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The sequential window acquisition of all 
theoretical spectra (SWATH) technique is a 
specific variant of data-independent acquisition 
(DIA), which is supposed to increase the 
metabolite coverage and the reproducibility 
compared to data-dependent acquisition (DDA). 
However, SWATH technique lost the direct link 
between the precursor ion and the fragments. Here, 
we propose a deep-learning-based approach 
(DeepSWATH) to reconstruct the association 
between the MS/MS spectra and their precursors. 
Comparing with MS-DIAL, the proposed method 
can extract more accurate spectra with less noise 
to improve the identification accuracy of 
metabolites. Besides, DeepSWATH can also handle 
severe coelution conditions.  
Data dependent acquisition (DDA) selects single 
precursor ion for fragmentation each time, which has 
the direct link between the precursor ion and its 
fragments. In contrast, data independent acquisition 
(DIA) often uses a wide isolation window (10 Da – 25 
Da) for precursor ions selection. It allows a full 
coverage of observable molecules but at the expense 
of losing the direct link between the precursor ion and 
the fragments. Therefore, how to establish the link is a 
fundamental problem when processing DIA dataset. 

In proteomics, methods for this problem can be 
divided into two categories: peptide-centric methods 
and spectrum-centric methods. Peptide-centric 
methods usually need experimental or in silico 
spectral database1–3 of all known peptides for a 
specific biosystem. Basing on the known spectra, 
OpenSWATH4 uses reverse spectrum matching to 
locate the targeted peptides and precursor-fragment 
elution curve correlation to score the confidence of 
the extracted MS/MS. Specter5 can also use curve 
resolution to deconvolve the multiplexed MS/MS 
spectra. Some peptide-centric methods, such as 
PECAN6 and DIA-NN7, can apply the peptide 
sequence directly to the MS/MS deconvolution. 
Spectrum-centric methods, such as DIA-Umpire8 and 
Group-DIA9, detect covarying precursor-fragment 
group and generate pseudospectra from DIA. 

Therefore, spectrum-centric methods are spectral 
library-free methods. 

Analogously, data analysis methods for DIA-based 
metabolomics can be also categorized into 
metabolite-centric and spectrum-centric methods. 
Since it is difficult to infer accurate m/z values of 
fragments from the structures of metabolites, 
metabolite-centric methods, such as MetDIA10 and 
MetaboDIA11, rely on DDA-based metabolite spectra 
library. However, the spectral library is limited by the 
available of metabolite standards. Because of this, 
metabolite-centric methods can’t take fully advantage 
of the coverage power of DIA. Spectrum-centric 
methods can resolve MS/MS spectra of metabolites 
from DIA data, which is preferred for untargeted 
metabolomics. DecoMetDIA12 applied the 
hierarchical clustering strategy to reconstruct the 
pseudo-spectra of metabolites from the co-eluted of 
fragments. MS-DIAL13 resolve the MS/MS spectrum 
from multiplexed spectra by least squares. Both 
DecoMetDIA and MS-DIAL try to solve the MS/MS 
reconstructing problem in DIA-based metabolomics. 
However, the hierarchical clustering of DecoMetDIA 
depends heavily on the quality of peak shapes. 
Co-eluted and irregular peaks will deteriorate the 
clustering result. Background ion and random noise 
will weaken the effectiveness of the least-squares 
based deconvolution in MS-DIAL and introduce the 
impure ions into the reconstructed MS/MS spectra. 

Here, we propose DeepSWATH, a spectrum-centric 
method for untargeted metabolite extraction from 
SWATH-MS dataset based on deep neural network. 
The core of DeepSWATH method is the 
precursor-fragment correlation (PFC) model to extract 
the fragments of a precursor ion. It is a fully 
untargeted extraction method. Once the model is 
trained, spectra library will not be need when 
processing a new dataset. 

