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Abstract: 12 

Spontaneous fluctuations in cortical excitability influence sensory processing and behavior. 13 

These fluctuations, long known to reflect global changes in cortical state, were recently 14 

found to be modulated locally within a retinotopic map during spatially selective attention. 15 

We found that periods of vigorous (On) and faint (Off) spiking activity, the signature of 16 

cortical state fluctuations, were coordinated across brain areas along the visual hierarchy 17 

and tightly coupled to their retinotopic alignment. During top-down attention, this 18 

interareal coordination was enhanced and progressed along the reverse cortical hierarchy. 19 

The extent of local state coordination between areas was predictive of behavioral 20 

performance. Our results show that cortical state dynamics are shared across brain regions, 21 

modulated by cognitive demands and relevant for behavior. 22 

 23 

One Sentence Summary:  24 

Interareal coordination of local cortical state is retinotopically precise and progresses in a 25 

reverse hierarchical manner during selective attention. 26 

 27 
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Main Text:  28 

Cortical activity is not solely determined by external inputs but reflects ongoing fluctuations 29 

in neural excitability referred to as cortical state (Harris and Thiele, 2011; Kohn et al., 2009). 30 

Endogenous variability in cortical state shapes sensory responses and influences behavioral 31 

performance (Arieli et al., 1996; Gutnisky et al., 2017; McGinley et al., 2015a; Renart and 32 

Machens, 2014; Scholvinck et al., 2015). Although these fluctuations were long thought to 33 

be a global phenomenon that influences activity throughout the cortex (Harris and Thiele, 34 

2011; Lee and Dan, 2012), recent evidence has revealed that signatures of cortical state are 35 

modulated locally within the retinotopic map in Macaque V4 during selective attention 36 

(Engel et al., 2016). Cortical state fluctuations manifest in periods of vigorous (On) and faint 37 

(Off) spiking activity occurring synchronously across cortical laminae. Spatially selective 38 

attention directed towards the receptive fields (RFs) of the neural population modulates On-39 

Off dynamics by increasing the duration of On episodes (Engel et al., 2016). Thus, cognitive 40 

demands that selectively affect targeted retinotopic locations can modulate local signatures 41 

of global cortical state fluctuations. However, perception and cognition depend on activity 42 

of many areas spanning the cortical hierarchy, which begs the question of whether cortical-43 

state dynamics are coordinated across different brain regions during attention, whether this 44 

coordination progresses in a top-down or bottom-up manner, and whether it is relevant for 45 

behavior. 46 

We recorded simultaneously from V1 and V4 using 16-contact laminar electrodes whilst 47 

three rhesus macaques performed a feature-based spatial attention task (Fig. 1A). 48 

Electrodes were inserted perpendicular to the cortical surface on a daily basis such that RFs 49 

overlapped both across all channels within each area and between the two areas (Fig. 1B & 50 

Fig. 1C). We characterized On-Off dynamics in each area individually by fitting a Hidden 51 

Markov Model (HMM) to the spike counts (10 ms bins) of multiunit activity (MUA) across 52 

included channels (supplementary material, Fig. 1D). In line with previous reports for V4 53 

(Engel et al., 2016), we found that a 2-phase model was the most parsimonious model for 54 

the majority of recordings (V1: 64 out of 77 recordings (83.1%), V4: 73 out of 79 recordings 55 

(92.4%), V1 and V4: 57 out of 73 recordings (78.1%), Fig. S1A-D). During these recordings, 56 

On-Off dynamics occurred without any obvious periodicity (Fig. S1E). When attention was 57 

directed towards the RFs under study, firing rates were higher during both Off and On 58 
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epochs [Wilcoxon signed rank test; V1: Off P = 10-164, On P = 10-87, V4: Off P = 10-184, On P = 59 

10-103] (Fig. 1E), On-epoch durations increased in both V1 and V4 [Wilcoxon signed rank test; 60 

V1 P = 10-13, V4 P = 10-8] and Off epoch durations increased in V1 but not V4 [Wilcoxon 61 

signed rank test; V1: P = 10-8, V4 P = 0.81] (Fig. 1F). Additionally, when attention was 62 

directed towards the RFs, altogether more time was spent in an On phase (Fig. S2A) and 63 

transitions to an On phase were more likely (Fig. S2B). 64 

We examined whether these spontaneous transitions were coordinated across visual areas. 65 

We computed cross-correlations between the V1 and V4 time series of On-Off phases (as 66 

estimated by the HMMs) during passive fixation (before stimulus onset) and during directed 67 

attention (after cue onset). During fixation, V1 and V4 transitions were coordinated but 68 

without either area leading/lagging the other [Wilcoxon signed rank test; P = 0.13] (Fig. 2A). 69 

During directed attention, the coordination between V1 and V4 was enhanced and On-Off 70 

transitions more often occurred in V4 before they were followed in V1, as evident from the 71 

skew towards negative values of the V4 relative to V1 transition times [Wilcoxon signed 72 

rank test; P < 10-5] (Fig. 2A). The cross-correlation strength and skew was independent of 73 

microsaccades (Fig. S3), and the strength was inversely related to the separation between 74 

V1 and V4 RFs [r = -0.38, P = 0.004] (Fig. 2B). Thus, the strength of On-Off dynamics 75 

coordination between visual areas is tightly coupled to their retinotopic alignment. To 76 

further characterize this interareal coordination, we computed average firing rates in V1 77 

aligned to On-Off transition times in V4 and vice-versa. In line with transitions being driven 78 

in a top-down manner, V1 firing rate changes followed V4 transitions whereas V4 firing rate 79 

changes preceded V1 transitions (Fig. 2C). We also analyzed spiking activity simultaneously 80 

recorded with 16-contact linear electrodes inserted perpendicular to layers in V4 and 81 

tangential to layers in the frontal eye field (FEF) (or with single electrodes in FEF in some 82 

sessions) from two monkeys performing a selective attention task (V4 data reported 83 

previously in ref. (Engel et al., 2016)). A similar analysis revealed that changes of FEF firing 84 

rates precede On-Off transitions in V4 (Fig. 2D). These results suggest that On-Off transitions 85 

traverse from higher to lower areas along the visual hierarchy during selective attention. 86 

