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Abstract 48 

Genetic association results are often interpreted with the assumption that study participation 49 
does not affect downstream analyses. Understanding the genetic basis of this participation bias 50 
is challenging as it requires the genotypes of unseen individuals. However, we demonstrate that 51 
it is possible to estimate comparative biases by performing GWAS contrasting one subgroup 52 
versus another. For example, we show that sex exhibits autosomal heritability in the presence of 53 
sex-differential participation bias. By performing a GWAS of sex in ~3.3 million males and 54 
females, we identify over 150 autosomal loci significantly associated with sex and highlight 55 
complex traits underpinning differences in study participation between sexes. For example, the 56 
body mass index (BMI) increasing allele at the FTO locus was observed at higher frequency in 57 
males compared to females (OR 1.02 [1.02-1.03], P=4.4x10-36). Finally, we demonstrate how 58 
these biases can potentially lead to incorrect inferences in downstream analyses and propose a 59 
conceptual framework for addressing such biases. Our findings highlight a new challenge that 60 
genetic studies may face as sample sizes continue to grow. 61 

 62 
 63 
  64 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.22.001453doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.001453
http://creativecommons.org/licenses/by-nd/4.0/


Introduction 65 
 66 
Individuals who enroll in research studies or purchase direct-to-consumer genetic tests are often 67 
not representative of the general population1,2,3. 68 
For example, the UK Biobank study invited ~9 million individuals and achieved an overall 69 
participation rate of 5.45%4. These enrolled individuals clearly demonstrated a “healthy 70 
volunteer bias”, with lower rates of obesity, smoking and fewer self-reported health conditions 71 
than the sampling frame4. Achieving accurate representation of the sampling population in any 72 
study is challenging. Examples do exist, however, such as the iPSYCH study which enrolled a 73 
random sample of the population, based on DNA extracted from a nationwide collection of 74 
neonatal dried blood spots5. The benefits of achieving such representativeness have long been 75 
discussed6,7,8,9, with many arguing that unrepresentative samples can bias prevalence estimates 76 
but do not necessarily create substantial biases on exposure-disease associations10,11. 77 
Purposely non-representative study designs can also be valuable, for example case-control 78 
studies seeking to enrich cases with non-genetic risk factors can maximize power to detect 79 
genetic effects12. 80 
 81 
Recent studies have highlighted that genetic factors are associated with aspects of study 82 
engagement13,14,15. For example, individuals with high genetic risk for schizophrenia enrolled in 83 
a study are less likely to complete health questionnaires, attend clinical assessments and 84 
continue participation in longitudinal studies than those with lower genetic risk13,16.  It remains 85 
unclear to what extent genetic factors influence initial study participation, or what the 86 
downstream consequences of such bias are, though there are prior attempts to quantify the bias 87 
with simulations 17. We hypothesised that potential study participation biases could be identified 88 
by performing a GWAS on subgroups of study participants defined by a non-heritable trait. 89 
Given there are no known biological mechanisms that can give rise to autosomal allele 90 
frequency differences between sexes at conception, any allele frequency difference between 91 
sexes highlights an impact of that locus on sex-differentiated survival or participation bias. Or to 92 
state the concept differently, if certain traits lead males and females to differentially participate in 93 
a study, this will create an artefactual association between any variants associated with that trait 94 
and sex (see Box 1). An autosomal GWAS of sex represents a unique negative control for 95 
genetic association testing, and may therefore provide unique insights into study participation 96 
factors influencing it18. 97 
 98 
Here we report the results from such a GWAS of sex, performed in over 3 million genotyped 99 
individuals. We identify over 150 autosomal loci significantly associated with sex, highlighting 100 
several complex traits that contribute to sex-specific study participation. Furthermore, we 101 
demonstrate the impact of this bias on association testing and propose a conceptual framework 102 
for addressing such bias. 103 
  104 
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Results 105 
 106 
Autosomal genetic variants are associated with sex 107 
 108 
We performed a GWAS of sex (females vs males) in 2,462,132 research participants from 109 
23andMe using standard quality control procedures (Supplementary Notes). We defined male 110 
or females based on the concordance between the sex chromosmes and self reported sex. We 111 
identified 158 independent genome-wide significant (P<5x10-8) autosomal loci, indicating 112 
