU (e), Wafergen_PE (f) and WaferGen_SE (g) in breast 
cancer cells (sample A). 
(h-n) Boxplot of silhouette values stratified by seven normalization methods across seven datasets, including 10X_LLU 
(h), 10X_NCI (i), 10X_NCI_M (j), C1_FDA_HT (k), C1_LLU (l), Wafergen_PE (m) and WaferGen_SE (n) in normal B 
lymphocyte cells (sample B). 
 
Distinguishing between unwanted variations and biologically significant changes can be difficult.  
A common step in preprocessing single-cell RNA-seq data is to regress out the so-called 
unwanted variations. However, we found that this did not improve the downstream clustering 
analysis (Suppl. Fig. 4a-g & Suppl. Fig. 5a-g). We also evaluated the consistency of Silhouette 
scores across different scRNA-seq platforms and data sets using Scan deconvolution, CPM, 
LogCPM, DESeq, and Linnorm, and we found two different patterns of performance: the 10X 
scRNA-seq data (across two sites and three different data sets) gave consistently lower scores 
than the C1 (both full-length and 3’ across two sites) and WaferGen (both SE and PE sequencing) 
(Suppl. Fig. 6a-e & Suppl. Fig 7a-e). It should be noted that fewer cells were used for the C1 
(66 up to 200 cells) and WaferGen (~600 cells) than for the 10X. Since log transformation has a 
high impact on downstream feature selection and clustering analysis and our analysis showed it 
performed fairly well, to simplify our comparison, we mainly used logCPM normalization in our 
subsequent batch effect and benchmarking evaluations except for the specific normalization 
methods embedded in some pipelines.  

4. scRNA-seq data batch effects and batch correction 

As noted earlier, batch effects can result from both technical and biological variations24, 29. Most 
existing normalization methods were developed for bulk RNA-seq30, so it was not surprising that 
normalization alone did not remove batch effects apparent in our data. For example, neither 
regressing mitochondrial genes nor normalizing UMI removed these effects (Suppl. Fig. 8a/b). 
We performed in-depth benchmarking evaluations using six batch effect correction algorithms: 
CCA7, MNN6, Scanorama8, 9, BBKNN10, 11, limma31, and ComBat32.  

First, taking the gene counts based on the preprocessing pipelines selected above with the 
logCPM normalization using all scRNA-seq data across all sites and platforms, including spiking 
in samples (20 datasets), we applied these batch correction algorithms plus Harmony16, 17 to 
determine which one can separate the two different cell line samples correctly.  Interestingly, we 
found that CCA overcorrected, and Scanorama, limma, and ComBat failed to separate cancer 
cells from B cells, whereas both MNN, Harmony and BBKNN worked well in separating cancer 
cells from B cells (Suppl. Fig. 9a-h and Suppl. Data 2). 

Second, we evaluated these methods with scRNA-seq data derived from samples containing 
biologically similar cell types, i.e., sample A or sample B, analyzed separately (Fig. 4a & b), as 
well as samples where either 5% or 10% of cancer cells were spiked into the sample B cells, i.e., 
10X_10%A_spikein_LLU, 10X_5%A_spikein_NCI, 10x_5%A_spikein_F1_NCI, 
10X_5%A_spikein_F2_NCI, analyzed with the 10X Genomics platform across two sites (Fig. 1a 
and Fig. 4c). We performed batch-correction using each of the methods listed above on the top 
1000 highly variable genes (HVG) on the data from all sites and platforms (Fig. 4a-c). We 
calculated a modified alignment score (see Methods) after each batch correction7. Without batch 
correction, t-SNE plotting showed that the cells from different batches or platforms/sites were 
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clustered separately, not evenly mixed, indicating large variation and/or strong batch effects 
existed (Fig. 4a-c, left panels).  

 

 

 
Figure 4. Evaluation of batch effect correction methods in different sample scenarios. 

(a)-(b) Batch effect corrections were performed using scRNA-seq data from five different sites and/or platforms in 
biologically similar cells, either breast cancer cells (a) or B lymphocytes (b). The datasets were: 10X_LLU, C1_FDA_HT, 
10X_NCI, C1_LLU, and WaferGen_SE. The union of the top 1000 highly variable genes (HVG) of five data sets was 
used as the gene set for batch correction. 
(c) Batch effect corrections were performed using scRNA-seq data derived from spiked-in mixed cells in which either 
5% or 10% cancer cells were spiked into the sample B cells. Four data sets were analyzed: 10X_Mix10%_LLU, 
10X_Mix5%_NCI, 10X_Mix5%_F1_NCI, 10X_Mix5%_F2_NCI. The top 1000 HVG were used for batch correction. 
(d) Batch effect corrections were performed using four scRNA-seq data sets containing biologically distinct cells, 
including two breast cancer cell (A) datasets (10X_LLU_A and 10X_NCI_A) and two normal B cell (B) datasets 
(10X_LLU_B and 10X_NCI_B). The top 1000 HVG were used for batch correction. 
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(e) Batch corrections were performed using two scRNA-seq data sets derived from samples that shared a large portion 
of same biological population of cells but contained a small portion of biologically distinct cells. The two data sets were: 
one normal cell (B) dataset (10X_LLU_B) and one spike in dataset (10X_LLU_spikein_10%A) which had 90% normal 
cells (B) spiked-in with 10% of cancel (A) cells. There were large portion of subpopulation of cells shared by the two 
data sets. 
(f) Batch corrections were performed using two scRNA-seq data sets derived from samples that contained a large 
portion of biologically distinct cells but shared a small portion of same biological population of cells. The two data sets 
were: one cancer cell (A) dataset (10X_LLU_A) and one spike_in dataset (10X_LLU_spikein_10%A) which had 90% 
normal cells (B) spiked-in with 10% of cancer (A) cells.  The small portion of spike-in cancer cells was shared by the 
two datasets. 
Bar plots (a-c) showed the modified alignment score using six batch correction methods, respectively.  
 

In all the above three scenarios (Fig. 4a-c), CCA out-ranked the other methods according to the 
modified alignment score. However, based on t-SNE and UMAP, CCA, MNN, and BBKNN all 
performed fairly well for the breast cancer cells (sample A) (Fig. 4a & Suppl. Fig. 10a), B cells 
(sample B) (Fig. 4b & Suppl. Fig. 10b), or spiked in samples (Fig. 4c & Suppl. Fig. 10c); CCA 
was slightly better than the others (Fig. 4a-c & Suppl. Fig. 10a-c). For the breast cancer cells, 
MNN and BBKNN were better than limma and ComBat, but for normal B cells (sample B), CCA 
and MNN perform slightly better than BBKNN; limma and ComBat seemed to perform fairly well 
too, based on both t-SNE and alignment score (Fig. 4b). Scanorama seemed not to work well for 
the scRNA-seq datasets derived from breast cancer cells (Fig. 4a) or B cells across all platforms 
(Fig. 4b).  The t-SNE plots in Figure 4c illustrate the suitability of single-cell batch correction 
methods applied to a scenario when a sample consisted of mixtures of distinct cell types such as 
the spiked-in 10X Genomics scRNA-seq data. In the spike-in data sets, CCA, MMN, Scanorama, 
and BBKNN all separated the spiked in cancer cells from B cells really well, whereas limma and 
ComBat did not, based on t-SNE plots (Fig. 4c). We further calculated the modified alignment 
scores using different sets of HVG: the top 100, 500, 2000, and 4000 using all six batch correction 
methods. We observed a similar, consistent pattern of performance as shown in Fig. 4a-c, in 
which the top 1000 HVG were used, except for a lower score for MNN in sample B when the top 
4000 HVG were used (Suppl. Fig. 11a-c). Overall, CCA, MNN and BBKNN all corrected the batch 
effects very well in the three scenarios.  

Third, we evaluated the six batch correction methods in the following scenarios consisting of 10X 
Genomics datasets only: (1) two biologically distinct cell types, i.e., cancer cells (10X_LLU_A & 
10X_NCI_A) plus B cells (10X_LLU_B & 10X_NCI_B) only (Fig. 4d); (2) two biologically distinct 
cell types but including a spike-in sample which shared a large portion of the same population of 
cells, i.e., B cells (10X_LLU_B) plus 10X_LLU_spikein_10%A (Fig. 4e); and (3) two biologically 
distinct cell types but including a spike-in sample which shares a small portion of the same cells, 
i.e., 10X_LLU_A plus 10X_LLU_spikein_10%A (Fig. 4f). Considering that BBKNN has an UMAP 
embedded in the pipeline, we also generated a set of UMAP figures as a comparison to t-SNE 
plots.  In scenario # (1), both t-SNE and UMAP plots showed that CCA over-corrected the batch 
effect as the cancer cells were not separated from the B cells. Instead, the two cell types were 
totally mixed together. limma and ComBat were also unable to separate sample A from sample 
B.  In contrast, Scanorama and BBKNN worked fairly well with both t-SNE and UMAP (Fig. 4d & 
Suppl. Fig. 12a), whereas MNN did not work with either t-SNE or UMAP. This was expected, 
since this method requires the batches compared to share a subpopulation of highly similar cells, 
which breast cancer cells and B lymphocytes do not; there was no spike-in to provide a portion of 
the same cell type (Fig. 4d).  In scenario # (2), CCA again over-corrected batch effects as it was 
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incapable of separating the spiked in cancer cells from B cells, whereas MNN, Scanorama, 
BBKNN, limma, and ComBat were able to separate the cancer cells from normal B cells both via 
t-SNE and UMAP (Fig. 4e & Suppl. Fig. 12b). In scenario # (3), MNN, Scanorama, and BBKNN 
all worked fairly well in separating cancer cells from B cells, whereas CCA, limma, and ComBat 
all over-corrected the batch effect; cancer cells and B cells were intermingled with both tSNE and 
UMAP (Fig. 4f & Suppl. Fig. 12c).  

Two new batch correction methods, a newer version of MNN, fastMNN6, and Harmony16, 17 
became available recently, so we also evaluated them. As shown in the Suppl. Fig. 13, there was 
no difference in tSNE and UMAP visualizations between regular MNN and fastMNN in four 
different data composition scenarios. However, fastMNN took much less computation time 
(Suppl. Fig. 13).  If only the 10X Genomics scRNA-seq data were used, both Harmony and 
Scanorama separated cancer cells from B cells well (Suppl. Fig. 14), but in contrast to Harmony, 
Scanorama failed to separate the two types of cells if all scRNA-seq data across all platforms and 
sites (20 sets) were used (Suppl. Fig. 9d and 9g). 

Overall, as illustrated, CCA failed to separate cancer cells from B cells (over-correction), whereas 
MNN, BBKNN, and Harmony worked well in separating cancer cells from B cells when all 20-
scRNA-seq data sets across all platforms and sites were included (Suppl. Fig. 9a-h & Suppl. 
Data 2). However, one prerequisite for MNN is that the samples being corrected all share at least 
a small percentage of cells in common such as in our spike-in samples (Fig. 4d-f, Suppl. Fig. 9c 
and Suppl. Data 2).  