To investigate the relationship between V1 and V4 On-Off transitions more closely, we fit a 87 

4-state HMM to V1 and V4 data simultaneously (HMMV1-V4), with the four HMM-states 88 

defined as (state 1) V1off-V4off, (state 2) V1on-V4off, (state 3) V1off-V4on and (state 4) V1on-V4on 89 
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(Fig. 3A). This model allowed us to investigate two specific scenarios (Fig. 3B). In the first 90 

scenario (yellow), we asked: from a situation in which both areas are in an Off phase (state 91 

1), is it more likely for V1 (state 2) or V4 (state 3) to transition (first) to an On phase? The 92 

second scenario (purple) addresses a related question: from a situation in which both areas 93 

are in an On phase (state 4), is it more likely for V1 (state 3) or V4 (state 2) to transition 94 

(first) to an Off state? The transition probabilities (Fig. 3C & Fig. 3D) revealed that when 95 

both areas were in an Off phase, it was more likely for V4 to transition to an On phase first 96 

[Wilcoxon signed rank test; P < 10-3]. Likewise, if both areas were in an On phase, it was 97 

more likely for V4 to transition to an Off phase first [Wilcoxon signed rank test; P < 10-3]. 98 

Thus, when both areas are in the same phase, it is more likely for V4 to transition away from 99 

this phase first. This finding was, however, not specific to the attend RF condition, as we 100 

found similar results for each individual attention condition (attend RF and attend away), as 101 

well as during fixation (data not shown). Selective attention, however, modulated the 102 

transition probabilities from the yellow scenario. Specifically, it decreased the probability of 103 

transitioning from state 1 to state 2, and increased the probability of transitioning from 104 

state 1 to state 3 [Wilcoxon signed rank test; P < 10-2] (Fig. 3E & Fig. 3F). Finally, this model 105 

revealed that, although On-Off phases/transitions are correlated, each area spends a 106 

substantial fraction of time in opposite phases (Fig. 3G). Selective attention specifically 107 

decreases the time spent in state 1 whereas it increases the time spent in state 3 and state 108 

4, i.e. the states where V4 was in an On phase [Wilcoxon signed rank test; state 1 P < 10-5, 109 

state 2 P = 0.91, state 3 P < 10-2, state 4 P < 10-3] (Fig. 3H). 110 

On-Off dynamics furthermore related closely to measures of (bipolar re-referenced) local 111 

field potential (LFP) (de)synchronization. During On phases in either V1 or V4, low frequency 112 

(< ~20 Hz) LFP power was suppressed and high frequency (> ~20 Hz) power was increased, 113 

both in V1 and V4 (Fig. S4A-D). Additionally, LFP power spectra in both areas varied across 114 

the 4 states of HMMV1-V4 (Fig. S4E-F). Here, we specifically investigated the difference in 115 

power spectra across states where the On-Off phase within an area remained constant, but 116 

differed in the other area. For example, we investigated the V1 LFP power spectra across 117 

states 1 and 3, wherein V1 was in an Off phase during both states, but V4 was either Off or 118 

On. This analysis revealed that the LFP power in V1 is modulated by V4 phase 119 

bidirectionally. If V1 was in either an On or an Off phase, a transition to an On phase in V4 120 
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increased V1 high-frequency power. A transition to an On phase in V1, however, only 121 

affected V4 high-frequency power when V4 was in an Off phase. When V4 was in an On 122 

phase, V1 phase did not affect high-frequency dynamics in V4. Thus, V4 phase influenced V1 123 

LFP regardless of V1 phase, whereas V1 phase affected high-frequency dynamics in V4 only 124 

during Off phases in V4. 125 

In addition to selective attention, On-Off dynamics were linked to global arousal levels, as 126 

measured by pupil diameter (Aston-Jones and Cohen, 2005; McGinley et al., 2015a, 2015b; 127 

Reimer et al., 2014; Vinck et al., 2015). For each area individually, On epoch durations were 128 

longer on trials with larger baseline pupil diameter (Fig. S5A-C), in line with previous results 129 

(Engel et al., 2016). Furthermore, pupil diameter was predictive of On-Off dynamics 130 

coordination. Larger baseline pupil diameter was predictive of shorter epoch durations for 131 

HMMV1-V4 state 1 (where both areas were Off) and longer state 4 epoch durations (where 132 

both areas were On) (Fig. S5D). Central arousal, in addition to focused attention, thus 133 

specifically influenced epoch durations for states where V1 and V4 phase were aligned. 134 

Importantly, pupil diameter did not differ between attention conditions (Fig. S5E), while 135 

cortical state did. This shows that effects of arousal and attention on On-Off dynamics are 136 

independently controlled. 137 

We have demonstrated that the coordination of On-Off dynamics is retinotopically 138 

organized and driven in a top-down manner during selective attention. Is this organization 139 

also relevant for behavior? For both V1 and V4 individually, the On/Off phase at the time of 140 

target dimming was predictive of reaction time (RT) when the target was presented inside 141 

the RFs. We found an interaction between attention and On/Off phase [linear mixed effects 142 

model; V1 β = 0.16±0.06, P = 0.006, V4 β = 0.13±0.06, P = 0.03] with a main effect for phase 143 

[V1 β = -0.27±0.09, P = 0.002, V4 β = -0.26±0.09, P = 0.004], but no main effect of attention 144 

[V1 β = -0.15±0.09, P = 0.09, V4 β = -0.1±0.09, P = 0.28]. Specifically, when either area was in 145 

an On phase when the target grating dimmed, RT was faster [Wilcoxon signed rank test; V1 146 

P = 0.001, V4 P < 10-4] (Fig. 4A). We furthermore found that On-Off phase coordination 147 

between V1 and V4, as assessed using HMMV1-V4, was also predictive of behavioral 148 

performance. Again we found an interaction between attention and On/Off phase [linear 149 

mixed effects model; β = 0.08±0.02, P < 10-3], with a main effect of phase [β = -0.15±0.04, P 150 

< 10-4], but not of attention [β = -0.07±0.07, P = 0.24]. Performance was worst when at the 151 
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time of target dimming both V1 and V4 were in an Off phase (state 1). Performance 152 

improved when either area was in an On phase, and it improved even further when both 153 

areas were in an On phase at the time of target dimming (Fig. 4B). The coordination of On-154 