PFC model was trained by a combination dataset 
including both experimental data and simulated data. 
Experimental data were obtained from a large open 
access metabolomics dataset, and its MetaboLights 
identifier is MTBLS417. Twenty healthy control 
samples of DDA dataset were processed by XCMS to 
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obtain the golden standard of the precursor-fragment 
groups. The extracted ion chromatograms (EIC) of the 
precursors and fragments were generated from the 
corresponding DIA dataset, regarded as positive 
samples. At the retention time of the precursor ion 
chromatographic peak, the other fragment ions also 
exist besides the fragment ions. We randomly chose 
the equal number of these fragment ions (decoys), 
extracted the EICs and took them as negative samples 
(Figure 1). In order to handle coelution condition well, 
we also generate a number of simulated samples, 
because coelution is relatively infrequent in the 
experimental data. Each simulated sample includes a 
Gaussian like precursor profile and a correlated or 
uncorrelated fragment/decoy profile.  

In the learning phase, the input is the precursor EICs 
and the corresponding fragment/decoy EICs, followed 
by a series of hidden layers. The output layer is a 
binary classification layer (Figure 2). In the 
application phase, precursor EICs of the new DIA 
dataset can be extracted by any LC-MS data 
processing framework, including XCMS14, MZMine15, 
OpenMS16 or KPIC217. DeepSWATH will extract the 
EICs of all possible precursor-fragment pairs and 
predict the relationship between precursor-fragment 
pairs with the trained PFC model. The MS/MS spectra 
can be reconstructed with the prediction results easily. 
Detailed methods are described in methods section. 

Results 

Deep learning-based PFC model. The PFC model is 
a precursor-fragment relationship classifier which can 
be regarded as a binary classifier to differentiate true 
fragment ion of a precursor from the interferential 
ions. The deep neural network of PFC model was 
implemented using Keras with Tensorflow backend. 
The precursor and fragment/decoy EICs from 
MTBLS417 were randomly split into three subsets: an 
80% subset for training (training set), a 10% subset 
for optimizing the hyper parameters (validation set), 
and a 10% subset for evaluating the performance (test 
set). 

During the learning phase, the classification accuracy 
and loss was used to monitor the performance of the 
model. The training procedure was stopped after 15 
epochs because of no obvious improvement of the 
loss and accuracy. A callback function was used to 
reduce the learning rate dynamically by monitoring 
the loss of the validation set. The test set was used to 
evaluate the performance of the PFC model, the 
precision, recall and accuracy were 0.930, 0.936 and 

0.933 respectively. The area under the ROC curve is 
0.98. The results indicate that the PFC model can 
effectively differentiate whether the EICs of the given 
precursor and fragment are associated or not. 

Accuracy of Reconstructed MS/MS. We evaluated 
the accuracy of reconstructed MS/MS with two 
datasets. One is a mixture sample with 30 standard 
compounds (30 STD)10, the accuracy was evaluated 
by comparing the reconstructed MS/MS spectra with 
the spectra in database. The other one is the case 
group of MTBLS417, the accuracy was evaluated by 
comparing the reconstructed MS/MS spectra with the 
spectra acquired by DDA. The criterion is the Pearson 
correlation coefficient between the reconstructed 
MS/MS spectra and the reference spectra. 

Figure 3(A) and 3(B) are the distribution of Pearson 
correlation coefficients of DeepSWATH and 
MS-DIAL on 30 STD and MTBLS417 dataset. For 
the 30 STD dataset, the median values of 
DeepSWATH and MS-DIAL are 0.9928 and 0.9916, 
respectively. For the positive mode of MTBLS417 
dataset, the median values of DeepSWATH and 
MS-DIAL are 0.8723 and 0.8669, respectively. For 
the negative mode, the median values of 
DeepSWATH and MS-DIAL are 0.8524 and 0.8353, 
respectively. The detailed results generated by 
MS-DIAL and DeepSWATH can be found in Table S1 
– S10. 