5. Consistency of global and cell-type specific gene expression across platforms/sites 
and all scRNA-seq data  

We first evaluated the global gene expression consistency across different platforms/sites by 
calculating a pairwise Pearson correlation (R) on the percentage of cells (see Methods) that 
expressed 500 abundant, 500 intermediate, and 500 scarce genes, as defined by bulk RNA-seq 
data (Fig. 5a-f). To account for variable sequencing depth across different platforms/sites, we 
selected one of the pipelines (zUMIs for UMI based and featureCounts for non-UMI based 
technology) and performed down sampling to 100K reads for each. We observed a much higher 
Pearson correlation when using the 500 highly-expressed genes than when using 500 
intermediately- or 500 scarce genes in both cell types (Fig. 5a-f). We also observed higher 
consistency between the sites using the same platform or type of technologies (i.e., 10X, 
WaferGen, or C1). Even in the scarce 500 genes, we observed a reasonably good Pearson 
correlation between sites or within either 10X 3’ or WaferGen or C1 technologies (Fig. 5c & Fig. 
5f). However, the consistency (Pearson correlation) within 3’ technologies (10x and C1_FDA_HT) 
or within full-length (C1_LLU, WaferGen_PE, WaferGen_SE) platforms was not always better 
than that between 3’ and full-length platforms. Nevertheless, we want to caution that there might 
be some biases in this analysis metric since the cell numbers were very different across platforms, 
i.e., only 66 or 80 single cells for the C1 full-length up to a few thousand cells for the 10x platform; 
since the fewer cells used, the larger the variations would exist owing purely to sampling statistics. 
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Figure 5. Consistency of scRNA-seq across sites/platforms and datasets. 

(a-f) Benchmarking consistency of highly abundant, intermediate and low expressed genes across all seven scRNA-
seq data sets. Pairwise Pearson correlation of the percentage of cells which expressed the 500 highly-expressed genes 
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(a) in cancer cells (sample A); 500 intermediately expressed genes (b) in cancer cells (sample A); and 500 low 
expressed genes (c) in cancer cells (sample A); the 500 most abundant genes (d) in B lymphocyte cells (sample B); 
500 intermediately expressed genes (e) in B lymphocyte cells (sample B); and 500 low expressed genes (f) in B 
lymphocyte cells (sample B).  
(g-h) Benchmarking consistency of protein coding, antisense, LincRNA, and miscRNA gene expression across seven 
scRNA-seq datasets as well as bulk RNA-seq dataset. (g) Breast cancer cells (sample A) and (h) B lymphocytes 
(sample B) were profiled separately based on 4 different RNA groups across 8 different data sets. The data sets 
included bulk RNA-seq, 3’ scRNA-seq (10X_LLU, 10X_NCI, 10X_NCI_M, C1_FDA_HT), and full-length transcripts 
(C1_LLU, Waferen_PE and Wafergen_SE). 
(i-j) Split dot plots displaying ten B-cell specific vs. ten breast-cancer cell specific marker genes prior to (i), or post MNN 
batch correction (j). The 20 cell-type specific genes were derived from the top DEGs determined by comparing bulk 
RNA-seq data between breast cancer cells (sample A) and B lymphocytes (sample B). The size of each circle reflects 
the percentage of cells in a sample where the gene was detected, and the color indicates the average expression level 
within each sample. Darker color represents higher gene expression, and lighter color represents lower gene 
expression for the given marker gene (see inserted legends). For data sets from non-10X Genomics platform, gene 
expression of marker genes had a relatively low detected rate before batch effect correction. Nevertheless, after MNN 
batch effect correction, gene expression of marker genes was corrected well. 
 

We then compared the single-cell gene expression profiles [log(CPM, normalized counts)] of four 
different RNA groups including protein coding RNA, antisense RNA, lincRNA, and miscRNA using 
violin plotting across all five platforms and seven datasets (Fig. 5g-h). As a comparison, the bulk 
cell RNA-seq gene expression profile was also plotted side-by-side. We noticed that 
WaferGen_SE gene expression profiles showed relatively higher detection sensitivity for the lower 
abundance transcripts. The 10X technology also seemed to show good detection (sensitivity) in 
the lower abundance transcripts for the protein coding RNA, antisense RNA, and lincRNA and 
there was high consistency across three 10X scRNA-seq datasets (10X_LLU vs. 10X_NCI vs. 
10X_NCI_M). Log (CPM) gene counts across all scRNA-seq platforms and datasets for the 
protein coding RNA were comparable, Interestingly, using the C1 platforms (full-length and 3’), 
the detection range was compressed, with much lower log (CPM) values for antisense RNA and 
lincRNA.  

We selected ten B cell-specific genes and ten breast cancer specific genes based on the ranked 
DEGs derived from the bulk cell RNA-seq to further evaluate consistency across all scRNA-seq 
platforms. Fig. 5i presents dot plots in which the size of each circle reflects the percentage of 
cells in a sample in which the gene was detected, and the color intensity reflects the average 
expression level within each sample. Overall, all ten B cell- and ten cancer cell-specific genes 
were expressed exclusively in either B cell samples or cancer cell samples except for the spiked 
in samples; and a lower or near noise signal detected for CD74 in B cell sample in the 
WaferGen_SE. We observed relatively good consistency for the B cell-specific markers33, 34 
CD74, CD79A, LSP1, CCR7, and MS4A1 across all platforms except for C1_FDA_HT_B (Fig. 
5i). For the cancer cell-specific markers, Serpin2, NUPR1, APP, KRT81, BGN, AKR1C2, and 
THBS1 were relatively consistent across platforms datasets (Fig. 5i). However, there were some 
variations and inconsistency across different platforms for some markers. We noticed relatively 
poor consistency or lower percentages of cells in which certain cancer cell-specific markers such 
as TM4SF1, LY6K, and TGFB1 were detected, particularly in WaferGen and C1_FDA_HT 
platforms. It is likely that a large cell-to-cell variation, i.e., endogenous biological variation, existed 
for these cancer cell marker genes. Particularly for platforms that capture fewer cells, sampling 
issues might contribute to an apparent lower percentage of cells in which these genes were 
detected. Interestingly, after applying MNN batch correction, we observed increased consistency 
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in the numbers of cells and the corresponding gene expression levels detected either in B-cell or 
cancer cell samples for many of these genes (Fig. 5j). 

We further exploited feature plotting and the same panel of breast cancer vs. B cell genes 
individually to evaluate single-cell gene expression consistency prior to and post MNN correction 
(Suppl. Fig. 15a-d).  Clearly, prior to MNN batch effect correction, each of the two cell types were 
not clustered together and there was no clear separation between them (Suppl. Fig. 15a & 15c).  
However, after applying the MNN, cells expressing the cell-type specific marker genes were nicely 
clustered together and there was clear separation between two cell types (Suppl. Fig. 15b & 
15d). Taken together, our analyses showed that choosing a batch correction algorithm 
appropriately to the right biological samples or scRNA-seq data sets to be analyzed is critical to 
improving the visualization and classification of the cell subtypes.  

6. Single-cell detection consistency for cell-type specific markers CD40, CD74, and TPM1 

We compared the consistency of single-cell gene expression across platforms for B-cell specific 
markers CD40, CD74, and the breast cancer cell specific marker TPM1 with a subsampling at 
100k reads for each data set (Suppl. Table 4, 5 & 6).  The B-cell specific marker gene CD40 was 
most often expressed at an intermediate level (1 ≤ CPM < 10) per cell, and was detected in as 
few as 24.9% of cells with the C1_FDA_HT to as many as 53% with the C1_LLU. A significant 
percentage of cells (44% to 44.6% for 10X and 23.2% to 28.1% for C1 and WaferGen) were 
expressed at levels close to the limit of detection (CPM < 1).  In contrast, CD40 transcript was 
detected at low, or near noise level of (CPM <1) in breast cancer cells (Suppl.  Table 4). However, 
CD74, also a B cell specific marker gene, was much more abundant (CPM ≥ 10) in almost all 
single cells (99.3% - 99.9%) with excellent consistency across all platforms except for 
C1_FDA_HT where 5% of the cells had an intermediate level (1 ≤ CPM < 10, Suppl. Table 5) in 
B cells.  In contrast, CD74 was present at low or near noise levels (CPM < 1) in breast cancer 
cells. For this marker, full-length transcript technologies were more sensitive than the 3’-single-
cell technologies (Suppl. Table 6).  With some variation across platforms, a high percentage of 
single cells, expressed TPM1 in breast cancer cells, but the detection level fell mostly within an 
intermediate level (1 ≤ CPM < 10). In B cells, consistent with their biological nature, there was 
little or no detection (CPM <1) (Suppl. Table 6).  

Discussion 

In this study, we performed a comprehensive multi-center cross-platform comparison of different 
scRNA-seq platforms using two well-characterized, biologically distinct reference samples. We 
generated 20 different scRNA-seq data sets derived from both mixed and non-mixed cell lines 
(Fig. 1a and Table 1). We applied six scRNA-seq pre-processing pipelines, seven bioinformatics 
normalization methods, and seven batch effect correction algorithms including CCA7, MNN6, 
Scanorama8, 9, BBKNN10, 11, Harmony16, 17, limma35-37, and Combat to evaluate the performance 
and reproducibility of scRNA-seq across 20 data sets from 4 different platforms (Fig. 1a). We 
found that there are variations in terms of number of cells and number of genes detected using 
different pre-processing pipelines for both UMI- and non-UMI based scRNA-seq data (Fig. 2a & 
2b), and in addition, the gene expression (counts) correlation and the fraction of consensus genes 
per cell are highly variable across three UMI- and three non-UMI-based pre-processing pipelines, 
respectively (Fig. 2c & 2e). Furthermore, we benchmarked scRNA-seq performance across 
different platforms and testing sites using both global gene expression and some cell type specific 
marker genes. Using Pearson correlation based on the percentage of cells that expressed genes 
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at different levels in each single cell, we observed a much higher consistency across different 
platforms and scRNA-seq datasets when using the 500 most highly-expressed genes as 
compared with 500 moderately abundant or 500 less abundant genes in both cancer cell and B 
cell samples (Fig. 5a-f). We also observed greater consistency between the sites within the same 
platform or type of technologies such as 10X, WaferGen, or C1. Even in the least abundant 500 
genes for both cancer cells and B cells, we also observed a reasonably good Pearson correlation 
between sites or scRNA-seq data within either 10X 3’ or WaferGen and C1 technologies (Fig. 5c 
& Fig. 5f). For abundant genes such as CD74 (CPM>10), there was high consistency across 
platforms (~100% of cells detected) regardless of the cell numbers captured or technologies (3’- 
vs. full-length). For moderately abundant transcripts (1≤ CPM <10) such as CD40 for B 
lymphocytes and TPM1 for breast cancer cells, there were some variations across platforms.  