Off dynamics across visual areas is thus more beneficial for behavioral performance than the 155 

state in either area alone.  156 

In line with previous results (Engel et al., 2016), we show that transitions between On and 157 

Off phases in V4 are modulated locally by spatially selective attention. In addition, we found 158 

that they also occur in primary visual cortex (V1). Importantly, we show that interareal 159 

coordination of On-Off dynamics occurs at a local retinotopic scale, which reflects the 160 

precision of anatomical connections, and is driven in a top-down manner across areas FEF, 161 

V4 and V1 during selective attention. Fluctuations in cortical state have previously been 162 

ascribed to neuromodulatory influences (Buzsaki et al., 1988; Constantinople and Bruno, 163 

2011; Lee and Dan, 2012) and feedback projections (Zagha et al., 2013). On-Off dynamics 164 

relate to both these mechanisms as pupil diameter, associated with neuromodulatory 165 

regulation of network state (Aston-Jones and Cohen, 2005; de Gee et al., 2017; Eldar et al., 166 

2013; Joshi et al., 2016; Murphy et al., 2014; Reimer et al., 2016; Varazzani et al., 2015), and 167 

top-down retinotopic alignment, probably driven by feedback mechanisms (Zagha et al., 168 

2013), are predictive of cortical state fluctuations.  169 

The interareal coordination of On-Off dynamics and its relevance to behavioral performance 170 

suggests that trial-by-trial coordination of activity across brain regions is beneficial for 171 

information transfer and selectively modulated according to task demands. Across-area 172 

oscillatory activity is correlated according to both retinotopy and stimulus selectivity (Lewis 173 

et al., 2016). Selective attention modulates this interareal coherence (Bosman et al., 2012; 174 

Buschman and Miller, 2007; Gregoriou et al., 2009), potentially facilitating communication 175 

between hierarchically linked areas (Fries, 2005). Although attention can reduce within-area 176 

spike count correlations (Cohen and Maunsell, 2009; Herrero et al., 2013; Mitchell et al., 177 

2009), depending on the signal correlation between neuronal pairs (Rabinowitz et al., 2015; 178 

Ruff and Cohen, 2014), it increases correlated variability across functionally related areas 179 

(Oemisch et al., 2015; Ruff and Cohen, 2016). This increased coordination might be a 180 

prerequisite for successful interareal information transfer (Harris and Mrsic-Flogel, 2013) 181 

and might allow propagation of sensory information to other brain regions (Luczak et al., 182 
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2013). When hierarchically linked areas are simultaneously active, potentially driven by the 183 

frontal cortex, global representation of information through recurrent processing could be 184 

facilitated, thereby aiding conscious stimulus processing (Baars, 2002; Dehaene and 185 

Changeux, 2011). Cognitive modulation of cortical state coordination could be a key 186 

component of this. 187 

 188 
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 355 

Fig. 1. On-Off dynamics in V1 and V4 are modulated during selective attention. (A) 356 

Behavioral paradigm. The monkey held a lever to initiate the trial, hereafter a central 357 

fixation spot was turned on. Upon fixation 3 colored gratings appeared, one was presented 358 

inside the receptive fields (RFs) of the V1 neurons. After a variable delay a cue matching one 359 

of the grating colors surrounded the fixation spot, indicating which grating was behaviorally 360 

relevant (target). In pseudorandom order the stimuli decreased in luminance (dimmed). 361 

Upon dimming of the target, the monkey had to release the lever. (B) Average RF center 362 
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locations (across channels) for each recording, separately for each subject (M1-M3) and 363 

area. (C) RF separation between V1 and V4 plotted against their overlap, expressed as the 364 

proportion of the V1 RF. The histograms along the top (right) indicate the distribution of RF 365 

separation (overlap) across all recordings. (D) Raster plot of HMM fit to population activity 366 

in V1 and V4. Simultaneously recorded multi-unit spiking activity on 16-contact laminar 367 

electrodes in V1 and V4 for 15 example trials, aligned to stimulus (left) and cue onset 368 

(middle and right). Each trial shows across laminar activity in V1 (bottom) and V4 (top), as 369 

raster plots (left two columns) color coded according to HMM estimation of On and Off 370 

phases (right). Middle and right columns depict the same activity. The HMM was fit from 371 

400 ms after cue onset to 30 ms after the first dimming event. Cue onset and first-dimming 372 

are indicated for each trial by purple and red vertical bars respectively. (E) Attention 373 

increases firing rates during Off and On phases, both in V1 and V4. (F) Attention increases 374 

the duration of On episodes, both in V1 and V4, whereas it increases the duration of Off 375 

episodes only in V1. Statistics: Wilcoxon signed rank test.376 
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 377 

Fig. 2. Across area coordination of cortical state. (A) Cross-correlation between time series 378 

of On-Off phases in V1 and V4 relative to V1 phase during passive fixation (left) and after 379 

cue onset (right). Insets show the area under the cross-correlation curve for times smaller 380 

and larger than zero. The dashed grey line depicts the shuffle predictor. (B) RF separation 381 

plotted against the area under the cross-correlation curve during attention (from the right 382 

panel A). The line indicates the standardized major axis regression fit. (C) Spiking activity in 383 

one area aligned to state transitions in the other area, averaged across channels and 384 

recordings. Only epochs without transitions preceding or following the alignment transition 385 

within 100 ms were included. Thick green and pink lines indicate the times the firing rate 386 

was higher (green) or lower (pink) than the average rate. Along the bottom are the 387 

histograms of the crossing point of two straight lines fit (least-squares) to the transition-388 

aligned multi-unit firing rate. (D) Conventions as in C, but from a different dataset in which 389 

activity was recorded simultaneously from V4 and FEF. Statistics: Wilcoxon signed rank test 390 

(A), Pearson correlation (B) and FDR-corrected, one-sided, Wilcoxon signed rank test (C & 391 

D). Shaded regions denote ±1 SEM.392 
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 393 

Fig. 3. HMM with 4 states fit simultaneously to V1 and V4 data. (A) Example trial with the 394 

HMM state-trajectory (bottom) and across-laminar raster plot for V1 (middle) and V4 (top). 395 

