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Abstract 

Animals and humans replay neural patterns encoding trajectories through their environment, 

both whilst they solve decision-making tasks and during rest. Both on-task and off-task 

replay are believed to contribute to flexible decision making, though how their relative 

contributions differ remains unclear. We investigated this question by using 

magnetoencephalography to study human subjects while they performed a decision-making 

task that was designed to reveal the decision algorithms employed. We characterized subjects 

in terms of how flexibly each adjusted their choices to changes in temporal, spatial and 

reward structure. The more flexible a subject, the more they replayed trajectories during task 

performance, and this replay was coupled with re-planning of the encoded trajectories. The 

less flexible a subject, the more they replayed previously and subsequently preferred 

trajectories during rest periods between task epochs. The data suggest that online and offline 

replay both participate in planning but support distinct decision strategies. 
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Introduction  1 

Online and offline replay are both suggested to contribute to decision making1–15, but their 2 
precise contributions remain unclear. Replay of experienced and expected state transitions 3 
during a task, either immediately before choice or following outcome feedback, is 4 

particularly well suited to mediate on-the-fly planning, where choices are evaluated based on 5 
the states to which they lead (this is known as model-based planning). Off-task replay might 6 
serve a complementary role of consolidating a model of a state space, specifying how each 7 
state can be reached from other states and the values of those states. According to this 8 
perspective, both types of replay help subjects make choices that are flexibly adapted to 9 

current circumstances. 10 

However, a different possibility is that off-task replay also directly participates in planning, 11 

by calculating and storing a (so-called model-free) decision policy that specifies in advance 12 
what to do in each state16–19. Such a pre-formulated policy is inherently less flexible than a 13 
policy that is constructed on the fly, but at the same time it decreases a need for subsequent 14 
online planning when time itself might be limited. Thus, rather than online and offline replay 15 
both supporting the same form of planning, this latter perspective suggests a trade-off 16 

between them. In other words online replay promotes an on-the-fly model-based flexibility, 17 
whereas offline replay establishes a stable model-free policy.  18 

Despite the wide-ranging behavioural implications of the distinction between model-based 19 
and model-free planning20–23, and much theorising on the role of replay in one or the other 20 

form of planning, to date there is little data to suggest whether online and offline replay have 21 
complementary or contrasting impacts in this regard. Therefore, we tested the relationship 22 

between both online and offline replay and key aspects of decision flexibility that dissociate 23 
model-free (MF) and model-based (MB) planning24. For this purpose, we first recorded MEG 24 

signals from human subjects during rest and while they navigated a specially designed state 25 
space. We then characterized each individual subject’s  26 

flexibility and decision-making algorithm based on task behaviour, and we analysed their 27 

MEG signals seeking evidence of on-task25 and off-task10,12 sequences of state 28 
representations.  29 

 30 

Results 31 

Individual differences in decision flexibility  32 

We used distinct visual images to represent 8 unique states, where occupancy of each state 33 
provided a different amount of reward (Fig. 1a). Subjects started each trial at a random state 34 
and had to choose a movement direction in order to collect reward from subsequent states 35 

(Fig. 1b). Subjects learnt beforehand how much reward was associated with each state, but 36 
they did not know initially where states were in relation to one another. The latter aspect of 37 
task structure had to be acquired through trial and error learning in order to be able to 38 
implement subsequent moves that delivered the maximal amount of reward.  39 

We assessed subjects’ flexibility in three ways. First, after the initial two blocks of trials, we 40 

changed the reward associated with each state (Fig. 1a; grey numbers) such that persisting 41 
with optimal previous moves would result in below-chance performance. Second, after two 42 

additional blocks of trials, we informed subjects that two specified pairs of states had 43 
switched positions (Fig. 1a; ‘switch’), again rendering the optimal previous policy now 44 
suboptimal. A flexible model-based planner would be capable of re-planning its moves 45 
perfectly following each of these instructed changes, since such a planner has acquired  46 
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Fig. 1. Subjects differed in decision flexibility. (a) Experimental task space. Before performing the main task, subjects 

learned state-reward associations (numbers in black circles) and they were then gradually introduced to the state space in a 

training session. After performing the main task for two blocks of trials, subjects learned new state-reward associations 

(numbers in dark gray circles) and then returned to the main task. Before a final block of trials, subjects were informed of a 

structural task change such that ‘House’ switched position with ‘Tomato’, and ‘Traffic sign’ switched position with ‘Frog’. 

The bird’s eye view shown in the figure was never seen by subjects. They only saw where they started from on each trial 

and, after completing a move, the state to which their move led. The map was connected as a torus (e.g., starting from 

‘Tomato’, moving right led to ‘Traffic sign’, and moving up or down from the tomato led to ‘Pond’). (b) Each trial started 

from a pseudorandom location from whence subjects were allowed either one (‘1-move trial’) or two (‘2-move trial’) 

consecutive moves (signalled at the start of each set of six trials), before continuing to the next trial. Outcomes were 

presented as images alone, and the associated reward points were not shown. A key design feature of the map was that in 5 

out of 6 trials the optimal (first) move was different depending on whether the trial allowed one or two moves. For instance, 

given the initial image-reward associations (black) and image positions, the best single move from ‘Face’ is LEFT (9 points), 

but when two moves are allowed it is best to move RIGHT and then DOWN (5+9 giving 15 total points). Note that the 

optimal moves differed also given the second set of image-reward associations. On ‘no-feedback’ trials (which started all but 

the first block), outcome images were also not shown (i.e., in the depicted trials, the ‘Wrench’, ‘Tomato’ and ‘Pond’ would 

appear as empty circles). (c) The proportion of obtainable reward points collected by the experimental subjects, and by three 

simulated learning algorithms. Each data point corresponds to 18 trials (six 1-move and twelve 2-move trials), with 54 trials 

per block. The images to which subjects moved were not shown to subjects for the first 12 trials of Blocks II to V (the 

corresponding ‘Without feedback’ data points also include data from 6 initial trials with feedback wherein starting locations 

had not yet repeated, and thus, subjects’ choices still reflected little new information). All algorithms were allowed to forget 

information so as to account for post-change performance drops as best fitted subjects’ choices (see Materials and methods 

for details). Black dashed line: chance performance. Shaded area: SEM. (d) Proportion of first choices that would have 

allowed collecting maximal reward where one (‘1-optimal’) or two (‘2-optimal’) consecutive moves were allowed. Choices 

are shown separately for what were in actuality 1-move and 2-move trials. Subjects are colour coded from lowest (gold) to 

highest (red) degree of flexibility in adjusting to one vs. two moves (see text). Dashed line: chance performance (33%, since 

up and down choices always lead to the same outcome). (e,f) Decrease in collected reward following a reward-contingency 

(e) and spatial (f) change, as a function of the index of flexibility (IF) computed from panel d. Measures are corrected for the 

impact of pre-change performance level using linear regression. 𝑝 value derived using a premutation test. 
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knowledge as to how each state can be reached. Conversely, a pure model-free planner would 1 
require complete relearning by trial and error each time there is a change so as to establish a 2 
new policy, since such an agent only possesses a now counterproductive policy that specifies 3 
where to move from each state. 4 

Examining how subjects’ overall performance altered immediately following these changes 5 
revealed a decrement in average performance (Fig. 1c). However, there were substantial 6 
individual differences in this regard, with some subjects seamlessly adapting to reward and 7 
position changes, and others showing drops in performance to chance-levels. Subjects whose 8 
performance showed a strong decline following a reward change tended to cope poorly also 9 

with the position change (𝜌 = 0.50, partial correlation controlling for performance levels 10 

before the changes; 𝑝 = 0.001, Permutation test). 11 

As a third, more continuous, test of a different aspect of decision flexibility, we interleaved 12 
sets of six trials in which only a single move was allowed (‘1-move trials’) with trials which 13 
allowed two consecutive moves (‘2-move trials’; Fig. 1b). In 2-move trials, subjects were 14 
rewarded for both states they visited, and thus, an optimal course of action often required 15 

subjects to move first to an initial low-reward state in order to gain access to a high reward 16 
state with their second move. Thus, we defined an individual index (IF) of decision flexibility 17 
as the difference between the proportion of moves that were optimal given the actual number 18 

of allotted moves and the proportion of moves that would have been optimal given a different 19 
number of allotted moves (i.e., had 1-move trials instead involved two moves and 2-move 20 
trials involved one move). A value of zero implies no net adjustment, while positive values 21 

imply advantageous flexibility.  22 

The results indicate subjects adjusted their choices advantageously to the number of allotted 23 
moves (+0.21, SEM 0.05, p < 0.001, Bootstrap test), though there was evidence again of 24 
substantial individual differences (Fig. 1d). Importantly, IF correlated with how well a 25 

subject coped with the reward-contingency (Fig. 1e) and position (Fig. 1f) changes as well 26 
with how accurately they could sketch maps of the state space at the end of the experiment 27 