As mentioned previously, batch effects are a major issue when one is performing large-scale 
single-cell RNA-seq6, 7. They can result from many different sources including cell isolation and 
sample preparation, single cell capture, library construction, sequencing, and sampling ambiguity, 
etc. Most existing normalization methods were developed for bulk RNA-seq; our data showing 
that regressing mitochondrial genes and normalizing UMI did not remove the batch effect we 
observed (Suppl. Fig. 8a/b). This finding indicates that normalization alone cannot eliminate the 
batch effects when applied to scRNAseq data. Recently, several  novel batch-effect-correction 
algorithms were developed for scRNA-seq data including CCA, MNN, Scanorama, BBKNN, and 
Harmony for batch-effect corrections, and k-nearest-neighbor batch-effect test (kBET) for 
quantification of batch effect38.  Under certain conditions, these methods worked extremely well8, 

10. However, our multi-platform, multicenter data sets indicated that while CCA, MNN, Scanorama, 
BBKNN, and Harmony worked well for batch correction of specific scRNA-seq data subsets, the 
nature of biological samples from which scRNA-seq data were generated from different batches, 
technology platforms, and sites dictated the outcome of batch effect corrections. 

CCA, MNN, and BBKNN all corrected the batch variations well for the scRNA-seq data derived 
from biologically identical or similar samples across platforms/sites, including scRNA-seq data 
derived from sample A only, sample B only, or spiked-in samples only (Fig. 4a-c). The limma and 
ComBat algorithms, developed for bulk cell RNA-seq, also corrected batch effects for B cells 
across different platforms/sites, perhaps because these cells are more homogeneous, in which 
case single cell and population average data would be similar.  However, for the biologically 
distinct samples (i.e., including both sample A and B), CCA over-corrected the batch effect and 
misclassified the cell types and samples, clustering both sample A cells and sample B cells 
together (Fig. 4d-f, Suppl. Figs. 9b, 12a-c). In contrast, consistent with the authors’ claims, MNN 
successfully removed batch effects from a variety of sources, including different platforms, 
laboratories, and sequencing platforms, which enabled separation of two distinct biological 
samples/cell types (such as sample A cells from sample B cells). However, this required a spike-
in of one cell type into the other sample so that the batches being compared would have a shared 
subpopulation, consistent with the logic of this algorithm. This manipulation would not be 
necessary in situations where each of the batches being analyzed was known to contain at least 
one subpopulation of cells common to all the samples (Fig. 4c, 4d-f, Supp. Fig. 9c & Suppl. 
Data 2). The poor performance of CCA when dealing with two biologically distinct samples in our 
analyses may be due to an insufficient amount of shared variation in gene expression between 
them, i.e., less heterogeneous in our two reference cell lines with somehow slightly larger 
heterogeneity in the breast cancer cell line cells than in B cell line cells. The primary example data 
set presented by the authors of CCA consisted of 13 different cell types that they identified in 
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each batch7. With so many different cell types, all of which were present in each batch, the data 
presumably contained significant patterns of gene expression correlation that were common to all 
batches. These shared patterns of correlation appear to be important for the CCA algorithm. 
Indeed, the CCA authors stated that their Seurat procedure “uses canonical correlation analysis 
to identify shared correlation structures across data sets”.  The shared correlation patterns, or 
canonical correlation vectors, are then used as a basis for scaling the data from the different 
batches to remove the batch effects. In our analyses, by contrast, each batch consisted of either 
one of the two biologically distinct cell lines or a mixture of two cell types with 90% or 95% from 
one or the other type.  Thus, CCA might not be able to identify adequate patterns of variation in 
gene expression that are common to both cell lines as in our case. This hypothesis might be 
tested in silico by artificially generating scRNA-seq data sets with varying numbers of cell types 
per batch or per sample and comparing the performance of CCA with data containing different 
numbers of cell types.  

In addition, the unique capability of UMAP39, an embedded bioinformatics component for BBKNN, 
vs. the currently most popular t-SNE visualization in separating two distinct cells types is also 
intriguing (Fig. 4d, Suppl. Fig. 12a).  

In addition, our side-by-side comparison analysis comparing MNN with fastMNN did not show any 
differences in tSNE or UMAP visualizations using four different data sets (Suppl. Fig. 13a-d). 
Consistent with the claim from the fastMMN authors, we found it to run very fast and use much 
less computation time; this is one of the major advantages of fastMNN6. Our analysis using 
Harmony16, 17 for batch correction showed that it works really well for scRNA-seq data regardless 
platforms (Suppl. Fig. 9d & 14), whereas Scanorama only works well for 10X scRNA-seq data, 
i.e., it can separate the cancer cells from B cells when all 10X scRNA-seq data across two sites 
including sample A, sample B, spiking-in samples were used (Suppl. Figs. 9g & 14). One 
possible explanation is that the Scanorama algorithm was originally developed using 10X 
Genomics scRNA-seq data8, 16, and it was “trained” well for 10X Genomics scRNA-seq data, but 
seemed to fail when other scRNA-seq platforms (such as C1 and WaferGen) were included 
(Suppl. Fig. 9g). This result merits some further investigation.   

In summary, our unique study design, which included samples of two well-characterized, 
biologically distinct cell lines and mixtures (either 5% or 10% of cancer cells spiked into the B 
cells), allowed us to benchmark the consistency and evaluate the variation of different single-cell 
RNA-seq technologies across different sites. We found MNN, BBKNN, and Harmony allowed 
correct classification of the two cell types using scRNA-seq data from all platforms and sites, 
regardless of single-cell technology (3’ or full-length), number of cells sequenced (thousand cells 
from 10X or 66 single cells from C1), or sequencing protocols (10X_NCI_M, modified shorter 
protocol, WaferGen SE vs. PE) (Suppl. Figs. 9c/9d/9h and Suppl. Data 2), suggesting the 
consistency of the scRNA-seq technologies as well as the high quality of the scRNA-seq data 
across different sites. In contrast, CCA is not able to separate two distinct biological samples, i.e., 
breast cancer cells from B cells. When analyzing relatively abundant genes, there was high 
consistency across technology platform and site, most likely due to the fact that less sampling 
ambiguity would be expected for these transcripts than for less abundant genes. In addition, our 
study provided a useful reference data set and resource for the single-cell sequencing community. 
We concluded that, depending on the nature of biological samples, choosing an appropriate batch 
effect correction algorithm and bioinformatics pipeline for scRNA-seq data analysis is critical to 
accurate analysis of single-cell RNA sequencing studies.  
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METHODS 

Cell culture and single cell preparation 

We obtained the human breast cancer cell line (HCC1395, sample A) and the matched normal B 
lymphocyte cell line (HCC1395 BL, sample B) from ATCC (American Type Culture Collection, VA, 
USA). The two cell lines were derived from the same human subject (43 years old, female). 
HCC1395 cells were cultured in RPMI-1640 medium supplemented with 10% FBS and 1% 
penicillin-streptomycin. HCC1395BL cells were cultured in IMDM medium supplemented with 
20% FBS and 1% penicillin-streptomycin. 

Single cell suspensions were generated by dissociating adherent cells (HCC1395) with Accutase 
(Innovative Cell Technologies, AT104) or by harvesting suspensions cells (HCC1395 BL). We 
passed all cells through a 30-micron MACS SmartStrainer (Miltenyi Biotec, 130-098-458) to filter 
through the cell aggregates. 

Single-cell full-length cDNA generation and RNA-seq using the C1 Fluidigm system  

Single cells were loaded on a medium-sized (10-17 µm) RNA-seq integrated fluidic circuit (IFC) at 
a concentration of 200 cells / µl. Capture occupancy and live/dead cell at the capture site were 
recorded using fluorescence microscope after staining with the live/dead viability/cytotoxicity kit 
(Life Technologies, L3224). Full-length cDNAs were generated on the Fluidigm C1 system using 
the SMART-Seq v4 Ultra Low Input RNA kit (Clontech, 635026) according to the manufacturer’s 
protocol. Only cDNAs generated from live single cell were used for further libraries construction.  

Libraries were prepared using the modified Illumina Nextera XT DNA library preparation protocol. 
Briefly, the concentrations of cDNAs harvested from IFC were quantified using Quant-iT 
PicoGreen dsDNA Assay (Life Technologies, P11496) and then further diluted into 0.1-0.3 ng / 
µl. 1.25 µl diluted cDNA was incubated with 1.25 µl tagmentation mix and 2.5 µl tagment DNA 
buffer for 10 minutes (min) at 55 °C. Tagmentation was terminated by adding 1.25 µl of NT buffer 
and centrifuged at 2,000 g for 5 min. Sequencing library amplification was performed using 1.25-
µl Nextera XT Index primers (Illumina) and 3.75 µl Nextera PCR Master Mix in 12 PCR cycles. 
Barcoded libraries were purified and pooled at equal volume. Total 80 libraries were generated 
from HCC1395 cells (sample A) and 66 libraries were generated from HCC1395 BL cells (sample 
B). Library pools were sequenced on the Illumina HiSeq4000 sequencer for 150 bp paired-end 
sequencing. 

Single-cell 3’ End RNA-seq using C1 Fluidigm high-throughput (HT) system  

High-throughput single cell 3’ end cDNA libraries were generated according to the manufacturer’s 
instructions. Briefly, single cells were loaded on a HT IFC at a concentration of 400 cells / µl. 
Capture occupancy and live/dead cell at the capture site were recorded using a fluorescence 
microscope after staining with live/dead viability/cytotoxicity kit (Life Technologies, L3224). After 
cell lysis, the captured mRNA was barcoded during the reverse transcription step with a barcoded 
primer, and the tagmentation step was done following the Nextera XT DNA library preparation 
guide. Only polyadenylated RNA containing the preamplification adapter sequence at both ends 
will be amplified. Lastly, sequencing adapters and Nextera indices are applied during library 
preparation. Only the 3’ end of the transcript was enriched following PCR amplification.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010249doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.010249
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 19 

203 libraries were generated from HCC1395 cells (sample A) and 241 libraries were generated 
from HCC1395 BL cells (sample B). Library pools were sequenced on the Illumina NextSeq 2500, 
75 bp, paired-end. 

Single-cell RNA-seq using the 10X Genomics platform 

After filtering with a 30-micron MACS SmartStrainer (Miltenyi Biotec, 130-098-458), single cells 
were resuspended in PBS (calcium and magnesium free) containing 0.04% weight/volume BSA 
(400 µg/ml), and further diluted to 300 cells / µl after cell count (Countess II FL, Life Technologies). 
For the 5% spike-in and 10% spike-in cell mixtures, 5% or 10% of HCC1395 breast cancer cells 
were mixed with either 95% or 90% of HCC1395BL cells.  