(B) Schematic describing scenarios for testing two questions: (1, left yellow box) from a 396 

state where both V1 and V4 are Off, is it more likely for V1 or V4 to transition to the On 397 

phase first? (2, right purple box) from a state where both V1 and V4 are On, is it more likely 398 

for V1 or V4 to transition to the Off phase first? (C) HMM transition probability matrix, 399 

indicating the probability of staying in a state (diagonal) or transitioning from one state to 400 

another. Highlighted are scenarios set out in panel B. (D) Transition probabilities indicated in 401 

panels B and C. (E) Attentional influence on state-transition probabilities: shown is the 402 

difference transition matrix (attend RF – attend Away). (F) Attentional influence (attend RF – 403 

attend Away) on the difference between state transition probabilities (state 3 – state 2) for 404 

each of the two scenarios indicated in panels B, C and D. Selective attention increases the 405 

difference between the transition probabilities for state 2 and 3 for the yellow, but not the 406 

purple scenario. (G) The fraction of time spent in each of the 4 states. (H) The difference in 407 
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time spent in each of the 4 states when attention is directed towards or away from the RF 408 

(attend RF – attend Away). Statistics: Wilcoxon signed rank test (FDR corrected), error bars 409 

denote ±1 SEM across recordings; *, **,  *** indicate significance levels (p < 0.05, p < 0.01 410 

and p < 0.001, respectively).411 
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 412 

Fig. 4. Across-area coordination of On-Off dynamics predicts behavioral performance. (A) 413 

On vs. Off phase of population activity at the time of target dimming, determined 414 

individually for V1 and V4, predicts behavioral performance. RT decreases when attention is 415 

directed towards the RFs and either V1 or V4 is in an On phase. (B) RT decreased from when 416 

both areas were Off, through V1 On - V4 Off, through V1 Off - V4 On, to V1 and V4 On when 417 

attention was directed towards the RFs. Statistics: Wilcoxon signed rank test (A), and 418 

multilevel linear mixed effect model (B). Error bars denote ±1 SEM, and *, ** and *** 419 

indicate FDR corrected significance levels of p < 0.05, p < 0.01 and p < 0.001, respectively. 420 

421 
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Materials and Methods 422 

Animals and procedures 423 

Subjects in our study were 3 male rhesus macaque monkeys (Macaca mulatta, age 10-12 424 

years, weight 8.5-12.5 kg). All animal procedures were performed in accordance with the 425 

European Communities Council Directive RL 2010/63/EC, the National Institute of Health’s 426 

Guidelines for the Care and Use of Animals for Experimental Procedures, and the UK 427 

Animals Scientific Procedures Act. Animals were motivated to engage in the task through 428 

fluid control at levels that do not affect animal physiology and have minimal impact on 429 

psychological wellbeing (Gray et al., 2016). 430 

 431 

Surgical preparation 432 

The animals were implanted with a head post and recording chambers over area V1 and V4 433 

under sterile conditions and general anesthesia. Surgical procedures and postoperative care 434 

conditions have been described in detail previously (Thiele et al., 2006). 435 

 436 

Behavioral paradigm 437 

Stimulus presentation and behavioral control was regulated by Remote Cortex 5.95 438 

(Laboratory of Neuropsychology, National Institute for Mental Health, Bethesda, MD). 439 

Stimuli were presented on a cathode ray tube (CRT) monitor at 120 Hz, 1280 × 1024 pixels, 440 

at a distance of 54 cm. The location and size of receptive field (RF) were measured as 441 

described previously (Gieselmann and Thiele, 2008), using a reverse correlation method. 442 

Briefly, during fixation, a series of black squares (0.5-2° size, 100% contrast) were presented 443 

for 100 ms at pseudorandom locations on a 9 × 12 grid (5-25 repetitions for each location) 444 

on a bright background. RF eccentricity ranged from 3.4 - 7.5° in V1, and from 2.5 to 8.9° in 445 

V4. 446 

During the main task (Fig. 1A), the monkeys initiated a trial by holding a lever and fixating on 447 

a central white fixation spot (0.1°) displayed on a gray background (1.41 cd/m2). After a 448 

fixed delay (614, 424, 674 ms, for monkeys 1, 2 and 3), three colored (for color values see 449 

Table S1) square wave gratings appeared equidistant from the fixation spot, one was 450 
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centered on the RF of the V1 neurons under study. The locations of colored gratings were 451 

fixed for each recording session but were pseudorandomly assigned across sessions. 452 

Stimulus size varied between 2 and 4° diameter, depending on RF eccentricity and size. For 453 

most recordings we used drifting gratings but presented one monkey with stationary 454 

gratings during 22 out of 34 recording days. The drifting gratings moved perpendicular to 455 

the grating orientation, with the motion direction pseudorandomly assigned on every trial. 456 

After a random delay (618-1131 ms for monkey 1, 618-948 ms for monkeys 2 and 3; 457 

uniformly distributed), a central cue appeared that matched the color of one of the gratings, 458 

indicating that this grating would be behaviorally relevant on the current trial. After a 459 

variable delay (1162-2133 ms for monkey 1, 1162-1822 ms for monkeys 2 and 3; uniformly 460 

distributed), one of the pseudorandomly selected gratings changed luminance (for color 461 

values see Table S1), referred to as dimming. If the cued grating (target) dimmed, the 462 

monkey had to release the lever in order to obtain a reward. If, however, a non-cued grating 463 

(distractor) dimmed, the monkey had to ignore this and keep hold of the lever until the 464 

target dimmed on the second or third dimming event (each after another 792-1331 ms for 465 

monkey 1; 792-1164 ms for monkeys 2 and 3; uniformly distributed).  466 

 467 

Data acquisition and analysis 468 

We recorded from all cortical layers of visual areas V1 and V4 using 16-contact laminar 469 

electrodes (150 µm contact spacing, Atlas silicon probes). Out of a total of 77 V1 and 79 V4 470 

recording sessions, 73 recordings were conducted simultaneously in both areas. The 471 

electrodes were inserted perpendicular to the cortex on a daily basis.  472 

Raw data were collected using Remote Cortex 5.95 and by Cheetah data acquisition 473 

interlinked with Remote Cortex 5.95. Neuronal data were acquired with Neuralynx 474 

preamplifiers and a Neuralynx Digital Lynx amplifier. Unfiltered data were sampled with 24 475 

bit at 32.7 kHz and stored to disc. Data were replayed offline, sampled with 16-bit and band-476 

pass filtered at 0.5-300 Hz and down sampled to 1 kHz for local field potential (LFP) data, 477 

and filtered at 0.6-9 kHz for spike extraction. Eye position and pupil diameter was recorded 478 

at 220 Hz (ViewPoint, Arrington Research). Pupil diameter was recorded for 75 (90.4 %) of 479 

recordings. 480 
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All data analyses were performed using custom written Matlab (the Mathworks) scripts. 481 