Figure 3(C) and 3(D) is an example of the 
reconstructed MS/MS spectra. Both DeepSWATH and 
MS-DIAL can resolve the main fragment ions. 
However, DeepSWATH is more robust to 
interferential ions and noise when compared with 
MS-DIAL, and the reconstructed MS/MS is cleaner. It 
is important to obtain clean MS/MS spectrum for 
metabolite identification, because the presence or 
absence of fragments has large influence to the value 
of scoring function in many in-silicon methods. For 
example, SIRIUS18,19 takes fragmentation trees as 
important features to predict substructures of 
metabolites, which also takes all the fragments into 
consideration.  

Significance of cleaner MS/MS spectrum. In order 
to justify the cleaner MS/MS spectrum obtained by 
DeepSWATH can authentically improve the 
metabolite identification, As shown in Figure 4, 
MS/MS spectra of DDA and reconstructed spectra by 
DeepSWATH and MS-DIAL were imported into 
SIRIUS (version 4.0.1) for identification. In the first 
example, the Pearson correlations of DeepSWATH 
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and MS-DIAL are 0.822 and 0.807, respectively, 
while in the second example the correlations are 
0.769 and 0.838, respectively. From the results given 
by SIRIUS, the identified structures of DDA and 
DeepSWATH spectra are consistent. However, with 
the interferential peaks in the MS-DIAL spectra, 
SIRIUS gave different results from DDA spectra, 
although the correlation of the second example is 
even higher than DeepSWATH. The results indicate 
that the cleaner MS/MS spectra obtained by 
DeepSWATH is of significance in the metabolite 
identification. 

Coelution handling. To evaluate the ability of 
DeepSWATH in handling the coelution problem, two 
examples were shown in Figure 5. In the first example, 
the two precursors have the same m/z value, which is 
266.094. Their retention times are also similar, and 
their chromatographic peaks are overlap (A1). After 
processed by DeepSWATH, the fragment ions were 
successfully assigned to the appropriate precursor 
ions, which indicates that the coelution of precursors 
did not affect the accuracy of MS/MS reconstruction 
(A2 and A3). In the second example, the EIC of the 
precursor includes a single peak, while several 
fragment ions show are coeluted (B1). It means the 
precursors share some fragments with the same m/z 
values. From the results, it can be seen that the true 
fragments were also successfully assigned (B2). If a 
higher accuracy of the fragment abundances is needed, 
it can be combined with multivariate curve resolution 
(MCR)20 to resolve the common fragments. With 
MCR-ALS, the pure concentration of each fragments 
can be obtained (B3). Therefore, DeepSWATH is also 
effective under the coelution situation. 

Discussion 

In summary, DeepSWATH provides a deep-learning 
approach to reconstruct MS/MS spectra from 
SWATH-MS-based metabolomic data. A 
precursor-fragment model was trained with publicly 
available dataset, which can predict the relationship 
between the precursor ion and the fragment ions. 
Given a new dataset, MS/MS of each precursor can be 
reconstructed easily with the assistance from this 
model. We evaluated the performance of 
DeepSWATH with mix standard dataset and human 
serum dataset. The reconstructed MS/MS were 
compared with the spectra in standard database and 
spectra obtained from DDA. We found that the 
MS/MS obtained by DeepSWATH is more acccurate 

than the MS/MS obtained by MS-DIAL and can 
achieve the consistent metabolite identification results 
with DDA MS/MS spectra. In addition, DeepSWATH 
can also handle coelution condition. 

Methods 
Experimental training data. The experimental training data 
were constructed from the healthy control group of MTBLS417 
dataset, which analyzed human serum in both DDA and DIA 
mode. First, we processed the dataset with XCMS package 
(version 3.8.1). The DDA and DIA data files were processed with 
the CentWave method and the parameters were the same: snthresh 
= 10, noise = 200, ppm = 30 and peakwidth = (5, 60). Second, we 
compare the features obtained from DDA and DIA data. If a 
feature were detected both in DDA and DIA data (m/z difference 
< 0.05 Da and RT difference < 30 s), we matched the fragments 
of DDA with DIA. The fragments obtained from both DDA and 
DIA were treated as true fragments, and the fragments obtained 
only from DIA were treated as decoy fragments. Third, we 
extracted the ion traces (EICs) of the true fragments and their 
precursors from the DIA data. Besides, we also random selected 
the same number of decoy ions and extracted their traces. The m/z 
bin size of the EICs were 0.1 Da and the length of the EICs were 
30 s. Finally, we used a linear interpolation to unify the retention 
times of precursor, fragment and decoy EICs. 