Single-cell RNA-seq library preparation was performed following the protocol for the 3’ scRNA-
seq 10X genomics platform using v2 chemistry. Briefly, based on the cell suspension volume 
calculator table, 3000 cells (17.4 µl of 300 cells/ µl suspension) and barcode-beads as well as RT 
reagents were loaded into the Chromium Controller to generate single Gel Bead-in-Emulsions 
(GEMs). cDNAs were generated after GEM-RT incubation at 53 °C for 45 min and 85 °C for 5 
min. cDNA amplification was performed in 12 PCR cycles following GEM cleanup. After size 
selection with SPRIselect Reagent, cDNA was incubated for fragmentation, end repair, A-tailing, 
and adapter ligation. Lastly, sequencing library amplification was performed using sample index 
primer in 10 cycles.  

All the Libraries generated from LLU were sequenced on the NextSeq550 and HiSeq4000 with 
standard sequence protocol of 26x8x98 read lengths. Libraries generated from NCI were 
sequenced on the NextSeq550 with modified sequence protocol of 26x8x57 read lengths, and 
also repeated on the HiSeq4000 with standard sequence protocol of 26x8x98 read lengths.  

Single cell sequencing of fixed cells 

For delayed captures, cells were fixed in methanol using a method described by Alles et al40. The 
fixed samples underwent two different treatments. For the sample 5%A Spike-in Fixed1, the 
normal and tumor cells were harvested, washed, counted, and a 5% spike-in mix of tumor and 
normal cells was prepared as described above. Approximately 130,000 cells were then processed 
for fixation. The cells were washed twice with 1X DPBS at 4 °C and resuspended gently in 100µl 
1X DPBS (ThermoFisher Scientific, 14190144). 900ul chilled methanol (100%) was then added 
drop by drop to the cells with gentle vortexing. Cells were then fixed on ice for 15 mins, following 
which they were stored at 4 °C for 6 days. For rehydration, the fixed cells were pelleted by 
centrifugation at 3000 rcf for 10 mins at 4 °C and washed twice with 1X DPBS containing 1% BSA 
and 0.4U/µl RNase inhibitor (Sigma Aldrich, 3335399001). The cells were then counted and the 
concentration was adjusted to be close to 1000 cells/µl. Approximately 8000 cells were loaded for 
the capture onto a single cell chip for GEM generation using the 10X Genomics Chromium 
controller. 3’mRNA-seq gene expression libraries for Illumina sequencing were prepared using 
the Chromium Single Cell 3′ Library & Gel Bead Kit v2 (10X Genomics, 120237) according to the 
manufacturer guidelines.  

For the sample 5%A Spike-in Fixed2, tumor and normal cells (approximately 4 million each) were 
harvested and fixed. For fixation, the cells were washed with 1X DPBS and resuspended in 10% 
1X DPBS and 90% chilled methanol, as described above. Cells were then fixed on ice for 15 mins, 
following which they were stored at 4 °C for 24 hrs. For rehydration, the fixed cells washed with 
1X DPBS containing 1% BSA and 0.4U/µl RNase inhibitor and counted. Approximately 8000 cells 
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were loaded for the capture onto a Single cell chip for GEM generation using the 10X Genomics 
Chromium controller. 3’mRNA-seq gene expression libraries for Illumina sequencing were 
prepared using the Chromium Single Cell 3′ Library & Gel Bead Kit v2 (10X Genomics, 120237) 
according to the manufacturer guidelines.  

Single-cell RNA-seq using WaferGen platform 

CELL8 Cell preparation and Single Cell Selection  
A bulk cell suspension of either Cancer or BL cells (~ 1 x 106 each) was fluorescently labeled with 
a premade mix of Hoechst 33324 and Propidium Iodide (Ready Probes Cell Viability Imaging Kit, 
Thermo Fisher Scientific) in appropriate complete medium for 20 min at 37 °C.  Adherent cells 
were first treated with Accutase as per manufacturer’s instructions (Thermo Fisher Scientific) to 
dissociate cells from the flask surface. Cells were washed in 1X PBS, (no Ca2+, Mg2+, Phenol Red, 
or serum, pH 7.4; (Thermo Fisher Scientific) centrifuged (100 X g 3 min) and resuspended in 1 
mL of 1X PBS. Cell counts were determined using a Moxie Flow cell counter (ORFLO 
Technologies, ID, USA) and diluted to ~1 cell in 35 nL (~ 28,600 cells / mL) in a solution which at 
dispense contains: ~0.96 of 1X PBS (1X PBS, no Ca2+, Mg2+, Phenol Red, or serum, pH 7.4; 
Thermo Fisher Scientific), Second Diluent (1X), RNase Inhibitor (0.4 U) and 1.92 µM of the 3’ 
oligo dT terminating primer: SMART-Seq® ICELL8® CDS (Takara Bio USA, CA, USA). 
 
Each cell type solution was dispensed from a 384 well source plate into individually addressable 
wells in a 5,184 nanowell, 250 nL volume ICELL8 chip (SMARTer™ ICELL8® 250v Chip, Takara 
Bio USA, CA, USA) using a Multi Sample Nano Dispenser (MSND, SMARTer™ ICELL8® Single-
Cell System, Takara Bio USA, CA, USA). Chip wells were sealed using SmartChip Optical 
Imaging Film (Takara Bio USA, CA, USA) and centrifuged at 300 X g for 5 min at 22 °C.  All 
nanowells in the chip were imaged with a 4X objective using Hoechst and Texas Red excitation 
and emission filters.  Images (TIFF format) were analyzed using automated microscopy image 
analysis software Cell Select (Takara Bio USA, CA, USA).  The chip was stored in a chip holder 
at -80 °C overnight. Image analysis confirmed cell deposition followed a Poisson distribution. 600 
individual nanowells, each bearing microscopy-identified single live cells, were chosen from each 
cell type.  A well-selection map (filter file) was then autogenerated by Cell Select software to 
enable individual addressing of the chosen wells for addition of cDNA synthesis and library 
preparation reagents as detailed in the following sections.  All on-chip liquid handling was 
performed with the MSND. After all dispensing and sealing steps, chips were centrifuged at 3,220 
x g (3 min). All on-chip thermal cycling was performed using a SMARTer™ ICELL8® Thermal 
Cycler (Takara Bio USA, CA, USA).  

In-chip, full-length cDNA synthesis 
The ICELL8 chip (containing dispensed samples) was thawed at room temperature for 10 min 
and centrifuged at 3,220g for 3 min at 4 °C.  The chip was subsequently incubated at 72 °C (3 
min) and immediately placed at 4°C. Previously selected nanowells (identified as bearing a single 
cell via the ICELL8 filter file) were addressed with 35 nL of RT-PCR mix, and the reactions were 
thermally cycled in-chip as follows: (45.6 °C, 5 sec); (41 °C, 90 min); (99 °C, 9 sec); (95.5 °C, 1 
min); (100 °C, 5 sec); (99 °C, 7 sec); (59 °C, 5 sec); (64 °C, 30 sec); (69.5 °C, 5 sec); (67.5 °C, 3 
min); GoTo step 5 and repeat 7X, (4 °C hold). 

In-chip, P5 index addition and tagmentation  
72 primer sequences bearing P5 indices (SMART-Seq® ICELL8® Forward Indexing Primer Set 
A (5’-AATGATACGGCGACCACCGAGATCTACAC(i5)TCGTCGGCAGCGTC-3’); i5 refers to 1-
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of-72 unique, 8 nucleotide indices (Hamming distance between P5 indices = 3), were dispensed 
from a pre-aliquoted 384-well plate in 35 nL aliquots into 72 filter-file identified, nanowell “rows”.  
The chip was sealed with Microseal A film and centrifuged at 3,220g (3 min) at 4 °C before 
returning to the MSND, permitting addition of Tagmentation Master Mix containing:  MgCl2, 
Nextera Amplicon Tagment Mix (Illumina); Terra™ PCR Direct Polymerase Mix, and TRH (Takara 
Bio USA, CA, USA). The chip was sealed with Microseal A film and recentrifuged as above. 
Tagmentation was performed in-chip at the following temperatures: (42 °C, 4 sec); (37 °C for 30 
min); (4 °C hold). 

In-chip, P7 index and PCR reagent addition: first PCR generating 5,184 unique indices 
A reagent mix containing 72 primer sequences bearing P7 indices (SMART-Seq® ICELL8® 
Reverse Indexing Primer Set A, 5’-CAAGCAGAAGACGGCATACGAGAT(i7)GTCTCGTGGG 
CTCGG-3’); i7 refers to 1-of-72 unique, 8 nucleotide indices (Hamming distance between P7 
indices = 3), were dispensed from the same pre-aliquoted 384-well index plate (separate location 
for P7 indices) in 35 nL aliquots, into 72 filter file identified “columns” of the chip.  As a 
consequence of adding separate P5 and P7 indices to rows or columns, a 72 x 72 m x n matrix 
of combinatorial P5 and P7 pairs was generated, uniquely identifying each of the 5,184 nanowells. 
The chip was sealed with SmartChip Sealing Film and centrifuged at 3,220g for 3 minutes at 4 
°C. PCR cycling was performed as follows: (77 °C, 12 sec); (72 °C, 3 min); (99 °C, 11 sec); (95.5 
°C, 1 min); (100 °C, 20 sec); (99 °C, 10 sec); (53.3 °C, 5 sec); (58 °C, 15 sec); (71 °C, 5 sec); 
(67.5 °C, 2 min; (Go To step5 and repeat 7X); (4 °C, hold). 

Off-chip, sample extraction and purification of round 1 PCR amplicons 
Round 1 PCR amplicons were collected from the ICELL8 chip using the SMARTer ICELL8 
Collection Kit: (Collection Fixture, Collection Tube and Collection Film) into a collection and 
storage tube as per manufacturer’s instructions (Takara Bio USA, CA, USA). 50% of the extracted 
library was purified twice using a 1X proportion of AMPure XP beads (Beckman Coulter) to a final 
volume of 14 µL in Elution Buffer, provided with the SMART-Seq ICELL8 Reagent Kit. 

Off-chip, library amplification (2nd PCR) 
Double-AMPure bead-purified, first round amplicon (14 µl, from above) was PCR amplified in a 
50 µL volume of 2nd PCR Mixture containing SeqAmp™ CB PCR Buffer (25 µl), 5X Primer Mix 
(P5 and P7 primers) and Terra™ PCR Direct Polymerase Mix 0.05 U/ µl at reaction (Takara Bio 
USA, CA, USA) via a thermal protocol: (98 °C, 2 min) x1; followed by 8 thermal cycles: (98 °C, 10 
sec); (60 °C, 15 sec); (68 °C, 2 min).  This sequencing-ready NGS library was purified using 1 
round of a 1X proportion of AMPure XP beads (Beckman Coulter). The final elution volume was 
17 µl in Elution Buffer. 