 482 

Data preprocessing, trial selection and channel selection 483 

We corrected for any noise common to all channels via common average reference, in 484 

which the average of all channels is subtracted from each individual channel. We extracted 485 

population activity by progressively lowering spike extraction thresholds until approximately 486 

100 Hz spiking activity was detected on each channel between fixation onset and the first 487 

dimming event. Next, we computed the envelope of MUA (MUAe) by low-pass filtering 488 

(<300 Hz, fifth order Butterworth) the rectified 0.6-9 kHz filtered signal. Because we noticed 489 

that during some recording sessions the electrode seemed to have moved (e.g. due to 490 

movement of the monkey), we visually inspected the stability of each recording by 491 

investigating the stimulus aligned firing rates, MUAe and their baseline (-500 to -50 ms) 492 

energy across all trials and channels. With energy (𝐸) defined as: 493 

𝐸 = 	$ 𝑉(𝑖)!
"

#
 494 

, where 𝑡 is the number of time points in the vector (𝑉) representing the single-trial 495 

histogram or MUAe. We selected the largest continuous time window that showed stable 496 

activity across all V1 & V4 channels.  497 

In addition to selecting trials from stable periods, we selected channels for further 498 

processing that were determined to be in gray matter. Using current source density (CSD), 499 

we investigated on which channels currents were entering (sinks) and exiting (sources) 500 

cortical tissue, which allowed us to determine the relative recording depth compared to the 501 

known cortical anatomy (Schroeder, 1998; Schroeder et al., 1991). The CSD profile can be 502 

calculated according to the finite difference approximation, taking the inverse of the second 503 

spatial derivative of the stimulus-evoked voltage potential 𝜑, defined by: 504 

𝐶𝑆𝐷(𝑥) = 	
𝜑(𝑥 + ℎ) − 2	𝜑(𝑥) + 𝜑(𝑥 − ℎ)

ℎ!  505 

, where 𝑥 is the depth at which the CSD is calculated and ℎ the electrode spacing (150 μm). 506 

We used the iCSD toolbox (Pettersen et al., 2006) to compute the CSD. With this toolbox we 507 

used a spline fitting method to interpolate 𝜑 smoothly between electrode contacts. We 508 
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used a diameter of cortical columns of 500 µm (Mountcastle, 1957), and tissue conductance 509 

of 0.4 Sm-1 (Logothetis et al., 2007). 510 

To aid determination of recording depth, we computed the signal-to-noise ratio (SNR), the 511 

response latencies to stimulus onset for each channel and the receptive field (RF) estimation 512 

(see below). SNR was computed as: 513 

𝑆𝑁𝑅 = 	
𝑆𝑖𝑔𝑛𝑎𝑙 − 𝑁𝑜𝑖𝑠𝑒

𝜎$%#&'
 514 

, with 𝑆𝑖𝑔𝑛𝑎𝑙 defined as the average MUAe amplitude in one of eight 50 ms time windows, 515 

from 30 to 80 ms, in 10 ms steps, to 100 to 150 ms after stimulus onset, and 𝑁𝑜𝑖𝑠𝑒 as the 516 

average MUAe amplitude during the baseline period (-200 to 50 ms) before stimulus onset. 517 

SNR in at least one of these eight estimates was required to be higher than 3 for a channel 518 

to be included for further analyses.  519 

We computed the response latency to stimulus onset for each channel according to the 520 

method described by Roelfsema et al. (2007). We fitted the visual response as a 521 

combination of an exponentially modified Gaussian and a cumulative Gaussian using a non-522 

linear least-squares fitting procedure (function lsqcurvefit) to the average MUAe time 523 

course. There are two assumptions implicit in this method. First, the onset latency has a 524 

Gaussian distribution across trials and across neurons that contribute to the MUAe, and 525 

second, that (part of) the response dissipates exponentially. The visual response 𝑦 across 526 

time 𝑡 was modelled as: 527 

𝑦(𝑡) = 𝑑 ∙ 𝐸𝑥𝑝(𝜇𝛼 + 0.5𝜎!𝛼! − 𝛼𝑡) ∙ 𝐺(𝑡, 𝑢 + 𝜎!𝛼, 𝜎) + 𝑐 ∙ 𝐺(𝑡, 𝜇, 𝜎) 528 

, where 𝜇 is the mean, 𝜎 is the standard deviation, 𝛼() is the time constant of the 529 

dissipation, 𝐺(𝑡, 𝜇, 𝜎) is a cumulative Gaussian, and 𝑐 and	𝑑 are the factors scaling the non-530 

dissipating and dissipating modulation of the visual response. The response latency was 531 

defined as the time point where 𝑦(𝑡) reached 33% of the maximum of the earliest peak, the 532 

first Gaussian (Roelfsema et al., 2007; Self et al., 2013). Data were aligned to the earliest 533 

current sink, the presumed thalamic input layer (L4); channels were excluded if they were 534 

>1 mm more superficial or >0.75 mm deeper than this layer.  535 

 536 
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Receptive field estimation 537 

Offline RFs were determined for each channel via reverse correlation of the MUAe signal to 538 

stimuli (0.5 – 2 ° black squares) presented on a 9 × 12 grid (Gieselmann and Thiele, 2008). 539 

The stimulus-response map was converted to z-scores, after which the RF for each channel 540 

was indicated by a contour (thresholded at a z-score of 3) surrounding the peak activity. 541 

These z-scored maps were averaged across all channels for each area (the population 542 

average z-score was computed using Stouffer’s Z-score method according to 𝑍 =543 

	∑ 𝑍#/√𝑘*
#+) , with 𝑘 as the number of channels, after which we determined the overlap and 544 

separation between the V1 and V4 RFs (Fig 1B-C).  545 

 546 

Bipolar re-referencing  547 

To ensure that global signals, common to multiple channels, did not affect our LFP and 548 

spectral analyses (see below), we re-referenced our LFP signals according to the bipolar 549 

derivation. Bipolar re-referenced LFP signals (LFPb) were computed by taking the difference 550 

between two neighboring channels. 551 

 552 

Attentional modulation 553 

The effect of selective attention on neural activity was computed via an attention 554 

modulation index (𝑎𝑡𝑡𝑀𝐼), defined as: 555 

𝑎𝑡𝑡𝑀𝐼 =
𝐴,- −	𝐴%."
𝐴,- +	𝐴%."