(𝑟 = 0.51, 𝑝 < 0.001, Permutation test; Supplementary Fig. 1). Moreover, examining a 28 
subset of 2-move trials in which subjects made their second moves without seeing the 29 

consequence of their first moves, indicated subjects with high IF planned two steps into the 30 
future (Supplementary Note 1), as would be expected from MB planning.  31 

 

Individual flexibility reflected MF-MB balance  32 

These convergent results suggest that IF reflected deployment of a MB planning strategy. To 33 
test this formally, we compared how well different model-free and model-based decision 34 
algorithms, as well as a combination of both, explained subjects’ choices. Importantly, we 35 
enhanced these algorithms to maximize their ability to mimic one another (see Materials and 36 
methods for details). Thus, for instance, the MF algorithm included separate 1-move and 2-37 

move policies.  38 

We found that a hybrid of MF and MB algorithms outperformed substantially either of them 39 
alone (Bayesian Information Criterion26: MF = 40821, MB = 43249, MF-MB hybrid = 40 
39908), suggesting that subjects employed a mix of MF and MB planning strategies.  41 
Simulating task performance using the hybrid algorithm showed it captured adequately 42 

differences that were evident between subjects (correlation between real and simulated IF: 43 

𝑟 = 0.92, 𝑝 < 0.001, Permutation test; Supplementary Fig. 2a). When we examined each 44 

subject’s best-fitting parameter values, to determine which of these covaried with IF, we 45 
found 84% of inter-individual variance was explained by three parameters that control a 46 
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balance between flexible, model-based, and inflexible, model-free, planning (Supplementary 1 
Fig. 2b). Importantly, less flexible subjects had comparable learning rates and a higher 2 
model-free inverse temperature parameter (in 2-move trials), indicating that lower flexibility 3 
did not reflect a non-specific impairment, but rather, it was associated with enhanced 4 

deployment of a model-free algorithm. Thus, our index of flexibility specifically reflected the 5 
influence of model-based, as compared to model-free, planning. 6 

 

On-task replay is induced by prediction errors and associated with high flexibility 7 

In rodents, reinstatement of past states, potentially in the service of planning, is evident both 8 

prior to choices27 and following observation of outcomes2. Thus, we determined firstly at 9 

what point states were neurally reinstated during our task. For this purpose, we trained MEG 10 

decoders to identify the images subjects were processing (Fig. 2a). Such decoders robustly 11 

reveal stimulus representations that are reinstated from memory and contribute to decision 12 

processes25,28. Crucially, image decoders were trained on MEG data collected prior to 13 

subjects having any knowledge about the task, ensuring that the decoding was free of 14 

confounds related to other task variables (see Materials and methods). Applying these 15 

decoders to MEG signals from the main task, we found no evidence of prospective 16 

representation of outcome states (images) to which subjects will transition at choice 17 

(Supplementary Fig. 4a). Instead, we found strong evidence that following outcomes 18 

(corresponding to new states to which subjects transitioned), subjects represented the states 19 

from which they had just moved (𝑡̅ = 3.4, 𝑝 = 0.001, Permutation test; Supplementary Fig. 20 

4b). Consequently, we examined in detail the MEG data recorded following each outcome 21 

for evidence of replay of state sequences that subjects had just traversed.  22 

To test for evidence of replay, we applied a measure of “sequenceness” to the decoded MEG 23 

time series, a metric we have previously shown is sensitive in detecting replay of experienced 24 
and decision-related sequences of states10,12,25. Importantly, sequenceness is not sensitive to 25 
simultaneous covariation, and thus, it is only found if stimulus representations follow one 26 

another in time25 (as in previous work, we allowed for inter-stimulus lags of up to 200 ms). 27 
Thus, following each outcome, we computed sequenceness between the decoded 28 

representations of the preceding and the outcome state (Fig. 2b). Additionally, MEG signals 29 
recorded following the second outcome in 2-move trials were also tested for sequenceness 30 

reflecting the trial’s first transition (i.e., between the starting state and first outcome; Fig. 2c).  31 

Using an hierarchical Bayesian Gaussian Process approach (see Methods for details) we 32 
tested for timepoints at which sequenceness was evident and correlated with individual 33 
flexibility. This method directly corrects for comparison across multiple timepoints by 34 

accounting for the dependency between them29. Since replay is thought to be induced by 35 
surprising observations16,17,30,31,  we also included surprise about the outcome (i.e. the state 36 

prediction error inferred by the hybrid algorithm) as a predictor of sequenceness. We found 37 
significant sequenceness encoding the last experienced state transition (from 50 to 330 ms 38 
and from 820 to 950 ms following outcome onset; Fig. 2b; note that the median split is only 39 

for display purposes; analyses depended on the continuous flexibility index) and, at the 40 
conclusion of 2-move trials, also the penultimate transition (from 130 ms before to 350 ms 41 

following outcome onset; Fig. 2c). These sequences were accelerated in time, with an 42 
estimated lag of 130 ms between the images, and were encoded in a ‘forward’ direction 43 
corresponding to the order actually visited. Moreover, later in the post-outcome epoch, the 44 
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penultimate transition was also replayed backwards (from 440 to 940 ms following outcome 1 
onset).  2 

Importantly, we found this evidence of replay, across all timepoints, was correlated with IF 3 

(mean 𝛽 = 0.17, 95% Credible Interval = 0.13 to 0.20), with surprise about the outcome 4 

(mean 𝛽 = 0.06, CI = 0.03 to 0.10) and with the interaction of these two factors (mean 𝛽 =5 

0.19, CI = 0.15 to 0.22). Thus, sequenceness was predominantly evident following surprising 6 

outcomes in subjects with high index of flexibility, consistent with online replay contributing  7 
to model-based planning.  8 

 

Fig. 2. On-task replay of state-to-state trajectories as a function of individual flexibility. 𝑛 = 40 subjects. (a) Validation 

of the image MEG decoder used for the sequenceness analyses. The plot shows the decodability of starting images from 

MEG data recorded during the main task at trial onset. Decodability was computed as the probability assigned to the starting 

image by an 8-way classifier based on each timepoint’s spatial MEG pattern, minus chance probability (0.125). (b) 

Sequenceness corresponding to a transition from the image the subject had just left (‘Start image’; in the cartoon at the 

bottom, the face) to the image to which they arrived (‘outcome image’; the tomato) following highly surprising outcomes 

(i.e., above-mean state prediction error). In the cartoon, the white arrow indicates the actual action taken on the trial; the blue 

arrow indicates the sequence that is being decoded. For display purposes only, mean time series are shown separately for 

subjects with high (above median) and low (below median) IF. Positive sequenceness values indicate forward replay and 

negative values indicate backward replay. As in previous work25, sequenceness was averaged over all inter-image time lags 

from 10 ms to 200 ms, and each timepoint reflects a moving time window of 600 ms centred at the given time (e.g., the 1 s 

timepoint reflects MEG data from 0.7 s to 1.3 s following outcome). Dashed lines show mean data generated by a Bayesian 

Gaussian Process analysis, and the dark gray bars indicate timepoints where the 95% Credible Interval excludes zero and 

Cohen’s 𝑑 > 0.1. The top plot shows IF as a function of sequenceness for the timepoint where the average over all subjects 

was maximal. 𝑝 value derived using a premutation test. (c) Sequenceness following the conclusion of 2-move trials 

corresponding to a transition from the starting image to the first outcome image. (d) Difference in the probability of 

subsequently choosing a different transition as a function of sequenceness recorded at the transition’s conclusion. For display 

purposes only, sequenceness is divided into high (i.e., above mean) and low (i.e., below mean). A correlation analysis 

between sequenceness and probability of policy change showed a similar relationship (Spearman correlation: 𝑀 = −0.04, 

𝑆𝐸𝑀 = 0.02, 𝑝 = 0.04, Bootstrap test). Sequenceness was averaged over the first cluster of significant timepoints from 

panels b and c, in subjects with non-negligible inferred sequenceness (more than the standard deviation divided by 10; 𝑛 =
25), for the first time the subject chose each trajectory. Probability of changing policy was computed as the frequency of 

choosing a different move when occupying precisely the same state again. 0 corresponds to the average probability of 

change (51%).  
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On-task replay is associated with changes of policy  1 

Recent theorising regarding the role of replay in planning argues that replay should be 2 

preferentially induced when there is a benefit to changing one’s policy17. This perspective 3 
predicts that, at least in our experiment, subjects should be more disposed to replay 4 
trajectories that they might not want to choose again, rather than trajectories whose choice 5 
reflects a firm policy. To determine whether decodable on-task replay was associated with 6 
policy changes, we tested the relationship between sequenceness corresponding to each move 7 

that subjects chose, and the probability of making a different choice when occupying the 8 

same state later on. We found that moves after which high forward sequenceness was evident 9 

corresponded to moves that were less likely to be re-chosen subsequently (Fig. 2d), and these 10 

policy changes increased the proportion of obtained reward (𝑀 = +11.1%, 𝑆𝐸𝑀 = 1.5%, 11 