NGS library MW profile 
The NGS library concentration (ng / µl) was determined using a Qubit fluorometer (Thermo 
Fisher).  Based on Qubit readings, 1 -2 ng / µl was examined using a 2100 Bioanalyzer and a 
corresponding High Sensitivity DNA Kit (Agilent) to determine the MW profile of the size-selected 
library.  The Bioanalyzer amplicon sizes ranged between 200 to 3000 bp, with an average size of 
550 bp.  

Sequencing the library 
The library was diluted to 4 nM based on the above Bioanalyzer measurement and prepared for 
sequencing following the standard Illumina instructions for sequencing (Denature and Dilute 
Libraries Guide) for the Illumina NextSeq.  Using a standard loading concentration, the library was 
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sequenced on a NextSeq 550 using a high output 2x75 cycle cartridge (Illumina), including both 
index reads at 8 cycles each. These libraries are Nextera XT libraries with the difference being 
the index sequences.  Libraries require dual-indices (8nt) for demultiplexing. Custom sequencing 
primers or PhiX are not required. 

Bulk cell RNA-seq 

We isolated mRNA in bulk from HCC1395 and HCC1395 BL cells using miRNeasy Mini kit 
(QIAGEN, 217004), and built sequencing libraries using the NuGEN Ovation universal RNA-seq 
kit. Briefly, 100 ng of total RNA was reverse transcribed and then made into double stranded 
cDNA (ds-cDNA) by the addition of a DNA polymerase. The ds-cDNA was fragmented to ~200 
bps using the Covaris S220, and then underwent end repair to blunt the ends followed by 
barcoded adapter ligation. The remainder of the library preparation followed the manufacturer’s 
protocol. All the libraries were quantified with a TapeStation 2200 (Agilent Technologies) and 
Qubit 3.0 (Life Technologies). We sequenced the libraries on a NextSeq550 for 75 bp paired-end 
sequencing and on a HiSeq4000 for 100 bp paired-end sequencing.  

ONLINE BIOINFORMATICS METHODS 

Reference genome: The reference genome and transcriptome were downloaded from the 10X 
website as refdata-cellranger-GRCh38-1.2.0.tar.gz, which corresponds to the GRCh38 genome 
and Ensmebl v84 transcriptome. All the following bioinformatics data analyses are based on the 
above reference genome and transcriptome. 

Preprocessing of UMI based scRNA-seq data from the 10X platform 

For UMI based 10X samples, three pre-processing pipelines Cell Ranger (v2.0.1), umitools 
19(v0.5.3), and zUMIs20 (v0.0.5) were used to process the raw fastq data and generate gene count 
matrices. In the Cell Ranger pipeline, Cell Ranger count was used with all default parameter 
settings to generate gene count matrices. In umitools and zUMIs pipelines, reads were filtered 
out if phred sequence quality of cell barcode bases were < 10 or UMI bases < 10. In the zUMIs 
pipeline, option -d was used to perform downsampling analyses to 8 fixed depths (5k, 10k, 25k, 
50k, 100k, 150k, 200k, and 250k) to generate gene count tables. With umitools, umi_tools 
whitelist with default parameter setting was used to generate a list of cell barcodes for downstream 
analysis. umi_tools extract was used to extract the cell barcodes and filter the reads (options: --
quality-filter-threshold=10 --filter-cell-barcode). STAR (v2.5.4b)41  was used for alignment to 
generate bam files containing the unique mapped reads (option: outFilterMultimapNmax 1) for 
gene counting.  featureCounts (v1.6.1)42  was used to assign reads to genes and generate a BAM 
file (option: -R BAM). samtools (v1.3)43  sort and samtools index were used to generate sorted 
and indexed BAM files. Finally, umitools count (options: --per-gene --gene-tag=XT --per-cell --
wide-format-cell-counts) was used for the sorted BAM files to generate gene count per cell matrix. 

Preprocessing of non-UMI based scRNA-seq data from C1 and WaferGen platform 

For non-UMI based samples, three pre-processing pipelines were used to process the raw fastq 
data and generate gene count matrices. The pipelines included trimming and filtering, alignment, 
and gene counting. In the trimming and filtering process, one of the three tools [Trimmomatic 
(v0.35)44, trim_galore (v0.4.1)45, or cutadapt (v1.9.1)46] was used to process the raw fastq data. 
Bases with quality less than 10 were trimmed from 5’ and 3’ ends of reads. Reads less than 20 
bases were discarded for further analysis. STAR with default parameter settings was used for 
alignment to generate bam files. Three gene counting tools, featureCounts, RSEM (v1.3.0)23, and 
kallisto (v0.43.1)22 were used to generate gene counts per cell. All default parameter settings were 
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used except the following: In RSEM, option --single-cell-prior was used to estimate gene 
expression levels for scRNA-seq data; Option of --paired-end was used if the data were paired-
end fastqs; In kallisto, options -l 500 and -s 120 were used to represent estimated average 
fragment length and standard deviation of fragment length if the data were single-end fastqs.  

Preprocessing of bulk RNA-seq data 

The preprocessing pipeline of bulk RNA-seq data included QC (FastQC v0.11.4)47, trimming and 
filtering (Trimmomatic), alignment (STAR), and gene counting (RSEM). The parameters setting 
in the pipeline was the same as the preprocessing pipelines used for non-UMI scRNA-seq data. 
In RSEM, the option --single-cell-prior was turned off for gene expression levels estimation of bulk 
RNA-seq data. 

BGL and data sharing within the team 

Working under the FDA single-cell sequencing consortium, to streamline fast data sharing, 
access, and analysis, we used the BioGenLink™ (BGL) platform from Digicon Corporation as a 
central repository to host the pre-processed data as described above. All data including the single-
cell RNA-seq data were pre-processed at LLU and then the data were either uploaded into BGL 
from users’ local computers or using tools within BGL that utilized Globus, file transfer protocol 
(FTP), and secure copy protocol (SCP).  A detailed data annotation files about all genomics data 
were also uploaded into the BGL. User groups and file permissions were carefully managed to 
prevent unauthorized access to all data. The major data analyses were carried out on each 
bioinformatics team member’s local computer, but there were certain analyses (see below) carried 
out in BGL using tools within the platform to cross-validate our bioinformatics pipelines.   

Performance of normalization methods across all datasets  

We investigated some existing bulk RNA-seq normalization procedures including “Counts per 
Million (CPM)”, “Trimmed Mean of M values (TMM)”, “Upper Quantiles”, “DESeq” normalization 
implemented in the DESeq Bioconductor package and “Trimmed Mean of M values (TMM)” 
implemented in the edgeR.  There were also methods that were specifically tailored to scRNA-
seq data sets, such as scran and Linnorm etc. Both scran and Linnorm were run using default 
parameters. 

We performed reads downsampling of each cell to two different read depths (10K and 100K per 
cell) for each data set and evaluated the performance of the normalization methods of two read 
depths per data set. Similar to the method used in the scone paper49, the metric we used to assess 
normalization methods was based on how well the two samples from the same cell were grouped 
with each other. In details, we used silhouette width, which is defined as, 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥	{𝑎(𝑖), 𝑏(𝑖)}
 

For each cell i, let a(i) be the average distance between i and all other cells within the same 
cluster. Let b(i) be the lowest average distance of i to all points in any other cluster, of which i is 
not a member. Here we defined the clustering structure that the same cells from two different 
sequencing runs form a single cluster, thus we have a total number of n/2 clusters if the total 
number of samples is n. 

We calculated the silhouette width values of each dataset. The larger the silhouette width values, 
the better the performance of the normalization methods is. 

scRNA-seq data batch effects and batch correction pipelines 
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We used the gene count matrix from the Cell Ranger pipeline (10X genomics data) and STAR-
featureCounts pipeline (non 10X genomics data) as input to evaluate batch correction methods. 
Three different conditions were considered as (1) all data sets; (2) data sets with biologically 
similar cells; and (3) data sets with biologically different cells. The evaluation procedure included 
the following four major steps: 

1. Monocle249, 50 strategy to filter dead cells and doublets for 10X single cell data 
2. Single-cell data processing and highly variable gene (HVG) selection 
3. Batch correction by six different methods 
4. Evaluation by t-SNE or UMAP and modified alignment scores. 

In step 1, all 10X single cell data sets were processed by monocle2 to filter dead cells and 
doublets. In monocle2, the total number of UMIs and genes for each cell were counted.  The 
upper bound was calculated as mean plus two standard deviation (SD) and the lower bound as 
mean minus two SD for both the total UMIs and genes, respectively. Cells with total UMIs or 
genes outside of the upper and lower bounds were removed. 

In the following three steps, we processed the single-cell data and selected highly variable genes 
for batch correction. Different data set processing and batch correction analysis strategies were 
developed for the three different data set scenarios and described as follows. 

Data processing and batch correction of all data sets 

We examined 7 batch correction methods (CCA7, MNN6, Scanorama8, 9, BBKNN10, 11, Harmony16, 

17, Limma31 and ComBat32) in which all 20 scRNA-seq data sets were included. After monocle2 
(step 1) to remove dead cells and doublets for all 10X data sets, we used the Seurat package 
(v2.3.4) to process (Step 2) the 20 data sets before batch correction. Since there were large 
numbers of cells in the 10X data sets, we randomly sampled 1200 cells from each of the 10X data 
sets using the function SubsetData (Seurat package) to generate Seurat objects. For all non-10X 
data sets, the function CreateSeuratObject (Seurat package) was used to generate Seurat 
objects. The Seurat objects for all data sets were merged into one big data set. The merged data 
set was log transformed with the NormalizeData function and further scaled by the ScaleData 
function with all default parameters. Then the top HVGs (789 for CCA, 1178 for the other methods) 
were selected from the merged data set with the FindVariableGenes function to evaluate each 
batch correction method (Suppl. Table 7). The other procedures (Step 3 and Step 4) in the batch 
correction can refer to the following section on “Data set processing and batch correction on data 
sets consisting of biologically similar samples and cells”.  

The following are detail descriptions of the above bioinformatics process. The gene count 
matrices of all data sets from the Cell Ranger pipeline (10X genomics data) and STAR-
featureCounts pipeline (non-10X genomics data) were used as inputs to evaluate batch correction 
methods. All 20 data sets were listed as follows: 

1. Sample A (7 data sets): 10X_LLU_A, 10X_NCI_A, 10X_NCI_M_A C1_FDA_HT_A, C1_LLU_A, 
WaferGen_SE_A and WaferGen_PE_A 

2. Sample B (7 data sets): 10X_LLU_B, 10X_NCI_B, 10X_NCI_M_B, C1_FDA_HT_B, C1_LLU_B, 
WaferGen_SE_B, and WaferGen_PE_B 

3. Spike-in sample (6 data sets): 10X_10%A_spikein_LLU, 10X_5%A_spikein_NCI, 
10X_5%A_spikein_F1_NCI, 10X_5%A_spikein_NCI_M, 10X_5%A_spikein_F1_NCI_M, 
10X_5%A_spikein_F2_NCI_M 

The batch correction evaluation procedure included the following four major steps: 

1. Filtering out low-quality cells using the Monocle249, 50. 
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2. Single-cell data processing and highly variable gene (HVG) selection. 
3. Batch correction by seven different methods. 
4. Visualization using t-SNE, feature plot, and dot plot. 