 556 

, with 𝐴,-  as the neural activity when attention was directed towards the RF, and 𝐴%." the 557 

activity when attention was directed away from the RF. This index ranges from -1 to 1, with 558 

zero indicating no attentional modulation and with positive (negative) values indicating 559 

higher (lower) activity when attention was directed towards the RF. 560 

 561 

Hidden Markov Model 562 

To quantify On-Off dynamics in V1 and V4, we fit a Hidden Markov Model (HMM) to the 563 

population activity across all laminae. We fit the HMM both to activity from each individual 564 
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area, following the procedures described by Engel et al. (2016), as well as to the activity 565 

from both areas simultaneously. 566 

Our HMM assumes that spike counts on the recorded channels can be well characterized as 567 

a doubly-stochastic process, of which the parameters can be accurately estimated (Rabiner, 568 

1989). In this study, spike counts on each channel are assumed to be produced by a Poisson 569 

process with different (constant) mean rates during On or Off phases of the underlying 570 

‘hidden’ (latent) process 𝑠 common to all channels that we need to infer (Engel et al., 2016). 571 

The mean firing rate on each channel 𝑗 in phase 𝑠 is defined by entry 𝜆/& in the emission 572 

matrix Λ. The transition matrix 𝑃 gives the probabilities of transitioning between these 573 

latent phases. In the transition matrix 𝑃, each entry indicates the probability of transitioning 574 

between two specific phases. For instance, 𝑃)) indicates the probability of transitioning 575 

from 𝑠 = 0 to 𝑠 = 0 (remaining in the Off phase), whereas 𝑃)! indicates the probability of 576 

transitioning from 𝑠	 = 0 to 𝑠	 = 1, more formally: 𝑃)) =	𝑃%00 = 𝑃(𝑠"1) = 0|𝑠" = 0), 577 

𝑃)! =	1 − 𝑃%00 = 𝑃(𝑠"1) = 1|𝑠" = 0). These probabilities do not depend on time: at any 578 

time step 𝑡, the probability of transitioning between phases depends only on the value of 𝑠 579 

at time 𝑡 (𝑠"). The latent dynamics estimated by the HMM thus follow a discrete time series 580 

in which 𝑠" summarises all information before time 𝑡. For each channel, MUA was 581 

discretized by determining spike counts in 10 ms bins following each time 𝑡, with the 582 

probability of observing spike count 𝑛 on channel 𝑗 during phase 𝑠 defined as  583 

𝑃(𝑛|𝑠) = 	
(𝜆/&)$

𝑛! 𝑒(2!
"
 584 

The full description of an HMM is given by the emission matrix Λ, transition matrix 𝑃 and 585 

the probabilities 𝜋3 that indicate the initial values 𝑠3, in which 𝜋#3 ≡ 𝑃(𝑠3 = 𝑖). These 586 

parameters were estimated using the Expectation Maximization (EM) algorithm (Bishop, 587 

2006), maximizing the probability of observing the data given the model according to the 588 

Baum-Welch algorithm (Rabiner, 1989). Because the EM procedure can converge to a local 589 

maximum, rather than the global maximum, we repeated the EM procedure ten times with 590 

random parameter initializations, and chose the model with the highest likelihood. Random 591 

values were drawn from Dirichlet distributions for 𝜋3 and P, and from a uniform distribution 592 

between zero and twice the channel’s mean firing rate for Λ. The EM procedure was 593 

terminated if the relative change, computed as |𝑛𝑒𝑤 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙|/|𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙|, in the log-594 
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likelihood was smaller than 10-3 and the change in the transition and emission matrix was 595 

smaller than 10-5, or if it reached the maximum number of iterations (n = 500).  596 

Once the optimal parameters were estimated, we used the Viterbi algorithm to determine 597 

the most likely latent trajectory for each individual trial. We applied the HMM separately to 598 

each attention condition. For every trial, we applied the HMM during multiple time periods 599 

of the task, during fixation and during the time window from 400 ms after cue onset to 30 600 

ms after the first dimming event. For the behavioral analysis, we additionally analyzed the 601 

period up to 30 ms after the second dimming event for trials in which target dimming did 602 

not occur on the first dimming event, and for which the first distractor dimming was not 603 

inside the RFs. 604 

To determine what number of latent phases best described the data, we fit HMMs with the 605 

number of phases ranging from 1 to 8, and used a four-fold cross-validation procedure to 606 

compute the leave-one-channel-out cross-validation error for each HMM (Engel et al., 607 

2016). We fit the HMM to a randomly selected subset of 3/4 of the trials, and computed the 608 

cross-validation error on the remaining 1/4 of trials. This procedure was repeated 4 times 609 

using a different 3/4 of trials for training and 1/4 of trials for testing the HMM. We 610 

computed the cross-validation error 𝐶𝑉456  for each channel 𝑗 across all trials 𝐾 and time 611 

bins 𝑇 as the difference between the actual and expected spike count according to: 612 

𝐶𝑉456[𝑛/] =` ` (𝑛"
/ − 𝜆/

&#)!
7

"+)

8

*+)
 613 

We normalized 𝐶𝑉456  to the error in the 1-phase HMM, averaged across channels, cross-614 

validations and conditions, and determined the difference in 𝐶𝑉456  with each additional 615 

phase in the HMM. The normalized mean cross-validation error across each of the eight 616 