𝑝 = 0.001). Thus, evidence of online replay was coupled with advantageous re-planning in 12 
relation to the same trajectories. 13 

 

Off-task replay is induced by prediction errors and associated with low flexibility 14 

We next studied off-task replay, examining MEG data recorded during the 2-minute rest 15 

period that preceded each experimental block. Since each block included five frequently 16 
repeating starting states, we computed sequenceness for the five most frequent image-to-17 

image transitions subjects chose before and after each rest period (mean choice frequency = 18 
8.4 repetitions per block). As a control analysis, we also examined sequenceness for the five 19 

least frequently chosen transitions from the same starting states (mean choice frequency = 1.0 20 
repetitions per block). We found significant evidence for sequenceness throughout the rest 21 

periods for frequent transitions (𝑀 = 0.002, 𝑆𝐸𝑀 = 0.001, 𝑝 = 0.01, Bootstrap test). By 22 

contrast, no sequenceness was found for the infrequent transitions (𝑀 < 0.001, 𝑆𝐸𝑀 = 0.001, 23 

𝑝 = 0.47, Bootstrap test). Frequent transitions were replayed in a forward direction, with an 24 

estimated time lag of 180 ms between images, and prioritized trajectories that induced more 25 
reward prediction errors in the previous block (correlation of sequenceness with sum of 26 

absolute model-free reward prediction errors inferred by the hybrid algorithm: 𝑀 = 0.04, 27 

𝑆𝐸𝑀 = 0.018, 𝑝 = 0.03, Bootstrap test). Most importantly, off-task sequenceness negatively 28 
correlated with IF (Fig. 3). This association of sequenceness during rest with low flexibility is 29 

consistent with a proposed role of offline replay in establishing model-free policies16–19. 30 

 

 

 

Fig. 3. Off-task replay of past and future trajectories . 𝑛 = 40 subjects. 

Individual flexibility as a function of sequenceness in rest MEG data for the 

five most frequently experienced image-to-image transitions. For each rest 

period, sequenceness was averaged over transitions from both the preceding 

and following blocks of trials. 𝑝 value derived using a premutation test. 
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Off-task replay can predict subsequently chosen sequences 1 

If offline replay is involved in planning, then its content should predict subjects’ subsequent 2 

choices. To test this, we dissociated the replay of experienced trajectories from that of 3 
planned trajectories, focusing on the third rest period after which the optimal image-to-image 4 
transitions changed entirely (due to a change in state-reward associations). As subjects had 5 
been taught about the reward change before this rest period, this afforded an opportunity to 6 
re-plan their choices accordingly during this rest epoch.  7 

We first examined the behavioural effect of the state-reward change in more detail. The most 8 

frequently chosen transitions in the block that followed the third rest period differed from the 9 

transitions most frequently chosen in the preceding block (overlap: 𝑀 = 14%, 𝑆𝐸𝑀 = 3%), 10 

and this policy change was substantially greater than for the other rest periods (overlap: 𝑀 =11 

53%, 𝑆𝐸𝑀 = 2%). As expected, the newly chosen transitions from the following block were 12 

advantageous given the new state-reward associations (reward collected: 𝑀 = 71%, 𝑆𝐸𝑀 =13 

2%; chance = 60%) and disadvantageous given the state-reward associations that had so far 14 

applied (𝑀 = 52%, 𝑆𝐸𝑀 = 2%).  15 

Given the behavioural change, we focused our examination of the MEG data on evidence for 16 
sequenceness during this crucial third rest period. We found that subjects indeed replayed the 17 

transitions they subsequently chose (𝑀 = 0.004, 𝑆𝐸𝑀 = 0.002, 𝑝 = 0.02, Bootstrap test). 18 

This replay of subsequently chosen moves indicates subjects utilized a model of the task to 19 

re-plan their moves offline16,17,19. Our reasoning here is that re-planning in light of the new 20 
reward associations, before subjects experienced them in practice, requires a model that 21 

specifies how to navigate from one state to another. Indeed, multiple regression analysis 22 
showed that low IF was only associated with sequenceness encoding previously chosen 23 

transitions (𝛽 = −0.35, 𝑡37 = 2.25, 𝑝 = 0.03), whereas the replay of subsequently chosen 24 

transitions did not correlate with IF (𝛽 = −0.004, 𝑡37 = 0.03, 𝑝 = 0.97). On the other hand, 25 
the lack of a flexibility enhancement associated with prospective offline replay might indicate 26 
that, as might be expected, offline planning is ill-suited for enhancing trial-to-trial flexibility. 27 

  

Discussion 28 

We find substantial differences in the behaviour of individual subjects in a simple state-based 29 

sequential decision-making task that correspond also to a distinction in the nature, and 30 
apparent effects, of MEG-recorded on- and off-task replay of state trajectories. These results 31 
bolster important behavioural dissociations, as well as provide substantial new insights into 32 
the control algorithms that subjects employ. The findings fit comfortably with an evolving 33 
literature that addresses human replay and preplay10–12,25,28. 34 

There is an intuitive appeal to the distinction between model-based and model-free reasoning, 35 
confirmed by its close association with many well-established psychological distinctions32,33. 36 
However, tasks that have become popular for investigating this distinction24,34–36 have been 37 
criticized for offering a better grasp on model-based compared to model-free reasoning 38 
processes36,37; for rewarding model-based reasoning indifferently38; and for admitting 39 

complex model-free strategies that can masquerade as being model-based39.  40 

In our new task, we show a convergence between superficially divergent methods for 41 

distinguishing model-based and model-free methods – flexibility to immediate task demands 42 
(one-step versus two-step control), preserved performance in the face of changes in the 43 
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location of rewards or structure, and an ability to reproduce explicitly, after the fact, the 1 
transition structure. Furthermore, the task effectively incentivizes flexible model-based 2 
reasoning, as this type of reasoning alone allows collection of substantial additional reward 3 
(93%) compared to our most successful MF algorithm (80%). These convergent observations 4 

suggest that the model-based and model-free distinction we infer from our task rests on solid 5 
behavioural grounds. 6 

In human subjects, there is a growing number of  observations of replay and/or preplay of 7 
potential trajectories of states that are associated with the structure of  tasks that subjects are 8 
performing10,11,28. However, it has been relatively hard to relate these replay events to 9 

ongoing performance. By contrast, there is evidence that rodent preplay has at least some 10 
immediate behavioural function8,27, and there are elegant theories for how replay should be 11 

optimally sequenced and structured in the service of planning17. In particular, it has been 12 
suggested that replay should prioritize trajectories that can soon be re-encountered, and for 13 
which one’s policy can be improved. Our results are broadly consistent with this theoretical 14 
perspective, showing that new surprising observations precede evidence of corresponding 15 
replay, and which in turn predicts appropriate changes in policy. However, rather than 16 

preplay immediately prior to choice, we found evidence of on-task replay following feedback 17 
alone, suggesting a third potential factor impacting on the timing and content of replay – the 18 
need to minimize memory load by embedding new information in ones’ policies as soon as it 19 
is received.  20 

Critically, the timing and content of replay differed across individuals in a manner that links 21 
with their dominant mode of planning. More model-based subjects tended to replay 22 

trajectories during learning, predominantly reflecting choices they were likely to reconsider. 23 
There have been reports of preferential replay of deprecated trajectories in rodents8,41. 24 

However, those studies are consistent with a more general function for replay (e.g., 25 
maintaining the integrity of a map given a biased experience), whereas in our case, replay 26 
was closely related to future behaviour.  27 

By contrast the decodeable replay of more model-free subjects centred on rest periods, during 28 
which DYNA-like mechanisms are hypothesized to compile information about the 29 

environment to create an effective model-free policy17. This replay of state-to-state transitions 30 
suggests that despite a general inability at the end of the task to draw a map accurately, 31 
model-free subjects do have implicit access to some form of model, though likely an 32 
incomplete one. In any case, generating a policy offline might not be a good strategy for a 33 

task that requires trial-to-trial flexibility, consistent with the lack of association here between 34 
offline replay and ultimate winnings.  35 

Our work has a number of limitations. First, our experiment was not ideally suited to  36 
inducing compound representations that link states with those that succeed them, since 37 
succession here frequently changed both within and between blocks. However, algorithms 38 
that utilize such representations mimic both model-free and model-based behaviour, and 39 
future work could utilize our methods to investigate whether and how these algorithms are 40 

aided by online and offline forms of replay41. Second, the sequenceness measure that we use 41 
to determine replay suffers from a restriction of comparing forwards to backwards sequences. 42 
There is every reason to expect both forwards and backwards sequences co-exist, so focusing 43 
on a relative predominance of one or the other is likely to provide an incomplete picture. The 44 

problem measuring forwards and backwards replay against an absolute standard is the issue 45 
of a large autocorrelation in the neural decoding, and better ways of correcting for this are 46 
desirable in future studies. Nevertheless, despite these shortcomings the work we report here 47 
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is a further step towards revealing the rich and divergent structure of human choice in 1 
sequential decision making tasks.  2 
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Supplementary Fig. 1. Example sketches of the state space by a representative subject. Subjects sketched the state 

space at the end of the experiment, recalling how it had been structured before and after (b) the position change. On average, 

subjects sketched much of the state spaces accurately (correct state transitions: first map 𝑀 = 0.65, 𝑆𝐸𝑀 = 0.06; second 

map 𝑀 = 0.56, 𝑆𝐸𝑀 = 0.06; chance = 0.14, 𝑝 < 0.001, Bootstrap test). (a,b) Sketches by a representative subject with 

0.58 accuracy for the state space before (a) and after (b) the spatial change. Erroneous transitions are marked in red.  