Step 1: Filtering out low-quality cells: For 10X Genomics data, the monocle2 strategy was first 
carried out to remove dead cells and doublets. In brief, the total number of UMIs and genes for 
each cell were counted. The upper bound was calculated as mean plus two standard deviations 
(SD) and the lower bound as mean minus two SD for both the total UMIs and genes, respectively. 
Cells with total UMIs or genes outside of the upper and lower bounds were removed. 

Step 2: Single-cell data preprocessing and highly variable gene (HVG) selection: The Seurat 
package (v2.3.4) running in R version 3.5.0 were used to process the 20 data sets before the 
batch correction. Since there were large numbers of captured cells in the 10X data sets, we 
randomly down-sampled each 10X data set to 1200 cells using the Seurat function SubsetData 
and generated Seurat objects. For those non-10X data sets, the Seurat function 
CreateSeuratObject was used to generate Seurat objects. Then the Seurat objects for all the data 
sets were merged into one big data set. The merged data set was log transformed using the 
NormalizeData function and further scaled by ScaleData function with default parameters. Then 
the top HVGs (1178 genes for six methods except CCA) were selected from the merged data set 
by FindVariableGenes function to evaluate each batch correction method.  The processed gene 
expression data for each sample were extracted from the Seurat data object as uncorrected data 
and as input for sevenbatch correction processing. 

Step 3: Batch correction using seven different methods: In this step, seven different batch 
correction analysis strategies were developed as described below: 

3.1 CCA processing of Step 2 and 3 

Preprocessed data from Step 1 was used as input. Then the data sets were log transformed by 
the Seurat function NormalizeData and further scaled by the ScaleData function with default 
parameters. 500 HVGs were identified in each data set using the FindVariableGenes function and 
the union of HVGs (789 genes in total) from all data sets was used as final input data for CCA 
batch correction. The function RunMultiCCA was performed for the cross-dataset normalization 
and batch correction with a total of 30 estimated canonical correction vectors. The function 
AlignSubspace was used to generate the low-dimensional embedding space of each data set for 
visualization. 

3.2 MNN6 processing of Step 3 

The processed gene expression data for each sample extracted from the Seurat data object were 
reorganized into a data matrix, in which samples with spike-in were placed in the front of the data 
matrix as references. The unction mnnCorrect from the scran package (v1.8.4) with default 
parameters was carried out for running batch correction and generating MNN-corrected gene 
expression matrices. Then MNN-corrected data were loaded back into the Seurat data object. 

3.3 Scanorama8, 9 processing of step 3 

The Scanorama Python package (v0.5) was used to process the data sets and perform batch 
correction. The script process.py with the same parameters at Step1 was used to perform cell 
filtering and normalization. The same parameters at Step2 was then applied in the script 
scanorama.py to identify HVGs for batch correction. The function scanorama.correct_scanpy 
(from the Python package SCANPY) with default parameters was used to perform batch 
correction and generate Scanorama-corrected gene expression matrices. 
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3.4 BBKNN10, 11 processing of Step 2 and 3 

The Seurat-inspired SCANPY Python workflow was applied to process the data sets. All data sets 
were input using the function pd.read_csv in the pandas package, transferred into annotated data 
matrices, and appended into a list using the function anndata.AnnData from the package anndata. 
Cells and genes were filtered using the functions scanpy.api.pp.filter_cells and 
scanpy.api.pp.filter_genes with the same parameter settings as at Step 1. The processed data 
matrices were merged to generate a master gene expression matrix and further log transformed 
and normalized by the functions scanpy.api.pp.log1p and scanpy.api.pp.normalize_per_cell. Top 
HVGs were identified from the merged gene expression matrix by the function 
filter_genes_dispersion with the same parameter settings at Step 2. Further log transformation 
(function scanpy.api.pp.log1p) and scaling (function scanpy.api.pp.scale) were performed for the 
newly generated gene expression matrix containing only top HVGs. The function bbknn.bbknn 
with default parameters was carried out for the batch correction. 

3.5 Harmony processing of Step 3 

Preprocessed data from Step 2 was used as input. Principal component (PC) analysis was 
performed by the Seurat function RunPCA with parameter “pcs.compute = 50”. Then Function 
RunHarmony from package “Harmony” was run for the batch correction with parameter “nclust = 
50, max.iter.cluster = 100”. 

3.6 Limma31 and ComBat32 processing of step 3 

Limma and ComBat batch correction methods were applied to the uncorrected data generated at 
Step 2. The function removeBatchEffect in the limma package was carried out with default 
parameters for running limma batch correction and generating a limma-corrected gene expression 
matrix. The function ComBat (sva package) was run with default parameters to perform Combat 
batch correction and generate a ComBat-corrected gene expression matrix. Then batch corrected 
data were loaded back into the Seurat data object. 

Data processing and batch correction on data sets consisting of biologically similar 
samples and cells 

We evaluated 6 batch correction methods using the samples with biologically similar cells in the 
following three scenarios: 

1) Sample A (5 data sets, Fig. 4a): 10X_LLU_A, 10X_NCI_A, C1_FDA_HT_A, C1_LLU_A, 
and WaferGen_SE_A 

2) Sample B (5 data sets, Fig. 4b): 10X_LLU_B, 10X_NCI_B, C1_FDA_HT_B, C1_LLU_B, 
and WaferGen_SE_B 

3) Spike-in sample (4 data sets, Fig 4c):  10X_10%A_spikein_LLU, 
10X_5%A_spikein_NCI, 10X_5%A_spikein_F1_NCI, 10X_5%A_spikein_F2_NCI 

Here we used sample A as an example to describe the four major steps. Supplementary Table 
8 provides some summary information about the bioinformatics processing on sample A, sample 
B, and the spike-in sample. 

Five data sets from sample A (9,407 cells in total) were used to evaluate batch correction 
methods. Monocle2 was applied to 10X_LLU and 10X_NCI data sets to remove dead cells and 
doublets, thus leaving a total of 8,913 cells as the input for step 2. In Step 2 and 3, we used 
different normalization, scaling, and gene selection methods suggested by each batch correction 
pipeline as described in the following. 
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CCA15 processing of step 2 and 3 

We used Seurat (v2.3.4) to process the five data sets individually. Genes detected in fewer than 
3 cells and cells containing less than 200 genes were removed from the data sets prior to further 
analysis. The data sets were then log transformed with the NormalizeData function and further 
scaled by the ScaleData function with all default parameters. The top 1,000 HVGs were identified 
in each data set with the FindVariableGenes function and the union of HVGs (3,203 genes in 
total) from the five data sets was used as final input for CCA batch correction. Depending on the 
number of batches, either the function RunCCA or RunMultiCCA was used to perform cross-
dataset normalization and batch correction with a total of 15 estimated canonical correction 
vectors. The function AlignSubspace was used to generate the low-dimensional embedding 
space of each data set for visualization. 

Uncorrected and MNN6 processing of step 2 and 3 

For MNN, the scran package (v1.8.4) was used to process the data sets. Each data set was 
normalized through the deconvolution method17 by functions computeFactors and normalize with 
all default parameters. Gene-specific variances of each data set were calculated and 
decomposed into biological and technical components by the functions trendVar and 
decompseVar. The top 1,000 HVGs were identified by the largest 1,000 biological gene-specific 
variances combined across five data sets and used as input genes for cross-dataset normalization 
and log transformation by the functions multiBatchNorm and logcounts. The processed master 
gene expression matrix with the top 1,000 HVGs was considered as the uncorrected data. The 
function mnnCorrect with default parameters was used to perform batch correction and generate 
a MNN-corrected gene expression matrix. 

fastMNN6  

Each sample in the sample set was preprocessed in the same way as described for MNN. Batch 
effect correction was then performed using fastmnn while limiting the genes used to the highly 
variable gene list (subset.row=hvg.union) and setting auto.order to True. tSNE coordinates were 
calculated using scater (v.1.9.21) while using all available dimensions in the corrected matrix. 
UMAP coordinates were calculated by exporting the corrected matrix, which was imported into 
SCANPY (v1.3.2). Principal component analysis was performed using pp.pca with the number of 
principal components to compute set to the estimated number of principal components for 
mnnCorrect (n_comps=pcs). A neighborhood graph (pp.neighbors) was then calculated followed 
by calculating the UMAP coordinates (tl.umap). 

Scanorama8, 9 processing of step 2 and 3 

We used the Scanorama Python package (v0.5) to process the data sets and perform batch 
correction. The script process.py with default parameters was used to perform cell filtering and 
normalization. We modified the default parameter of HVG in the script scanorama.py to identify 
1,000 HVGs for batch correction. Function correct (from the script scanorama.py) with default 
parameters was used to perform batch correction and generate a Scanorama-corrected gene 
expression matrix. 

BBKNN10, 11 processing of step 2 and 3 

We used the Seurat-inspired SCANPY Python workflow to process the data sets. The five data 
sets were read as annotated data matrices using the AnnData function found in the annData 
package and appended into a list. Cells and genes were filtered using the 
scanpy.api.pp.filter_cells and scanpy.api.pp.filter_genes functions with the same parameter 
settings as in CCA processing.  The processed data matrices were merged to generate a master 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010249doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.010249
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 28 

gene expression matrix and further log transformed and normalized by the functions 
scanpy.api.pp.log1p and scanpy.api.pp.normalize_per_cell. The top 1,000 HVGs were identified 
from the merged gene expression matrix using the function filter_genes_dispersion. Further log 
transformation (function scanpy.api.pp.log1p) and scaling (function scanpy.api.pp.scale) were 
performed on the newly generated gene expression matrix containing only the top 1,000 HVGs. 
The function bbknn.bbknn with default parameters was used to perform batch correction. 

Harmony16, 17  

We used Seurat (v2.3.4) to process the full data sets. The pre-processed Seurat data were used 
as inputs for Harmony batch correction analysis16. A sub-Seurat data object for each dataset was 
generated, normalized, and applied to identify the HVGs using the same method for no batch 
effect corrections. PCA analysis of HVGs using the function “RunPCA” was then carried out, and 
the first 100 PCAs were selected. The “RunHarmony” function was run for the batch effect 
correction. The “RunTSNE” function with parameter “reduction.use = "harmony" was finally used 
to plot the harmony outputs for the visualization. 