HMM models for all recordings is depicted in Fig. S1. For most recordings, and for both V1 617 

and V4, 𝐶𝑉456  decreased with the addition of a second phase, but did not decrease much 618 

further with additional phases. This allowed the identification of the elbow (kink) in this 619 

error plot as the model with two phases. We included areas/recordings for further analysis 620 

that revealed a reduction in cross-validation error of at least 10% with the addition of a 621 

second phase, but did not decrease by more than 10% with additional phases. For a small 622 

subset of recordings, a three or a four-phase model fit the data best; these recordings were 623 

excluded from further analysis. In total, we found a reduction of >10% in cross-validation 624 
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error when fitting a 2-phase versus 1-phase model in 64 V1 (83.1 %), and 73 V4 (92.4 %) 625 

recordings; in 57 (78.1 %) recordings we found evidence for a 2-phase model in both V1 and 626 

V4 (Fig. S1). 627 

To investigate the across-area coordination of On-Off dynamics, we fit a 4-state HMM to V1 628 

and V4 data simultaneously. Across these four states, both V1 and V4 could be in either an 629 

Off or On phase, with the states defined as: 𝑉1%00 − 𝑉4%00 (state 1), 𝑉1%$ − 𝑉4%00 (state 630 

2), 𝑉1%00 − 𝑉4%$ (state 3) and 𝑉1%$ − 𝑉4%$ (state 4). This model was fit according to the 631 

same steps as the HMM applied to individual areas, with one exception. For each channel 𝑗, 632 

the emission rate 𝜆 was constrained to be the same across states for which this channel 633 

(area) was in the same phase. For example, rates were constrained for a V1 channel across 634 

state 1 and state 3, during which V1 was in an Off phase (𝜆/&+) = 𝜆/&+9, 𝑗	 ∈ 𝑉1).  635 

 636 

Testing the effect of On-Off dynamics on behavioral performance 637 

To determine the effect of On-Off dynamics and their across-area coordination on 638 

behavioral performance, we investigated whether the On/Off phase of population activity at 639 

the time of target dimming influenced reaction times (RT). To this end, we averaged, for 640 

each recording, the RT across all trials that ended in the same phase. We subsequently 641 

tested for a relationship between On/Off phase and RT across recordings (Statistical 642 

testing). 643 

 644 

Cross correlation 645 

The temporal relationship between On-Off time series and transitions, microsaccade onset 646 

times and activity in V1, V4 and FEF were investigated using cross-correlations. The cross-647 

correlations based on HMM time series (𝐶𝐶:;;) were calculated using the function xcorr in 648 

Matlab, according to: 649 

𝐶𝐶:;;(𝜏) =
1
𝑀 `

∑ 𝑥(𝑡)𝑦(𝑡 + 𝜏)	7
"+)

d∑ |𝑥(𝑡)|! ∙ ∑ |𝑦(𝑡)|!7
"+)

7
"+)

;

<+)

 650 

, where M is the number of trials, 𝑇 is the number of discrete time bins, 𝑥 and 𝑦 the mean 651 

subtracted On-Off time series in V1 and V4 as determined by the HMM, and 𝜏 the time lag. 652 
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Here, the numerator indicates the cross-covariance, which is normalized (the denominator) 653 

such that the autocorrelation for each time series at zero lag is 1. This procedure normalized 654 

𝐶𝐶:;; such that correlation coefficients were obtained. We furthermore subtracted the 655 

shuffle predictor 𝐶𝐶&=.00>' from 𝐶𝐶:;; to remove any task-related (event-locked) 656 

correlations between 𝑥 and 𝑦. 𝐶𝐶&=.00>' was computed by shuffling 𝑦 trials. 657 

Cross-correlations (𝐶𝐶) between state transitions and microsaccade onset times were 658 

computed in the same way but for a different normalization (denominator) factor. Here we 659 

normalized by the number of microsaccades, resulting 𝐶𝐶 to be of the order of coincidences 660 

of state transitions per microsaccade. 661 

To investigate the neural activity around the time of On-Off transitions, we computed the 662 

transition-triggered average (TTA). The TTA was estimated by computing the cross 663 

covariance (the numerator), divided by the number of transitions for each channel 664 

(denominator). Again, we subtracted the shuffle predictor to remove any task-related 665 

correlations. 666 

 667 

Power estimation 668 

We estimated the power spectra of the LFPb using a custom multitaper approach based on 669 

the Chronux toolbox (Bokil et al., 2010). We estimated the power separately for On and Off 670 

states determined by the HMM using only epochs that lasted longer than 250 ms. Because 671 

epoch durations were variable, we zero-padded each segment to the next highest power of 672 

2 of the longest epoch duration (2048 time points), ensuring we could extract the same 673 

frequencies for each segment. This approach gave us a half bandwidth (𝑊) of approximately 674 

1.95 Hz, according to 𝑊 = (𝐾 + 1)/2𝑇, with 𝐾 being the number of data tapers (𝐾 = 7) and 675 

𝑇 the length of the time window in seconds. Frequencies were estimated from 4 to 200 Hz.  676 

 677 

Microsaccade detection 678 

We low-pass filtered the horizontal and vertical eye traces at 30 Hz (2nd order Butterworth 679 

filter) after which we detected microsaccades by using the algorithm developed by Engbert 680 

and Kliegl (2003). This algorithm converts eye position to velocity and classifies an eye 681 

movement as a microsaccade if the velocity is larger than a threshold for at least three 682 
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consecutive time points. The threshold is set to 6 times the median estimator, given by: 683 

d𝑚𝑒𝑑𝑖𝑎𝑛(𝑥!) − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)!, where 𝑥 is the eye position channel. Thus, the threshold is 684 

determined for each single trial. The use of the median estimator ensured that 685 

microsaccade detection is relatively robust to different levels of noise.  686 

 687 

Statistical testing 688 

To determine whether there were significant differences between attention conditions or 689 

HMM states (e.g. in firing rate or epoch duration) we made use of multiple statistical 690 

methods. We used (paired-sample) Wilcoxon signed rank tests whenever a comparison was 691 

made between two conditions (e.g. attend RF versus attend away), or to test whether a 692 

distribution was significantly different from zero. When a comparison involved multiple 693 

conditions, or multiple factors (e.g. attention and state), we used linear mixed effect models 694 

to test for main effects of each condition/factor and interaction effects between factors. 695 