(c,d) The actual state spaces the subject navigated before (c) and after (d) the position change. 
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Supplementary Fig. 2. Individual flexibility reflected the balance between MB and MF planning. 𝑛 = 40 subjects. (a) 

Actual and simulated individual flexibility (IF). Task performance was simulated using subjects’ best-fitting parameter 

settings. IF was computed for each simulated subject and averaged over 100 simulations. (b) Relationship between IF and 

individually-fitted parameters. IF was regressed on subjects’ best-fitting parameter settings, including all learning (𝜂), 

memory (𝜏), and inverse temperature (𝛽) parameters. Parameters are color-coded by the component of the algorithm they 

enhance. Error bars: 95% CI.   
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Supplementary Note 1: Planning two steps into the future  1 

Having a cognitive model that specifies how states are spatially organized makes it possible 2 
to plan several steps into the future. To test whether subjects were able to do that, we 3 
challenged subjects with 12 ‘without-feedback’ trials at the beginning of each of the last 4 4 

blocks, during which outcome images were not shown. This meant that in 2-move trials 5 
subjects had to choose their second move ‘blindly’, without having seen the image to which 6 
their previous move had led (e.g., the tomato in Fig. 1b). We found that subjects performed 7 
above chance on these blind second moves (proportion of optimal choices: 0.56, SEM 0.03; 8 
chance = 0.45; p < 0.001, Bootstrap test), and this was the case even immediately following 9 

position and reward changes, when subjects could not have relied on previously tested 2-10 
move sequences (0.52, SEM 0.03; p = 0.01, Bootstrap test). Most importantly, such blind-11 

move success was correlated with IF (Supplementary Fig. 3a).  12 

This result indicates that more flexible subjects were better able to plan two steps into the 13 
future when required. Examining response times suggested flexibility was associated with 14 
advance planning also when it was not required. Thus, we found that IF correlated with 15 
quicker execution of second moves in general (Spearman correlation with median reaction 16 

time: 𝑟 = −0.61, 𝑝 < 0.001, Permutation test). To determine whether advance planning was 17 
indeed generally associated with flexibility, we examined at what point during a trial their 18 
choices became decodeable from MEG signals. For this purpose, we trained a decoder to 19 

decode chosen moves from MEG signals recorded outside of the main task (see Materials 20 
and methods for details). Validating the decoder on MEG data from the main task showed 21 
that chosen moves became gradually more evident over the course of the trial, their 22 

decodability peaking 140 ms before a choice was made (Supplementary Fig. 3b).  23 

Thus, we used the move decoder to test whether second-move choices began to materialize in 24 
the MEG signal even before subjects observed the outcomes of their first moves. We found 25 
that chosen second moves were indeed decodeable already during first-move choices 26 

(decodability: 𝑀 = 0.006, 95% Credible Interval = 0.004 to 0.008, Bayesian Gaussian 27 

Process analysis; Supplementary Fig. 3c) and prior to the appearance of the first outcome 28 

(decodability: 𝑀 = 0.004, 95% Credible Interval = 0.002 to 0.006; Supplementary Fig. 29 

3d). Importantly, this early decodability was correlated with IF (𝛽: 𝑀 = 0.29 , 95% Credible 30 

Interval = 0.24 to 0.34). By contrast, later decodability, following the onset of the second 31 

image, did not correlate with IF (𝛽: 𝑀 = 0.02 , 95% Credible Interval = −0.02 to 0.05). 32 

Thus, neural and behavioural evidence concur with the notion that flexibility was associated 33 

with planning second moves prospectively.  34 
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Supplementary Fig. 3. Evidence of advance prospective planning in flexible subjects. 𝑛 = 40 subjects. (a) Proportion of 

optimal choices in second moves for trials without feedback, as a function of individual index of flexibility (IF). In such 

trials, second moves were enacted without seeing the state they were made from. Measures are corrected using linear 

regression for accuracy of non-blind moves from the same phases of the experiment. (b) Validation of move decoder. The 

plot shows the decodability of chosen and unchosen moves from MEG data recorded during the main task. Decodability was 

computed as the probability assigned to the chosen move (right, left, up or down) by a 4-way classifier based on each 

timepoint’s spatial MEG pattern, minus the average probability assigned to the same moves at baseline (400 ms preceding 

trial onset). A separate decoder was trained for each subject on MEG data recorded outside of the main task, during the 

image-reward association training phases. (c,d) Decodability of second moves (the blue arrow in the bottom example 

cartoon) in 2-move trials during first move choice (c) and presentation of the first outcome (d), as a function of IF. For 

display purposes only, mean time series are shown separately for subjects with high (above median) and low (below median) 

IF. In all panels, dark gray bars indicate timepoints where the 95% Credible Interval excludes zero and Cohen’s 𝑑 > 0.1 

(Bayesian Gaussian Process analysis). Dashed lines: chance decodability level. 
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Supplementary Fig. 4. Previous, not subsequent, images were encoded in MEG. (a) Decodability during choice, of the 

image to which the chosen move led subsequently, in high- and low-flexibility subjects. (b) Decodability following outcome, 

of images subjects had visited earlier in the trial. In both panels, the analysis excluded decoded probabilities assigned to the 

image presently on the screen. Dark gray bars indicate timepoints where the 95% Credible Interval excludes zero and 

Cohen’s 𝑑 > 0.1 (Bayesian Gaussian Process analysis). Dashed lines: chance decodability level. Example trials are shown 

below the plots with decoded elements marked in blue.  
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Materials and Methods 1 

Subjects. 40 human subjects, aged 18–33 years, 25 female, were recruited from a subject 2 
pool at University College London. Exclusion criteria included age (younger than 18 or older 3 
than 35), neurological or psychiatric illness, and current psychoactive drug use. To allow 4 

sufficient statistical power for comparisons between subjects, we set the sample size to 5 
roughly double that used in recent magnetoencephalography (MEG) studies on dynamics of 6 
neural representations28,42, and in line with our previous study of individual differences using 7 
similar measurements (including ‘sequenceness’)25. Subjects received monetary 8 
compensation for their time (£20) in addition to a bonus (between £10 and £20) reflecting 9 

how many reward points subjects earned in the experiment task. The experimental protocol 10 
was approved by the University of College London local research ethics committee, and 11 

informed consent was obtained from all subjects. 12 

Experimental design. To study flexibility in decision making, we designed a 2x4 state space 13 
where each location was identified by a unique image. Each image was associated with a 14 
known number of reward points, ranging between 0 and 10. Subjects’ goal was to collect as 15 
much reward as possible by moving to images associated with a high numbers of points. 16 

Subjects were never shown the whole structure of the state space, and thus, had to learn by 17 
trial and error which moves lead to higher reward.  18 

Subjects were first told explicitly how many reward points were associated with each of the 19 
eight images. Subjects were then trained on these image-reward associations until they 20 

reliably chose the more rewarding image of any presented pair (see Image-reward training).  21 

Next, the rules of the state-space task were explained (see State-space task), and multiple-22 

choice questions were used to ensure that subjects understood these instructions. To facilitate 23 
learning, subjects were then gradually introduced to the state space, and were allowed one 24 

move at a time from a limited set of starting locations (see State-space training). Following 25 
this initial exposure, the rules governing two-move trials were explained and subjects 26 
completed a series of exercises testing their understanding of a distinction between one-move 27 

and two-move trials (see State-space exercise). Once these exercises were successfully 28 
completed, subjects played two full blocks of trials in the state pace, that included both one-29 

move and two-move trials.  30 

We next tested how subjects adapted to a change in the rewards associated with images. For 31 
this purpose, we instructed and trained subjects on new image-reward associations (see State-32 

space design). Subjects then played two additional state-space blocks with these modified 33 
rewards.  34 