Simulated training data. We added the same number of 
simulated samples into the training set as the experimental 
samples to handle the coelution condition. The reason is that the 
coelution is supposed to be relatively unusual, but has to be under 
consideration. In the simulated samples, the precursor-fragment 
pairs involve four conditions: 1. Standalone precursor ion and 
fragment ion; 2. Coeluted precursor ion and standalone fragment 
ion; 3. Standalone precursor ion and coeluted fragment ion; 4. 
Coeluted precursor ion and fragment ion. They were appeared in 
the simulated dataset randomly. Standalone ions mean each 
profile includes a single peak and coeluted ions mean each profile 
includes overlapped peaks. All of the peaks are Gaussian peaks 
with random sigma values between 1 and 10. The true peaks are 
in the middle of the EIC vectors, while the coeluted peaks are 
with a random distance to the true peak. The fragment ions have 
the same peak position as the precursor ion, while the decoy ions 
have a different but random peak position. 

Network structure of PFC model. We trained the PFC model 
based on a deep neural network classifier. Since the EIC is a 
continuous curve, we chose convolutional neural network as basis. 
The EICs of precursor ion and fragment/decoy ion are used as 
input of the PFC model to predict the relationship between them. 
Therefore, we used a network similar to the text similarity model, 
which is commonly adapted to natural language processing for 
synonym analysis. The neural network structure is two 
convolutional layers followed by the input EICs of precursor and 
fragment/decoy ions, respectively, and two fully-connected layers 
followed by the concatenating layer. The output layer is a 
SoftMax function for classification. All hidden layers employ the 
ReLU function as activation function. Parameters in the neural 
network were optimized by the Adam optimizer with initial learn 
rate as 0.001, and the loss function was set as categorical 
cross-entropy. 

MS/MS reconstruction with DeepSWATH. The evaluation 
datasets in this work were the mix standard compounds dataset 
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(30 STD) and the case group of the MTBLS417 dataset. First, the 
datasets were both processed by XCMS to extract the features of 
the precursors. For a wider coverage, we employ a looser 
parameter sets: snthresh = 5, ppm = 100 and peakwidth = (5, 60) 
to extract the EICs of the precursor ions and all of the possible 
fragment ions (candidate ions). The m/z bin size of the EICs were 
0.1 Da and the length of the EICs were 30 s. Similarly, the linear 
interpolation was also used to unify retention time of the EICs of 
the precursor ion and the candidate ions. Finally, the precursor ion 
EICs and the candidate ion EICs were used as the input. The PFC 
model was used to predict whether a candidate ion is a fragment 
of the precursor or not. With the predicted results, the MS/MS 
spectra were reconstructed easily. 

Combination with MCR-ALS. Sometimes, one coeluted 
fragment can be assigned to multiple precursors, which means 
there are multiple precursors share the same fragments. Although 
it does not affect the results of fragment presence or absence, it 
may affect the relative abundance of fragments. Thus, 
DeepSWATH and MCR-ALS were combined together to resolve 
the coeluted fragments for more accurate abundances. First, the 
EICs of all predicted fragments were extracted and combine into a 
m*n matrix, where m is the number of the scans of an EIC and n 
is the number of fragments. Second, evolving factor analysis 
(EFA) was used for estimating the initial concentration curves. 
Third, alternate least squares (ALS) algorithm was used for 
resolving the pure chromatograms of all components, in which the 
main component is the supposed precursor. Finally, fragments 
with better abundance can be obtained. 