These factors were defined as fixed effects and we included random intercepts for each 696 

recording as random effects, accounting for the repeated measurements within each 697 

recording. Specifically, we modelled RT as a linear combination of attention condition (𝐴𝑡𝑡) 698 

and HMM state coefficients, as well as their interaction: 699 

𝑅𝑇	~	𝛽3 +	𝛽)𝐴𝑡𝑡 +	𝛽!𝐻𝑀𝑀 + 𝛽9𝐴𝑡𝑡 ∙ 𝐻𝑀𝑀	 700 

We used false discovery rate (FDR) to correct for multiple comparisons (Benjamini and 701 

Yekutieli, 2001). Error bars in all figures indicate the standard error of the mean (SEM). 702 

703 
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 704 

 705 

Fig. S1. Determining the number of HMM phases and their epoch durations in V1 and 706 

V4 MUA. (A) Cross validation (CV) error plotted against the number of phases in each 707 

HMM for V1. (B) The difference in cross validation error between the 1-phase and 2-phase 708 

model, plotted against the difference between the 2-phase and 3-phase model for V1. Most 709 

recordings show a large reduction in cross-validation error with the addition of a second 710 

phase, and only marginal changes with additional phases. Blue (red) lines and markers 711 

indicate the recordings included (excluded) for further analysis. (C-D) Same conventions as 712 

(A-B) but for V4. (E) Distributions of Off and On episode durations overlaid by the 713 

exponential distributions with the decay constant set by the HMM transition probabilities 714 

(red, 𝑁(𝑡) = 𝑁3𝑒("/@, where 𝑁3 is the normalization constant, and 𝜏 is the decay time-715 

constant computed for each recording and phase). A good match for these models indicates 716 

that On-Off dynamics were not driven by an oscillatory phenomenon. Grey and thick black 717 

lines indicate individual recordings and their mean, respectively. 718 

 719 

720 
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 721 

Fig. S2. Attentional modulation of HMM parameters. (A) The fraction of time spent in an 722 

On phase is increased when attention is directed towards the RFs. (B) Attentional influence 723 

on HMM transition probabilities. Shown is the difference between transition matrices (attend 724 

RF – attend Away). Statistics: Wilcoxon signed rank tests; *, **, ***, indicate FDR corrected 725 

significance levels of p < 0.05, p < 0.01 and p < 0.001, respectively.726 
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 727 

Fig. S3. Relationship between microsaccades and On-Off transitions. (A) Cross-728 

correlation of On-Off transitions in V1 triggered to microsaccade onset. (B) Same as panel A, 729 

but for On-Off transitions in V4. (C) Cross-correlation between time series of On-Off 730 

dynamics in V1 and V4 after exclusion of trials in which microsaccades occurred. Statistics: 731 

Wilcoxon signed rank test. Shaded regions denote ±1 SEM across recordings, *, ** and *** 732 

indicate significance levels of p < 0.05, p < 0.01 and p < 0.001 respectively.733 
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 734 

Fig. S4. Bipolar re-referenced LFP power spectrum across HMM states. (A) Power in 735 

V1 during On and Off phases in V1. (B) Power in V4 during On and Off phases in V1. (C) 736 

Power in V1 during On and Off phases in V4. (D) Power in V4 during On and Off phases in 737 

V4. Right y-axis indicates the percentage change in power during On versus Off phases (On-738 

Off). (E-F) Power spectrum in V1 (E) and V4 (F) for the 4-state HMM fit across V1 and V4 739 

and the within-area power difference between On phases (red, V1: state 4-2; V4: state 4-3), 740 

or Off phases (blue, V1: state 3-1; V4: state 2-1). Only On/Off episodes of at least 250 ms 741 

were included. Thick percentage change lines indicate significantly modulated frequencies (p 742 

< 0.05, Wilcoxon signed rank test, FDR corrected). Shaded regions denote ±1 SEM. 743 

 744 

745 
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 746 

Fig. S5. The relationship between baseline pupil diameter and On/Off episode 747 

durations. (A) Example recording showing that baseline pupil diameter is positively 748 

correlated to the average On episode duration in V1. Each dot represents one single trial, r is 749 

the Pearson correlation coefficient. The purple and red dot indicate the example trials used in 750 

panel C. (B) Across recordings, the average duration of On epochs in both V1 and V4 is 751 

positively correlated with the size of the baseline pupil diameter. (C) Two example trials in 752 

which the average On epoch duration is larger on the trial with larger (bottom) compared to 753 

the trial with smaller (top) baseline pupil diameter. (D) Across recordings, baseline pupil 754 

diameter is negatively (positively) correlated with the average epoch duration when both V1 755 

and V4 are in an Off (On) phase. (E) The average baseline pupil diameter during attend RF 756 

conditions plotted against attend away conditions. There is no difference between attention 757 

conditions. Each dot represents a recording session. Statistics: Wilcoxon signed rank test 758 

(FDR corrected) (B, D, E) and Pearson correlation (A). Error bars and shaded regions denote 759 

±1 SEM, and *, ** and *** indicate significance levels of p < 0.05, p < 0.01 and p < 0.001 760 

respectively. 761 

 762 

763 
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 764 

 Red Green Blue 

Monkey 2 & 3,  

and monkey 1 (n=4) 

a. [220 0 0] – 12.8 

b. [140 0 0] – 4.2 

a. [0 135 0] – 12.9 

b. [0 90  0] – 4.6 

a. [60 60 255] – 12.2  

b. [30 30 180] – 4.6 

Monkey 1 (n=1) b. [170 0 0] –6.7 b. [0 105  0] – 6.4 b. [37 37 210] – 6.6 

Monkey 1 (n=1) b. [175 0 0] –7.2 b. [0 105  0] – 6.4 b. [40 40 220] – 7.7 

Monkey 1 (n=8) b. [180 0 0] –7.7 b. [0 110  0] – 7.3 b. [40 40 220] – 7.7 

Table S1. 765 

Color values used for the 3 colored gratings across recording sessions and subjects, indicated 766 

as [RGB] – luminance (cd/m2). a = Undimmed values, b = Dimmed values. For monkey 1, 767 

we used a variety of dimmed values across recordings. 768 

 769 
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