Finally, we tested how subjects adapted to changes in the spatial structure of the state space. 35 

For this purpose, we told subjects that two pairs of images would switch locations, informing 36 
them precisely which images these were (see State-space design). Multiple-choice questions 37 
were used to ensure that subjects understood these instructions. Subjects then played a final 38 
state-space block with this modified spatial map. 39 

At the end of the experiment, we also tested subjects’ explicit knowledge, asking them to 40 

sketch maps of the state spaces and indicate how many points each image was associated 41 
with before, and after, the reward contingency changed.  42 

Stimuli. To ensure robust decoding from MEG, we used 8 images that differed in colour, 43 
shape, texture and semantic category43–45. These included: a frog, a face, a traffic sign, a 44 
tomato, a hand, a house, a pond, and a wrench.  45 
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State-space task. Subjects started each trial in a pseudorandom state, identified only by its 1 
associated image. Subjects then chose whether to move right, left, up, or down, and the 2 
chosen move was implemented on the screen, revealing the new state (i.e., as its associated 3 
image) to which the move led. In ‘one-move’ trials, this marked the end of the trial, and was 4 

followed by a short inter-trial interval. The next trial then started from another pseudorandom 5 
location. In ‘two-move’ trials, subjects made an additional move from the location where 6 
their first move had led. This second move disallowed backtracking the first move (e.g., 7 
moving right and then left). Subjects were informed they would be awarded points associated 8 
with any image to which they move. Thus, subjects won points associated with a single 9 

image on one-move trials, and the combined value of the two images on two-move trials. The 10 
numbers of points awarded were never displayed during the main task. Every 6 trials, short 11 

text messages informed subjects what proportion of obtainable reward they had collected in 12 
the last 6 trials (message duration 2500 ms). 13 

Each state-space block consisted 54 trials, 18 one-move and 36 two-move trials respectively. 14 
The first 6 trials were one-move, the next 12 were two-move trials, then the next 6 were again 15 
one-move trials, the next 12 two-move, and so on. Every 6 trials, short text messages 16 

informed subjects whether the next 6 trials were going to be one-move or two-move trials 17 
(message duration 2000 ms). Every six consecutive trials featured 6 different starting 18 
locations. The one exception to this were the first of the 24 two-move trials of the 19 
experiment, where in order to facilitate learning, each starting location repeated for two 20 

consecutive trials (a similar measure was also implemented for one-move trials during 21 
training; see State-space training). Subjects’ performance improved substantially in the 22 

second of such pairs of trials (Δproportion of optimal first choices = +0.15, 95% CI = +0.11 23 
to +0.18, p < 0.001, Bootstrap test). 24 

At the beginning of every block (except the first one), we tested how well subjects could do 25 
the task without additional information, based solely on the identity of the starting locations. 26 
For this purpose, images to which subjects’ moves led were not shown for the first 12 trials. 27 

In two-move trials, this meant subjects implemented a second move from an unrevealed 28 
image (i.e., state).  29 

State-space design. The mapping of individual images to locations and rewards was 30 
randomly determined for each subject, but rewards were spatially organized in a similar 31 
manner for all subjects. To test whether subjects could flexibly adjust their choices, the state 32 
space was constructed such that there were five locations from which the optimal initial move 33 

was different depending on whether one or two moves were allowed. We tested subjects 34 
predominantly on these starting locations, using all five of them in every six consecutive 35 

trials. Following two blocks, the rewards associated with each image were changed, such that 36 
the optimal first moves in both 1-move and 2-move trials, given the new reward associations, 37 
were different from the optimal moves under the initial reward associations. The initial and 38 

modified reward associations were weakly anti-correlated across images (𝑟 = −0.37). 39 
Finally, before the last block, we switched the locations of two pairs of images, such that the 40 

optimal first move changed for 15 out of 16 trial types (1- and 2-move trials x 8 starting 41 
locations). 42 

State-space training. Subjects played six short training blocks, each block consisted 12 one-43 
move trials starting in one of two possible locations. If a subject failed to collect 70% of the 44 

points available in one of these short blocks, the block was repeated. The majority of subjects 45 
(35 out of 40) had to repeat the first block, whereas only 12% of the remaining blocks were 46 

repeated (mean 0.6 blocks per subject, range 0 to 2). Very rarely, a block had to be repeated 47 
twice (a total of 5 out of 240 blocks for the whole group). Lastly, subjects played a final 48 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.26.009571doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.009571
http://creativecommons.org/licenses/by/4.0/


 

18 
 

training block consisting 48 one-move trials starting at any of the 8 possible locations. To 1 
facilitate learning, during the first half of the block, each starting location was repeated for 2 
two consecutive trials. In the second half of the block, starting locations were fully 3 
interleaved.  4 

State-space exercise. Following the state-space training, which only included one-move 5 
trials, we ensured subjects understood how choices should differ in one- and two-move trials 6 
by asking them to choose the optimal moves in a series of random, fully visible state spaces. 7 
Subjects were given a bird’s eye view of each state space, with each location showing the 8 
number of reward points with which it was associated. The starting location was indicated in 9 

addition to whether one, or two, moves were available from which to collect reward. In all 10 
exercises, the optimal initial move was different depending on whether one or two moves 11 

were allowed. Every 10 consecutive exercises consisted of 5 one-move trials and 5 two-move 12 
trials. To illustrate the continuity of the state space, the exercise included one-move and two-13 
move trials, wherein the optimal move required the subject to move off the map and arrive at 14 
the other end (e.g., moving left from a leftmost location to arrive at the rightmost location). In 15 
another two-move trial, the optimal moves involved moving twice up or twice down, thereby 16 

returning to the starting location. Subjects continued to do the exercises until fulfilling a 17 
performance criterion of 9 correct answers in 10 consecutive exercises. This criterion was 18 
relaxed to 8 correct answers if at least 60 exercises had been completed. Only one subject 19 
required 60 exercises to reach criterion (mean required exercises = 24.5 exercises, SD 9.3). 20 

Image-reward training. To ensure subjects remembered how many points each image 21 
awarded, we required subjects to select the more rewarding image out of any pair of 22 

presented images. First, subjects were asked to memorize the number of points each image 23 
would awards. Then, each round of training consisted of 28 trials, testing subjects on all 28 24 

possible pairs of images (Supplementary Fig. 5). Each trial started with the presentation of 25 
one image, depicted on an arrow pointing either right, left, up or down. 800 ms later, another 26 
image appeared on an arrow pointing in a different direction. Subjects had then to press the 27 

button corresponding to the direction of the more rewarding image. Here, as throughout the 28 
experiment, subjects were instructed to press the ‘left’ and ‘up’ buttons with their left hand, 29 

and the ‘right’ and ‘down’ buttons with their right hand. During training, images were 30 
mapped to directions such that each of the four directions was equally associated with low- 31 
and high-reward images. Once subjects made their choice, the number of points associated 32 
with each of the two images appeared on the screen, and if the choice was correct the chosen 33 

move was implemented on the screen. Subjects repeated this training until they satisfied a 34 
performance criterion, based on how many points they missed consequent upon choosing less 35 

rewarding images. The initial performance criterion allowed 4 missed points, or less, in a 36 
whole training round (out of a maximum of 130 points). This criterion was gradually relaxed, 37 
to 8 missed points in the second training round, to 12 missed points in the third training 38 
round, and to 16 missed points thereafter. Once subjects satisfied the performance criterion 39 
without time limit, they repeated the training with only 1500 ms allowed to make each 40 

choice, until satisfying the same re-set gradually relaxing criterion. Overall, subjects required 41 
an average of 3.4 training rounds (SD 1.0) to learn the initial image-reward associations (1.3 42 
rounds without, and then 2.1 rounds with, a 1500 ms time limit), and 4.3 rounds (SD 1.3) to 43 
learn the second set image-reward associations (2.0 rounds without, and 2.3 rounds with, a 44 
time limit). Questioning at the end of the experiment validated that subjects had explicit 45 

recall for both sets of image-reward associations (mean error 0.36 pts, SEM = 0.07 pts; 46 
chance = 4.05 pts).  47 
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Supplementary Fig. 5. Image-reward training. Timeline of a trial. 