MS/MS reconstruction with MS-DIAL. MS-DIAL software 
(version 4.12) was used to process the same datasets for 
comparison. The files in mzXML format were convert to ABF 
format with the ABF file converter (version 4.0.0) for MS-DIAL. 
The parameters were set as: minimum peak height = 500, mass 
slice width = 0.1 and sigma window value = 0.5. The other 
parameters were kept default. Finally, the results were export in 
MSP format. The MSP files were then parsed with the functions 
in libmetgem package21. 

Evaluation criterion. The accuracy of MS-DIAL and 
DeepSWATH were evaluated by comparing the reconstructed 
MS/MS spectra with the reference MS/MS spectra. For the 30 
STD dataset, the reference MS/MS spectra were from the standard 
database according to the MetDIA paper (only top 5 peaks were 
given). For the MTBLS417 dataset, the reference MS/MS spectra 
were obtained from the corresponding DDA files which were 
extracted by XCMS package. The reconstructed MS/MS spectra 
and the reference MS/MS spectra were converted to vectors by 
binning the intensity values in 0.1 Da intervals. Finally, the 
correlation coefficients were calculated using the Pearson 
similarity. 

Data availability 

All the metabolomics datasets described in our study are 
public datasets. MTBLS417 dataset was download from 
https://www.ebi.ac.uk/metabolights/MTBLS417 at 
2019.12.29. 30STD_mix dataset was download from 
http://www.zhulab.cn/softwaredetail.php?id=40 at 
2020.1.8. 

Code availability 

All codes used in training, testing and evaluation are 
archived into DeepSWATH package, which is available 
at https://github.com/hcji/DeepSWATH under GPL (>= 
3.0) license. 
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Figures： 

Figure 1. Workflow of DeepSWATH. Training data were obtained by a DDA-DIA compared dataset. Training Ph
Ground truth of MS/MS were extracted from DDA data. Targeted extraction of fragmental ions was performed on
corresponding DIA data. The elution curves of fragmental ions together with the elution curves of their precur
were treated as positive data. Decoy ion elution curves were random chosen from noise, background or interferen
ions. They were treated as negative data. The data were used for training PFC Model. Application Phase: With the 
model, when given another DIA data, the MS/MS can be reconstructed by: 1. Extracting precursor features w
XCMS, MZMine or any other software; 2. Extracting all candidate fragmental EICs of each precursor; 3. Predict
true fragmental ions of each precursor with the PFC model. 
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Figure 2: The structure of the neural network. The input precursor profile and fragment/decoy profile were followed
two convolution layers, respectively. Then, the outputs of the convolutional layers were flattened, concatenated
followed by two dense layers. The output layer is a binary classifier, which predicts the input pair
precursor-fragment is associated or not.
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Figure 3. The distribution of the MS/MS reconstruction accuracy for 30 STD dataset (A) and MTBLS417 dataset 
with the y-axis is the Pearson correlation between the reference MS/MS and the reconstructed MS/MS. Compar
with an example between DDA spectrum and reconstructed MS/MS obtained by DeepSWATH (C) and MS-DIAL (
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Figure 4. Comparison of DDA spectra and reconstructed spectra by DeepSWATH and MS-DIAL (left), and
corresponding identification results given by SIRIUS (right). The percentage number at the lower right of the annot
structure indicate the confidence coefficients. 
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Figure 5. Examples of coelution handling of DeepSWATH. In the first row, the EICs show coeluted precursors 
standalone fragments (A1). DeepSWATH assigned the corresponding fragments to the precursors successfully (
A3). In the second row, the EICs show a single precursor and standalone fragments, coeluted fragments 
interferential fragments. DeepSWATH can assign the true fragments, both standalone and coeluted to the precu
(B2). If needed, it can also combine with MCR-ALS for resolving the coeluted fragments for a more accu
abundances (B3).  

10

 

rs and 
y (A2, 
ts and 
cursor 
curate 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.22.002683doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.002683
http://creativecommons.org/licenses/by-nc-nd/4.0/