 Limma31 and ComBat32 processing of step 2 and 3 

We performed limma and ComBat batch correction on the uncorrected data generated by MNN 
processing.  The function removeBatchEffect (limma package) was used with default parameters 
to perform limma batch correction and generate a limma-corrected gene expression matrix. The 
function ComBat (sva package) was used with default parameters to perform Combat batch 
correction and generate a ComBat-corrected gene expression matrix. 

t-SNE and UMAP plots (step 4) 

The principal component (PC) analysis was performed to obtain the batch corrected gene 
expression matrix by either the RunPCA function (Seurat) or the calcPCA function (URD package) 
to estimate the number of significant PCs. We used the function Rtsne from the Rtsne package 
with an estimated number of PCs to generate t-SNE plots for uncorrected and the 5 batch 
corrected data except BBKNN. The function scanpy.api.tl.umap from the SCANPY python 
package was used with default parameters to generate UMAP plots for uncorrected and the 6 
batch corrected data. 

Modified alignment score 

We adopted the idea of alignment score from Butler’s paper7 to calculate alignment score based 
on the cells’ embedding in two-dimensional space constructed by tsne or umap. However, due to 
the difference of cell numbers across different data sets in our study, we developed a modified 
alignment score calculation algorithm as follows: 

1. Calculate the percentage of cells in each data set i as w1 (i = 1…N, N is the total number 
of data sets). 

2. For each cell j6j = 1…N78 of data set i, calculate how many of its k nearest-neighbors 
belongs to the same data set as x17 and then take an average of x17 in data set i	to get x́1. 

3. Alignment score = ∑ w1 =1 −
>́?@A?B
B@A?B

CD
1EF  

4. We chose k to be 1% of the total number of cells. 

Data processing and batch correction on the data sets consisting of biologically distinct 
samples and cells 
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We investigated three different sample scenarios: 

1) 10X_LLU_A, 10X_LLU_B, 10X_NCI_A, and 10X_NCI_B  
2) 10X_LLU_A and 10X_LLU_Spikein_10%A 
3) 10X_LLU_B and 10X_LLU_Spikein_10%A 

Supplementary Table 9 provides some general bioinformatics processing information for the 
above three different sample scenarios. 

The similar four major procedures were applied to evaluate the six batch correction methods with 
slightly different HVG selection in uncorrected, MNN, limma, and ComBat methods. In these four 
methods, we identified the top 1,000 HVGs by the largest 1,000 biological gene-specific variances 
for each data set. Then the final HVGs were generated by taking the union of the top 1,000 HVGs 
from each data set for batch correction. 

For Scanorama and BBKNN, we used their implemented packages on BioGenLink™ (BGL) for 
batch correction. The same processing and functions in Scanorama and BBKNN as described 
above were used to perform batch correction. 

Different t-SNE packages were used to evaluate the six batch correction methods in biologically 
distinct samples and cells. Please refer to Supplementary Table 9 for details. 

Bioinformatics pipelines validated and performed in BGL (Biogenlink) 

We carried out some bioinformatics pipelines in BGL to cross-validate some of our bioinformatics 
data analyses.   Bioinformatics tools were created in BGL for performing batch correction of single-
cell RNA-seq data using the BBKNN and Scanorama procedures and for visualizing the results 
of each procedure using tSNE and UMAP.  For each procedure, a tool was created in BGL that 
allows a user to point and click to select input data and parameters for running methods from one 
or more packages.  For each tool, BGL ran a script on the back end to execute the steps described 
below.  Unless otherwise stated, all functions and procedures used default settings.   

BBKNN pipeline in BGL: The BBKNN procedure ran as a Python script following the examples 
at weblink, https://satijalab.org/seurat/get_started.html.  Data from multiple batches were read as 
annotated data matrices using the AnnData function found in the annData package and appended 
into a list. Cells and genes were filtered using the scanpy.api.pp.filter_cells and 
scanpy.api.pp.filter_genes functions. Data were normalized using the 
scanpy.api.pp.normalize_per_cell function.  The scanpy.api.pp.filter_genes_dispersion function 
was used to identify HVGs.  Data were log-transformed using the scanpy.api.pp.log1p function 
and scaled using the scanpy.api.pp.scale function. PCA was performed using the 
scanpy.api.tl.pca function. Un-corrected data were prepared for UMAP using the 
scanpy.api.pp.neighbors function.  Data were batch-corrected and prepared for UMAP using the 
bbknn.bbknn function in place of the scanpy.api.pp.neighbors function.  UMAP was run using the 
scanpy.api.tl.umap function and the results are plotted using the scanpy.api.pl.umap function.  

Scanorama pipeline in BGL: The Scanorama procedure ran as a Python script.  Data were pre-
processed using the AnnData, scanpy.api.pp.filter_cells, scanpy.api.pp.filter_genes, 
scanpy.api.pp.normalize_per_cell, scanpy.api.pp.filter_genes_dispersion, scanpy.api.pp.log1p, 
and scanpy.api.pp.scale functions as described for the BBKNN procedure.  Batch correction was 
performed using the scanorama.correct function.  To prepare un-corrected and batch-corrected 
data for visualization, data were normalized and scaled again.  PCA was performed using the 
scanpy.api.tl.pca function and nearest neighbors were computed using the 
scanpy.api.pp.neighbors function.  UMAP was performed using the scanpy.api.tl.umap function 
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and the results were plotted using the scanpy.api.pl.umap function.  tSNE was performed using 
the scanpy.api.tl.tsne function and the results were plotted using the scanpy.api.pl.tsne function.          

Bioinformatics evaluation of consistency of global and cell-type specific gene expression 
across platforms/sites and all scRNA-seq data  

To investigate the consistency of global gene expression across different platforms/sites and 
scRNA-seq data sets, we first obtained the average gene expression (log2(TPM+1)) of bulk RNA-
seq (three biological replicates) from sample A and B respectively to select benchmarking genes. 
We excluded the top 0.1% highly expressed genes to avoid abnormally expressed genes. We 
further filtered out the genes with standard deviation of gene expression greater than 1 across 
three replicates to obtain the robust genes. The remaining genes were used to define three 
different expression groups by selecting the top 500 most highly expressed, 500 intermediately 
expressed, and 500 infrequently expressed genes based on the ranking of average gene 
expression levels. For the 1500 genes selected, we calculated cell percentage per gene by 
defining the percentage of cells with the expressed gene (gene counts >= 1) for different scRNA-
seq data sets. To get the comparable cell percentage, we only considered gene count matrices 
from the downsampling results (100K reads per cell) of zUMIs (10X data sets) and featureCounts 
(non-10X data sets) pipelines. The Pearson correlations of the cell percentage between any two 
scRNA-seq platforms were calculated for each of the three expression groups to evaluate the 
consistency. 

We also examined and compared the scRNA-seq gene expression profiles across different 
platforms and scRNA-seq datasets based on 4 different RNA groups including protein coding 
RNAs, antisense RNAs, lincRNAs, and miscRNAs. The gene count matrix for each data set was 
used to generate the log(CPM) normalized counts. The genes which had expression of zero were 
removed from comparison; the filtered gene count matrices were used to extract the specific RNA 
group to generate violin plots. 

For benchmarking marker genes across platforms, we generated dot plots of marker genes 
across all data sets and feature plots of individual gene by using the function SplitDotPlotGG and 
FeaturePlot from Seurat, respectively.  

t-SNE, feature plot and dot plot: For uncorrected MNN, Scanorama, Limma and ComBat 
methods, the principal component (PC) analysis was first carried out using the Seurat function 
RunPCA to estimate the number of significant PCs. The Seurat function RunTSNE was then used 
to plot the significant PCs. For the CCA method, the Seurat function RunTSNE was applied to the 
30 estimated canonical correction vectors with the parameter “reduction.use = "cca.aligned"”. For 
the BBKNN method, the function sc.tl.tsne from the Python package SCANPY was applied to 
generate the tSNE plot. For the Harmony approach, the Seurat function RunTSNE was applied 
for the 25 harmony correction vectors with the parameter “reduction.use = " harmony"”. The 
function scanpy.api.tl.umap from the Scanpy Python package was applied with default 
parameters to generate UMAP plots for BBKNN and Scanorama.  

For both the uncorrected and MNN-corrected data, Seurat objects from tSNE dimensional 
reduction were used as the data source for generating feature plots and dot plots. A total of 20 
genes (10 for Sample A (Cancer cell) and 10 for Sample B (B cell)) were selected as markers for 
Sample A and B based on the literature. The Seurat function SplitDotPlotGG with default 
parameters was used to generate the dot plots. The Seurat function FeaturePlot with default 
parameters was run to generate the gene expression feature plots, in which each cell was colored 
based on the expression level of the selected gene. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.27.010249doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.27.010249
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 31 

Bioinformatics methods for single-cell detection consistency of cell-type specific markers 
CD40, CD74, and TPM1 

To examine the consistency of three marker genes across different single cell platforms, we used 
the normalized gene expression data (CPM value) from the downsampling results (100K reads 
per cell) of zUMIs (10X data sets) and featureCounts (non-10X data sets) pipelines. The 
expression matrix of three marker genes per cell was generated. The expressed, infrequently 
expressed, intermediately expressed, and highly expressed cell percentages were defined by the 
percentage of cells with CPM > 0, 0 < CPM < 1, 1 ≤ CPM < 10, and CPM ≥10. 
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Supplementary Figures 
 
 

 
Supplementary Figure 1. Violin plot showing the number of genes detected in each 

cell across all platforms/data sets. 
Each dot represents a cell. X-axis represents samples; Y-axis represents the number of 
genes detected for every cell. The shapes with color show the distributions of the data. The 
average number of genes detected in each cell is about 5000 and most of the cells had 
roughly around 2500-7500 genes, except for samples C1_LLU_A and C1_LLU_B. The 10X 
Genomics scRNA datasets were preprocessed using CellRanger 2.0. 
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Supplementary Figure 2. Comparison between standard and modified sequencing 

protocol for the 10X Genomics scRNA-seq. 
Correlation (a) between the standard and modified sequencing protocol for the 10X 
Genomics scRNA-seq datasets based on overlapping genes. Venn diagrams (b) 
showed the percentage of overlapping genes between two sequencing protocols. 
Comparisons were made between the standard (98- bp) and modified (57-bp) sequencing 
protocol using the overlapping genes in four different sets of libraries and eight different 
data sets. (a) The total number of unique molecular identifiers was calculated for each 
gene that occurred in both samples. The correlation of the data sets across all genes 
were then calculated for each library. (b) Venn diagrams showing the number of 
overlapping genes between two sequencing protocols. The eight data sets were: 
10X_NCI_A and 10X_NCI_M_A captured from HCC1395 cancer cells, 10X_NCI_B and 
10X_NCI_B_M  captured from  HCC1395BL normal cells, 10X_NCI_Spikein_5%A and 
10X_NCI_Spikein_5%A_M captured from normal cells with 5% spike-in of cancer cells, 
and 10X_NCI_Spikein_5%A_Fix1 and 10X_NCI_Spikein_5%A_Fix1_M captured from 
normal cells with 5% spike-in of cancer cells  that had been methanol fixated. 
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Supplementary Figure 3. Mapping and alignment QC of bulk cell RNA-seq 
datasets. 