Modelling. To test what decision algorithm subjects employed, and in particular, whether 1 
they chose moves that had previously been most rewarding from the same starting location 2 
(model-free planning), or whether they learned how the state space is structured and used this 3 

information to plan ahead (model-based planning), we compared between model-free and 4 
model-based algorithms in terms of how well they fitted subjects’ actual choices. These  5 
models were informed by previous work46,47, adjusted to the present task, and validated using 6 

model and parameter recovery tests on simulated data.  7 

Model-free learning algorithm (free parameters: 𝜂MF1, 𝜂MF2, 𝜏MF, 𝜏′𝑀𝐹 , 𝜃, 𝛽1,2
𝑀𝐹1,𝛽2

𝑀𝐹2, 8 

𝛾up,down,left,right). This algorithm learns the expected value of performing a given move upon 9 

encountering a given image. To do this, the algorithm updates its expectation 𝑄MF from move 10 

𝑚 given image 𝑠 whenever this move is taken and its outcome is observed:  11 

𝑄𝑡+1
MF1(𝑠𝑡,1, 𝑚𝑡) = 𝑄𝑡

MF1(𝑠𝑡,1, 𝑚𝑡) + 𝜂MF1𝛿𝑡
MF1,                                                                             (1) 12 

where 𝑠𝑡,1 is trial 𝑡’s starting image, 𝛿𝑡
MF is the reward prediction error, and 𝜂MF1 is a fixed 13 

learning rate between 0 and 1. Reward prediction errors are computed as the difference 14 
between actual and expected outcomes:  15 

𝛿𝑡
MF1 = 𝑅𝑔(𝑠𝑡,2) − 𝑄𝑡

MF1(𝑠𝑡,1, 𝑚𝑡),                                                                                                 (2) 16 

where the actual outcome consists of the points associated with the new image to which the 17 

move led, 𝑅𝑔(𝑠𝑡,2). 𝑔 = 1 refers to the initial image-rewards associations, and 𝑔 = 2 refers 18 

to the second set of image-rewards associations about which subjects were instructed in the 19 
middle of the experiment.  20 

On 2-move trials, the algorithm also learns the expected reward for each pair of moves given 21 

each starting image. Thus, another set of Q values is maintained (𝑄MF2), one for each 22 

possible pair of moves for each starting image, and these are updated every time a pair of 23 
moves is completed based on the total reward obtained by the two moves. This learning 24 

proceeds as described by Eqs. 1 and 2, but with a different learning rate (𝜂MF2).     25 

All expected values are initialized to 𝜃, and decay back to this initial value before every 26 

update: 27 

𝑄MF ← 𝜏MF𝑄MF + (1 − 𝜏MF)𝜃,                                                                                                     (3) 28 

where 𝜏MF  value retention. This allows learned expectations to be gradually forgotten.  29 

Following instructed changes to the number of points associated with each image, or to the 30 

spatial arrangement of the images, previously learned Q values are of little use. Thus, we 31 

allow the Q values to then return back to 𝜃, as in Eq. 3, but only for a single timestep and 32 

with a different, potentially lower, memory parameter 𝜏′MF. 33 

1100 ms 800 ms 
500 ms 

300 ms 

<1500 ms 
600–700 ms 

5 

2 

800 ms 
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Finally, the algorithm chooses moves based on a combination of its learned expected values. 1 
On 1-move trials, only single-move Q values are considered: 2 

p(𝑚𝑡 = 𝑎|𝑠𝑡) ∝ 𝑒𝛾𝑚+𝛽1
MF1𝑄𝑡

MF1(𝑠𝑡,1,𝑚),                                                                                          (4) 3 

where 𝛾𝑚 is a fixed bias in favor of move 𝑚 (∑ 𝛾𝑚𝑚 = 0), and 𝛽1
MF1 is an inverse 4 

temperature parameter that weighs the impact of expected values on choice. On 2-move 5 
trials, both types of Q values are considered. Thus, the first move is chosen based on a 6 
weighted sum of the single-move Q values and the move-pair Q values: 7 

p(𝑚𝑡,1 = 𝑚|𝑠𝑡,1) ∝ 𝑒𝛾𝑚+𝛽2
MF1𝑄𝑡

MF1(𝑠𝑡,1,𝑚)+𝛽2
MF2𝑄𝑡

MF2(𝑠𝑡,1,𝑚) ,                                                   (5) 8 

wherein the latter are integrated over possible second moves each weighted by its probability: 9 

𝑄𝑡
MF2(𝑠𝑡,1, 𝑚) = ∑ p(𝑚𝑡,2 = 𝑚∗|𝑠𝑡,1, 𝑚𝑡,1)𝑄𝑡

MF2(𝑠𝑡,1, 𝑚, 𝑚∗)

𝑚∗

                                           (6) 10 

Then, in choosing the second move the algorithm takes into account the state to which the 11 

first move led: 12 

p(𝑚𝑡,2 = 𝑚|𝑠𝑡,1, 𝑚𝑡,1, 𝑠𝑡,2) ∝ 𝑒𝛾𝑚+𝛽2
MF1𝑄𝑡

MF1(𝑠𝑡,2,𝑚)+𝛽2
MF2𝑄𝑡

MF2(𝑠𝑡,1,𝑚𝑡,1,𝑚).                           (7) 13 

However, when the newly reached image 𝑠𝑡,2 is not known (i.e., in trials without feedback, or 14 

when estimating p(𝑚𝑡,2 = 𝑚∗|𝑠𝑡,1, 𝑚𝑡,1) in Eq. 6 before 𝑠𝑡,2 is reached), 𝑄𝑀𝐹1 values are 15 

averaged over all settings of 𝑠𝑡,2. 16 

Model-based learning algorithm (free parameters: 𝜂MB, 𝜏MB, 𝜏′MB, 𝜌, 𝜔, 𝛽MB, 𝜅, 17 

𝛾up,down,left,right). This algorithm learns the probability of transitioning from one image to 18 

another following each move. To do this, the algorithm updates its probability estimates, 𝑻, 19 

whenever a move is made and a transition is observed:  20 

𝑇𝑡+1(𝑠𝑡,1, 𝑚𝑡, 𝑠𝑡,2) = 𝑇𝑡(𝑠𝑡,1, 𝑚𝑡, 𝑠𝑡,2) + 𝜂MB𝛿𝑡
MB,                                                                  (8) 21 

where 𝛿𝑡
MB is the image-transition prediction error, and 𝜂MF is a fixed learning rate between 0 22 

and 1. Image-transition prediction errors reflect the difference between actual and expected 23 

transitions: 24 

𝛿𝑡
MB = 1 − 𝑇𝑡(𝑠𝑡,1, 𝑚𝑡, 𝑠𝑡,2).                                                                                                         (9) 25 

To ensure that transition probabilities sum to 1, the transition matrix is renormalized 26 
following every update:  27 

∀𝑠        𝑇𝑡+1(𝑠𝑡,1, 𝑚𝑡, 𝑠) ←
𝑇𝑡+1(𝑠𝑡,1, 𝑚𝑡, 𝑠)

∑ 𝑇𝑡+1(𝑠𝑡,1, 𝑚𝑡, 𝑠′)𝑠′

.                                                                   (10) 28 

Learning may also take place with respect to the opposite transition. For instance, if moving 29 

right from image 𝑠𝑡,1 leads to image 𝑠𝑡,2, the agent can infer that moving left from image 𝑠𝑡,2 30 

would lead to image 𝑠𝑡,1. Such inference is modulated in the algorithm by free parameter 𝜌:  31 

𝑇𝑡+1(𝑠𝑡,1, �̃�𝑡, 𝑠𝑡,2) = 𝑇𝑡(𝑠𝑡,1, �̃�𝑡, 𝑠𝑡,2) + 𝜌𝜂MB𝛿′
𝑡
MB

,                                                              (11) 32 

where �̃�𝑡 is the opposite of 𝑚𝑡, and 𝛿′ is the opposite transition prediction error: 33 

𝛿′
𝑡
MB

= 1 − 𝑇𝑡(𝑠𝑡,2, �̃�𝑡, 𝑠𝑡,1).                                                                                                        (12) 34 
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Self-transitions are impossible and thus their probability is initialized to 0. All other 1 
transitions are initialized with uniform probabilities, and these probabilities decay back to 2 
their initial values before every update: 3 

𝑇 ← 𝜏MB𝑇 + (1 − 𝜏MB)
1

7
,                                                                                                            (13) 4 

where 𝜏MB is the model-based memory parameter. A low 𝜏MB results in faster decay of 5 
expected transition probabilities towards uniform distributions, decreasing the impact of MB 6 
knowledge on choice. 7 

When instructed about changes to the image locations, the agent rearranges its transition 8 
probabilities based on the instructed changes with limited success, as indexed by free 9 

parameter 𝜔: 10 

 𝑇 ← (1 − 𝜔)𝑇 + 𝜔𝑇rearranged.                                                                                                  (14)  11 

Since some subjects may simply reset their transition matrix following instructed changes, 12 

the algorithm also ‘forgets’ after such instruction, as in Eq. 13, but only for a single time 13 

point and with a different memory parameter, 𝜏′MB
. 14 

Finally, the probability the algorithm will choose a given move when encountering a given 15 
image depends on its model-based estimate of the move’s expected outcome: 16 

p(𝑚𝑡 = 𝑚|𝑠𝑡,1) ∝ 𝑒𝛾𝑚+𝛽MB𝑄𝑡
MB(𝑠𝑡,1,𝑚).                                                                                   (15) 17 

The algorithm estimates expected outcomes by multiplying the number of points associated 18 

with an image with the probability of transitioning to that image, integrating over all potential 19 
future images: 20 

𝑄𝑡
𝑀𝐵(𝑠𝑡,1, 𝑚) = ∑ 𝑇𝑡(𝑠𝑡,1, 𝑚, 𝑠)𝑅𝑔(𝑠).                                                                                  (16)

𝑠

 21 

When two moves are allowed, the calculation also accounts for the number of points 22 

obtainable with the second move, 𝑚𝑡,2:  23 

𝑄𝑡
𝑀𝐵(𝑠𝑡,1, 𝑚) = ∑ 𝑇𝑡(𝑠𝑡,1, 𝑚, 𝑠) (𝑅𝑔(𝑠) + 𝜅 max

𝑚′
∑ 𝑇𝑡(𝑠, 𝑚′, 𝑠′)𝑅𝑔(𝑠′)

𝑠′

)

𝑠

,                (17) 24 

where 𝜅 is a fractional parameter that determines the degree to which reward obtained by the 25 

second move is taken into account.  26 

Following the first move, Eq. 15 is used to choose a second move based on the observed new 27 

location (𝑠𝑡,2). However, if the next location is not shown (i.e., in trials without feedback), the 28 

agent chooses its second move by integrating Eq. 15 over the expected 𝑠𝑡,2, as determined by 29 

𝑇𝑡(𝑠𝑡,1, 𝑚𝑡,1, 𝑠𝑡,2). 30 

MF-MB hybrid algorithm. This algorithm employs both model-free (MF) and model-based 31 
(MB) planning, choosing moves based on a combination of the expected values estimated by 32 
the two learning processes: 33 

p(𝑚𝑡 = 𝑚|𝑠𝑡) ∝ 𝑒𝛾𝑚+𝛽1
MF𝑄𝑡

MF(𝑠𝑡,1,𝑚)+𝛽MB𝑄MB(𝑠𝑡,1,𝑚),                                                              (18) 34 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.26.009571doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.009571
http://creativecommons.org/licenses/by/4.0/


 

22 
 

In 2-move trials, the algorithm makes a choice based on a combination of the model-based Q 1 
values and both the single-move and two-move model-free Q values. For the first move, the 2 
combination is: 3 

p(𝑚𝑡,1 = 𝑚|𝑠𝑡,1) ∝ 𝑒𝛾𝑚+𝛽2
MF1𝑄𝑡

MF1(𝑠𝑡,1,𝑚)+𝛽2
MF2𝑄𝑡

MF2(𝑠𝑡,1,𝑚)+𝛽MB𝑄MB(𝑠𝑡,1,𝑚) ,                      (19) 4 

with 𝑄MB(𝑠𝑡,1, 𝑚) computed according to Eq. 17. For the second move, the choice is made 5 

according to: 6 

p(𝑚𝑡,1 = 𝑚|𝑠𝑡,2) ∝ 𝑒𝛾𝑚+𝛽2
MF1𝑄𝑡

MF1(𝑠𝑡,2,𝑚)+𝛽2
MF2𝑄𝑡

MF2(𝑠𝑡,1,𝑚𝑡,1,𝑚)+𝛽MB𝑄MB(𝑠𝑡,2,𝑚) .             (20) 7 

When the image is not shown following the first move (i.e., in a no-feedback trial), the agent 8 

averages the model-free values over all images.   9 

Parameter fitting. To fit the free parameters of the different algorithms to subjects’ choices, 10 
we used an iterative hierarchical expectation-maximization procedure26. We first sampled 11 

10000 random settings of the parameters from predefined group-level prior distributions. 12 
Then, we computed the likelihood of observing subjects’ choices given each setting, and used 13 
the computed likelihoods as importance weights to re-fit the parameters of the group-level 14 
prior distributions. These steps were repeated iteratively until model evidence ceased to 15 

increase (see Model Comparison below for how model evidence was estimated). This 16 
procedure was then repeated with 31623 samples per iteration, and finally with 100000 17 

samples per iteration. To derive the best-fitting parameters for each individual subject, we 18 
computed a weighted mean of the final batch of parameter settings, in which each setting was 19 

weighted by the likelihood it assigned to the subject’s choices. Fractional parameters (𝜂MF, 20 

𝜏MF, 𝜏′𝑀𝐹 , 𝜂MB, 𝜏MB, 𝜏′MB, 𝜌, 𝜔, 𝛼) were modelled with Beta distributions (initialized with 21 

shape parameters 𝑎 = 1 and 𝑏 = 1) and their values were log-transformed for the purpose of 22 

subsequent analysis. Initial Q values (𝜃) and bias parameters (𝛾up, 𝛾down, 𝛾left, 𝛾right) were 23 

modelled with normal distributions (initialized with 𝜇 = 0 and 𝜎 = 1) to allow for both 24 
positive and negative effects, and all other parameters were modeled with Gamma 25 
distributions (initialized with shape = 1, scale = 1).  26 

Algorithm comparison. We compared between pairs of algorithms, in terms of how well 27 
each accounted for subjects’ choices, by means of the integrated Bayesian Information 28 

Criterion (iBIC)48,49. To do this, we estimated the evidence in favour of each model (ℒ) as the 29 
mean likelihood of the model given 100000 random parameter settings drawn from the fitted 30 

group-level priors. We then computed the iBIC by penalizing the model evidence to account 31 

for algorithm complexity as follows: iBIC = −2 ln ℒ + 𝑘 ln 𝑛, where 𝑘 is the number of fitted 32 

parameters and 𝑛 is the number of subject choices used to compute the likelihood. Lower 33 

iBIC values indicate a more parsimonious fit.  34 

Algorithm and parameter recovery tests. We tested whether our dataset was sufficiently 35 
informative to distinguish between the MF, MB and hybrid algorithms and recover the 36 
correct parameter values. For this purpose, we generated 10 simulated datasets using each 37 
algorithm and applied our fitting and comparison procedures to each dataset. To reduce 38 

processing time, only 10000 parameter settings were sampled. To maximize the chances of 39 
confusion between algorithms, we implemented all algorithms with the parameter values that 40 
best fitted subjects’ choices. Algorithm comparison implicated the correct algorithm in each 41 

of the 30 simulate datasets, and the parameters values that best fitted the simulated data 42 
consistently correlated with the actual parameter values used to generate these data 43 

(Pearson’s 𝑟: 𝑀 = 0.57, 𝑆𝐸𝑀 = 0.05), and this correlation was stronger for parameters 44 
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whose values were used for multiple trials when computing the fit to data (e.g., learning rates 1 

and inverse temperature parameters; 𝑀 = 0.67, 𝑆𝐸𝑀 = 0.04).  2 

Additional algorithms. To test whether the algorithms described above were most suitable 3 

for describing subjects’ behaviour, we compared them to several additional algorithms, all of 4 
which failed to fit subjects’ choices as well as the above counterparts, and so we do not 5 
describe them in detail. These alternative algorithms included a MF algorithm that only learns 6 
single-move Q values, but employs temporal difference learning50 to backpropagate second 7 
outcomes in 2-move trials back to the Q values of the starting location (BIC = 41559); a MB 8 

algorithm that employs Bayesian inference with a uniform Dirichlet prior26 to learn the 9 
multinomial distributions that compose the state transition matrix (BIC = 43301); a MF-MB 10 
hybrid algorithm where state-transition expectations are only used to account for prospective 11 

second-move Q values when choosing the first move in 2-move trials (BIC = 40920); and an 12 
algorithm that combines two MF algorithms with different parameters (BIC = 40715). 13 

MEG acquisition. MEG was recorded continuously at 600 samples/second using a whole-14 
head 275-channel axial gradiometer system (CTF Omega, VSM MedTech, Canada), while 15 

subjects sat upright inside the scanner. A projector displayed the task on a screen ∼80 cm in 16 
front of the subject. Subjects made responses by pressing a button box, using their left hand 17 
for ‘left’ and ‘up’ choices and their right hand for ‘right’ and ‘down’ choices. Pupil size and 18 

eye gaze were recorded at 250 Hz using a desktop-mounted EyeLink II eyetracker (SR 19 
Research). 20 

MEG preprocessing. Preprocessing was performed using the Fieldtrip toolbox51 in 21 