Bulk cell RNA-seq data sets were generated for both the HCC1395 and HCC1395BL cell 
lines (n=3 for each cell line). The figure shows the percentage of reads mapped to the exonic 
(dark blue), intronic (light green), intergenic (light blue) regions, ERCC sequences (black), 
or reads not mapped to the human genome (gray) in the bulk RNA-seq data. 
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Supplementary Figure 4. Regressing out number of detected genes does not 
improve the downstream silhouette scores (Sample A). 

(a-g) Boxplots of silhouette values stratified by regression-based normalization methods 
and 2 different Linnorm methods across 7 datasets (sample A, breast cancer cell line). 
Each dot represents a cell. X-axis represents normalization methods; Y-axis represents 
the silhouette width values for every pair of cells. 
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Supplementary Figure 5. Regressing out number of detected genes does not 
improve the downstream silhouette scores (Sample B). 

(a-g) Boxplots of silhouette values stratified by regression-based normalization methods 
and 2 different Linnorm methods across 7 datasets (sample B, normal B lymphocyte cell 
line). Each dot represents a cell. X-axis represents normalization methods; Y-axis 
represents the silhouette width values for every pair of cells. 
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Supplementary Figure 6. Silhouette score across different scRNA-seq 
platforms/data sets using different normalization methods (Sample A). 

(a) Boxplot of silhouette width values of raw gene expression across different scRNA-
seq platforms/data sets; (b-f) Boxplots of silhouette scores across different scRNA-seq 
platforms/data sets using scan deconvolution, CPM, LogCPM, DESeq and Linnorm 
normalizations. The scores in the C1 and WaferGen platforms were consistently higher 
than that of the 10X data sets. 
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Supplementary Figure 7. Silhouette score across different scRNA-seq 
platforms/data sets using different normalization methods (Sample B). 

(a) Boxplot of silhouette width values of raw gene expression across different scRNA-
seq platforms/data sets (b-f); Boxplots of silhouette scores across different scRNA-seq 
platforms/data sets using scan deconvolution, CPM, LogCPM, DESeq and Linnorm 
normalizations. The scores in the C1 and WaferGen platforms were consistently higher 
than that of the10X data sets. 
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Supplementary Figure 8. Regressing mitochondrial genes & normalizing UMI 

does not remove batch effects. 
t-SNE plots were generated from five samples sequenced at two sites after regressing 
out the effects of mitochondrial genes and UMI by Seurat. (a) t-SNE plot of 5 
libraries/scRNA-seq data sets without mitochondrial gene regression and UMI 
normalization. (b) t-SNE plot of 5 libraries/scRNA-seq data sets after regression 
mitochondrial genes (mito) and filtering cells with mito >5%. In addition, the dataset was 
normalized with logNormalize. The batch effect is displayed in t-SNE plots showing that 
the libraries/scRNA-seq data derived from the same cell line were not clustered together. 
Regression mitochondrial genes and normalize dataset did not remove the observed 
batch effect. The five data sets are: 10X_LLU_A and 10X_NCI_A were two libraries 
captured from HCC1395 cancer cells; 10X_LLU_B and 10X_NCI_B were two libraries 
captured from HCC1395BL normal cells, and 10X_NCI_spikein_5%A was the library that 
had spike-in 5% of cancer cells into normal cells. 
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Supplementary Figure 9. Batch-effect corrections across 20 scRNA-seq datasets. 
tSNE plot of 20 data sets, prior to (a) and post CCA (b), MNN (c), Harmony (d), limma 
(e) and ComBat (g), and UMAP plot of Scanorame (g) and BBKNN (h) batch effect 
correction. Samples from 10X Genomics were sub-sampled to 1200 cells. Sample 
sharing a small portion of same biological population of cells was used as common 
reference. tSNE plots of 20 data sets, uncorrected (a), CCA (b), MNN (c), Harmony 
(d), limma (e) and ComBat (f); and UMAP plots of Scanorame (g) and BBKNN (h) batch 
effect correction are presented. Data set is labeled by color. MNN, Harmony and BBKNN 
corrected the batch variations well, in which cells were clustered into two groups as 
expected. After Limma, ComBat, or Scanorama batch effect correction, cells within the 
same cell types from different platforms or sites failed to group together. After CCA batch 
effect correction, cells were mixed together and not separated. Most of the methods were 
carried out with the R platform except for BBKNN and Scanorama, which used Python 
scripts. 
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Supplementary Figure 10. UMAP and modified alignment scores across five 
different data sets using six batch correction methods (top 1000 HVG). 

(a) Sample A-cancer cells; (b) Sample B-B-cells; (c) 5%A & 10%A spike-in in B-cells. Batch 
correction was performed using six methods on (a) breast cancer cells (sample A), (b) normal 
B lymphocyte cells (sample B), and (c) spiked-in samples where either 5% or 10% of cancer cells 
were spiked in into the sample B cells. The five data sets of (a) and (b) include 10X_LLU, 
C1_FDA_HT, 10X_NCI, C1_LLU, and WaferGen_SE. The four data sets of (c) include 
10X_Mix10_LLU, 10X_Mix5_NCI, 10X_Mix5_F_NCI, 10X_Mix5_F2_NCI. 
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Supplementary Figure 11. Modified alignment scores using six batch 
correction methods and different highly variable genes across 5 data sets. 

Modified alignment scores were calculated in (a) breast cancer cells (sample A), (b) 
normal B lymphocyte cells (sample B), and (c) spiked-in samples where either 5% or 
10% of cancer cells were spiked in into the sample B cells. The five data sets of (a) and 
(b) include 10X_LLU, C1_FDA_HT, 10X_NCI, C1_LLU, and WaferGen_SE. The four 
data sets of (c) include 10X_Mix10_LLU, 10X_Mix5_NCI, 10X_Mix5_F_NCI, 
10X_Mix5_F2_NCI. 
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Supplementary Figure 12. Batch effect correction visualization using UMAP plots. 
(a) Batch effect corrections were performed using four scRNA-seq data sets containing 
biologically distinct cells, including two breast cancer cell datasets (10X_LLU_A and 
10X_NCI_A) and two normal B cell datasets (10X_LLU_B and 10X_NCI_B). (b) Batch 
corrections were performed using two scRNA-seq data sets derived from samples that 
shared a large portion of the same biological population of cells but contained a small 
portion of biologically distinct cells. The two data sets were: one normal cell dataset 
(10X_LLU_B) and one spike in dataset (10X_LLU_spikein_10%A). (c) Batch corrections 
were performed using two scRNA-seq data sets derived from samples that contained 
a large portion of biologically distinct cells but shared a small portion of the same 
biological population of cells. The two data sets were: one cancer cell dataset 
(10X_LLU_A) and one spike_in dataset (10X_LLU_spikein_10%A). 
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Supplementary Figure 13a-c. t-SNE plots of the data containing biologically 
distinct cells after MNN and fastMNN batch correction. 

(a) Batch effect corrections were performed using four scRNA-seq data sets containing 
biologically distinct cells, including two breast cancer cell datasets (10X_LLU_A and 
10X_NCI_A) and two normal B cell datasets (10X_LLU_B and 10X_NCI_B). (b) Batch 
corrections were performed using two scRNA-seq data sets derived from samples that 
contained a large portion of biologically distinct cells but shared a small portion of same 
biological population of cells. The two data sets were: one cancer cell dataset 
(10X_LLU_A) and one spike_in dataset (10X_LLU_spikein_10%A). (c) Batch corrections 
were performed using two scRNA-seq data sets derived from samples that shared a large 
portion of same biological population of cells but contained a small portion of biologically 
distinct cells. The two data sets were: one normal cell dataset (10X_LLU_B) and one 
spike in dataset (10X_LLU_spikein_10%A). 
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Supplementary Figure 13d-f. UMAP plots of the data containing biologically 
distinct cells after MNN and fastMNN batch correction. 

For UMAP plotting after batch correction, SingleCellExperiment objects were converted 
to Seurat object and RunUMAP/DimPlot from Seurat package with default parameters 
were used. (d) Batch effect corrections were performed using four scRNA-seq data sets 
containing biologically distinct cells, including two breast cancer cell datasets 
(10X_LLU_A and 10X_NCI_A) and two normal B cell datasets (10X_LLU_B and 
10X_NCI_B). (e) Batch corrections were performed using two scRNA-seq data sets 
derived from samples that contained a large portion of biologically distinct cells but 
shared a small portion of same biological population of cells. The two data sets were: 
one cancer cell dataset (10X_LLU_A) and one spike_in dataset 
(10X_LLU_spikein_10%A). (f) Batch corrections were performed using two scRNA-seq 
data sets derived from samples that shared a large portion of same biological 
population of cells but contained a small portion of biologically distinct cells. The two 
data sets were: one normal cell dataset (10X_LLU_B) and one spike in dataset 
(10X_LLU_spikein_10%A). 
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Supplementary Figure 14. Harmony and Scanorama batch effect corrections 
using 10X Genomics scRNA-seq datasets from two centers. 

(a) t-SNE plot of 12 data sets post Harmony batch correction. (b) UMAP plot of 12 data 
sets post Scanorama batch correction. All the data sets were processed with subsampling 
to 1200 cells, using one common reference. 
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Supplementary Figure 15a-b. Cell type-specific marker genes for breast cancer 

cells (Sample A) across all scRNA-seq platforms/data sets. 
Feature plots of top 10 up/down- regulated genes for 20 data sets pre (a) and post 
(b) MNN batch effect correction. Genes with relatively high expression levels in each 
cell are highlighted in brick red in tSNE plot, which allows the visualization of the 
expression of a particular gene in the context of all the cells examined and also helps 
validate the specificity of the marker or the quality of the clustering. Before batch 
correction (a), cells expressing marker genes didn’t group together; but after MNN 
correction (b), cells expressing marker genes grouped together very well. 
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Supplementary Figure 15c-d. Cell type-specific marker genes for normal B 
lymphocytes (Sample B) across all scRNA-seq platforms/data sets. 

Feature plots of top 10 up/down-regulated genes for 20 data sets pre (c) and post (d) 
MNN batch effect correction. Genes with relatively high expression levels in each cell 
are highlighted in brick red in tSNE plot, which allows the visualization of the expression 
of a particular gene in the context of all the cells examined and also helps validate the 
specificity of the marker or the quality of the clustering. Before batch correction (c), 
cells expressing marker genes were not clustered together; but after MNN correction 
(d), cells expressing marker genes grouped together very well. 
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