MATLAB (MathWorks). Data from two sensors were not recorded due to a high level of 22 

noise detected in routine testing. Data were first manually inspected for jump artefacts. Then, 23 
independent component analysis was used to remove components that corresponded to eye 24 
blinks, eye movement and heart beats. Based on previous experience25, we expected stimuli 25 

to be represented in low frequency fluctuations of the MEG signal. Therefore, to remove fast 26 
muscle artefacts and slow movement artefacts, we low-pass filtered the data with a 20 Hz 27 

cutoff frequency using a sixth-order Butterworth IIR filter, and we baseline-corrected each 28 
trial’s data by subtracting the mean signal recorded during the 400 ms preceding trial onset. 29 
Trials in which the average standard deviation of the signal across channels was at least 3 30 
times greater than median were excluded from analysis (0.4% of trials, SEM 0.2%). Finally, 31 

the data were resampled from 600 Hz to 100 Hz to conserve processing time and improve 32 
signal to noise ratio. Therefore, data samples used for analysis were length 273 vectors 33 

spaced every 10 ms.  34 

Pre-task stimulus exposure. To allow decoding of images from MEG we instructed subjects 35 

to identify each of the images in turn (Supplementary Fig. 6). On each trial, the target image 36 
was indicated textually (e.g., ‘FACE’) and then an image appeared on the screen. Subjects’ 37 
task was to report whether the image matched (LEFT button) or did not match (RIGHT 38 

button) the preceding text. 20% of presented images did not match the text. The task 39 
continued until subjects correctly identified each of the images at least 25 times. Subjects 40 
were highly accurate on both match (M = 97.2%, SEM = 0.4%) and no-match (M = 90.2%, 41 
SEM = 0.6%) trials. To ensure robust decoding from MEG, we chose eight images that 42 
differed in colour, shape, texture and semantic category43,44 (Fig. 1a). Importantly, at this 43 

point subjects had no knowledge as to what the main task would involve, nor that the images 44 

would be associated with state-space locations and rewards. This ensured that no task 45 

information could be represented in the MEG data at this stage.   46 
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Supplementary Fig. 6. Pre-task stimulus exposure. Timeline of a trial. 

MEG decoding. We used support vector machines (SVMs) to decode images and moves 1 

from MEG. All decoders were trained on MEG data recorded outside of the main state-space 2 
task and validated within the task. As in previous work25, we trained a separate decoder for 3 

each time bin between 150 and 600 ms following the relevant event, either image onset or 4 
move choice, resulting in 46 decoders whose output was averaged. Averaging over decoders 5 
trained at different time points reduces peak decodability following stimulus onset, but can 6 
increase decodability of stimuli that are being processed when not on the screen25. To avoid 7 
over-fitting, training and testing were performed on separate sets of trials following a 5-fold 8 

cross validation scheme. These analyses were performed using LIBSVM’s implementation of 9 
the C-SVC algorithm with radial basis functions52. Decoder training and testing were 10 

performed with each of 16 combinations of the algorithms’ cost parameter (10−1, 100, 101, 11 

102) and basis-function concentration parameter (10−2/𝑛, 10−1/𝑛, 100/𝑛, 101/𝑛), where 𝑛 12 

is the number of MEG features (273 channels). Where classes differed in number of 13 
instances, weighting was used to ensure classes were equally weighted. 14 

To decode the probability of each of eight possible images being presented (8-way 15 
classification), we used MEG data recorded during pre-task stimulus exposure. Decoding was 16 

evaluated based on the mean probability the decoders assigned to the presented image. To 17 
decode the probability of each of the four possible moves (LEFT, RIGHT, UP, DOWN) 18 

being chosen (4-way classification), we used MEG data recorded during the image-reward 19 

training. For both types of decoder, the parameter combination of cost = 102 and 20 

concentration = 10−2/𝑛 yielded the best cross-validated decoding performance and was thus 21 

used for all ensuing analyses.  22 

Sequenceness measure. To investigate how representations of different images related to 23 
one another in time, we used a measure recently developed for detecting sequences of 24 
representations in MEG10. ‘Sequenceness’ is computed as the difference between the cross-25 

correlation of two images’ decodability time-series with positive and negative time lags. By 26 
relying on asymmetries in the cross-correlation function, this measure detects sequential 27 

relationships even between closely correlated (or anti-correlated) time series, as we have 28 
previously demonstrated on simulated time series25. Positive values indicate that changes in 29 
the first time series are followed by similar changes in the second time series (‘forward 30 
sequenceness’), negative values indicate the reverse sequence (‘backward sequenceness’), 31 
and zero indicates no sequential relationship. As in previous work, cross correlations were 32 

computed between the z-scored time series over 400 ms sliding windows with time lags of up 33 
to 200 ms. This timescale is sufficient for capturing the relationship between successive alpha 34 
cycles, which is important given the possibility that such oscillations may reflect temporal 35 
quanta of information processing53.  36 

Bayesian hierarchical Gaussian Process time series analysis. To determine whether 37 
sequenceness time-series recorded following outcomes provided robust evidence of replay 38 
that correlated with individual index of flexibility, we modelled each mean sequenceness 39 

time-series as a summation of two zero-mean Gaussian Processes with squared exponential 40 
kernels: a group-level process and an individual-level process. The group-level process 41 

500-1000 ms 250-400 ms 
max 1000 ms 

300 ms 
200 ms 

FROG 

✓ 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 29, 2020. ; https://doi.org/10.1101/2020.03.26.009571doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.009571
http://creativecommons.org/licenses/by/4.0/


 

25 
 

identifies the timepoints in which sequenceness systematically deviates from zeros, and the 1 
individual-level processes (one for each time series) account for deviations of individual time 2 
series from the group-level process.  3 

To enable completion of the MCMC sampling within a reasonable timeframe, we reduced the 4 

trial-to-trial sequenceness data to four mean time series per subject: sequenceness encoding 5 
the last or penultimate transition following highly or weakly surprising outcomes. High and 6 
low surprise were determined based on the state prediction error generated by the hybrid 7 
algorithm, whose parameters were fitted to the individual subject’s choices (i.e., high – 8 
above-mean prediction error, low – below-mean prediction error). Since we assumed last and 9 

penultimate transitions could be replayed in different timepoints, these two types of time 10 
series each had their own group-level Gaussian Process. To account for the factors of IF and 11 

surprise, the group-level process was multiplied for each time series by a weighted linear 12 
combination of the two factors, their interaction, and an intercept (thus involving four 13 

parameters: 𝛽, 𝛽subject, 𝛽surprise, 𝛽interaction). The two types of Gaussian Process were 14 

parameterized by different length-scales (𝜌group, 𝜌inidivdual) and marginal standard 15 

deviations (𝛼group, 𝛼individual), and an a standard deviation parameter (𝜎) accounted for 16 

additional normally distributed noise across all observations.  17 

Bayesian estimation was performed in R54 using the STAN55 package for Markov Chain 18 
Monte Carlo (MCMC) sampling. Prior distributions were set so as to be weakly informative 19 

and have broad range on the scale of the variables29. Thus, 𝛽 coefficients were drawn from 20 
normal distributions with a mean of zero and a standard deviation of 10. All predictor 21 

variables were standardized. Standard deviations parameters (𝛼, 𝜎) were drawn from a 22 

truncated normal distribution limited to positive values, with a mean of zero and a standard 23 

deviation that matches the standard deviation of the predicted variable. Length-scales (𝜌) 24 
were drawn from log-normal distributions whose mean is the geometric mean of two 25 
extremes: the distance in time between two successive timepoints, and the distance in time 26 

between the first and last timepoints. Half of the difference between these two values was 27 

used as the standard deviation of the priors. 𝛽interaction was limited to positive values for the 28 

sake of identifiability, since the group-level Gaussian Processes were multiplied by the 𝛽 29 
coefficients.  30 

We ran six MCMC chains each for 1400 iterations, with the initial 400 samples used for 31 
warmup. STAN’s default settings were used for all other settings. Examining the results 32 

showed there were no divergent transitions, and all parameters were estimated with effective 33 

sample sizes larger than 1000 and shrink factors smaller than 1.1. Posterior predictive checks 34 

showed good correspondence between the real and generated data (Fig. 2b,c).  35 

Decodability time series analyses. Decodability was tested for difference from zero and 36 
covariance with individual flexibility using the Bayesian Gaussian Process approach outlined 37 
above with the exclusion of the surprise predictor, which is inapplicable to timepoints that 38 
precede outcome onset. 39 

Other statistical Methods. Significance tests were conducted using nonparameteric methods 40 
that do not assume specific distributions. Differences from zero were tested using 10000 41 
samples of bias-corrected and accelerated Bootstrap with default MATLAB settings. 42 
Correlations and differences between groups were tested by comparison to null distributions 43 

generated by 10000 permutations of the pairing between the two variables of interest. All 44 
tests are two-tailed. 45 
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