genetic variants with significant allele frequency differences between sexes (Figure 1 and 113 
Supplementary Table 1). 114 
 115 
[FIGURE 1] 116 
 117 
Technical artefacts do not explain autosomal associations with sex 118 
 119 
Additional conservative quality control procedures were performed to exclude any associated 120 
loci which may be attributed to technical artefacts (Supplementary Notes). The most obvious 121 
explanation for a false-positive association with sex is due to autosomal genotype array probes 122 
cross-hybridising to the sex chromosomes. This issue has impacted previously published 123 
studies, for example a GWAS in 8,842 South Korean males and females which identified nine 124 
genetic variants strongly associated with sex19. The authors attributed these to biological 125 
mechanisms determining sex-selection, however all associated loci are located within 126 
autosomal regions with significant homology to the sex chromosomes. For example, the 127 
genomic sequence flanking the most significantly associated variant reported (chromosome 1, 128 
rs1819043, sex OR=1.72) has 97% sequence homology to the Y chromosome, leading to an 129 
artificially skewed allele frequency distribution in males due to genotyping error. To evaluate the 130 
impact of this in our own data, we first identified directly genotyped variants which were both 131 
genome-wide significant associated with sex and in LD (r2>0.1) with one of our imputed top 132 
signals (N=78; Supplementary Table 2). 133 
We then tested for sex chromosome homology with the genomic sequence (+/- 50bp) 134 
surrounding each genotyped variant, which suggested a quarter (18/78) of our signals were 135 
potentially attributable to this technical issue. After further excluding additional loci due to low 136 
allele frequency, significant departure from Hardy-Weinberg equilibrium and/or low genotyping 137 
success rate, we were left with 49/78 directly-genotyped genome-wide significant signals. These 138 
data suggest that the majority of signals we identify represent true allele frequency differences 139 
between the sampled male and female participants in 23andMe, rather than technical issues 140 
with genotype measurement. 141 
 142 
 143 
Survival bias does not explain autosomal associations with sex 144 
 145 
We next hypothesised that the observed signals could be attributed to sex-specific 146 
survival/morbidity. To help evaluate this we repeated the sex GWAS restricting analyses to 147 
individuals aged 30 years or younger (N=320,487), under the assumption that survival and 148 
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morbidity effects were less likely to be a common factor in this age group. Whilst the drop in 149 
sample count by an order of magnitude impacted the statistical significance of the signals, the 150 
magnitude of effect across many of the signals remained highly consistent (Supplementary 151 
Figure 1), with no significant differences in effect sizes observed across the 158 loci 152 
(Supplementary Table 3).  153 
 154 
 155 
Participation bias results in autosomal associations with sex 156 
 157 
We next hypothesised that if factors influencing the desire to participate in the study explained 158 
the observed signals, then genetic effects would vary substantially by study design and 159 
participant recruitment strategy (whereas survival effects would be consistent). We, therefore, 160 
performed a GWAS of sex in 4 additional studies - UK Biobank, Finngen, Biobank Japan and 161 
iPSYCH (total N = 847,266) - which varied across these criteria. Like 23andMe, UK Biobank 162 
requires participants to actively engage, albeit with different recruitment mechanisms and 163 
participant motivations. In contrast, Finngen, Biobank Japan and iPSYCH have more passive 164 
participation. Despite these three studies having different enrollment strategies and consent 165 
modalities, they are all based on low or no participant engagement in the study as samples 166 
were collected from existing biospecimens or during clinical visits independent from the study. 167 
We observed significant heritability of sex only in the studies that require more active 168 
participation (h2 on liability scale=3.0% (P=3x10-127) and 2.3% (P=2x10-14), for 23andme and Uk 169 
Biobank, respectively), while no significant heritability was detected in the passive studies 170 
(Figure 2 and Supplementary Table 4).  171 
 172 
[FIGURE 2] 173 
 174 
iPSYCH, in particular, had the lowest heritability estimate, consistent with the study design 175 
based on retrieval of neonatal dried blood spots  from a  random sample of individuals born 176 
between 1981 and 2005, who were alive and residents in Denmark on their first birthday, thus 177 
minimizing both participation and survival bias. In aggregate, these findings suggest that many 178 
of the loci are highlighting mechanisms influencing the desire to participate rather than survival. 179 
This does not preclude the possibility that a small number of loci may influence sex-specific 180 
survival from in utero growth to the age of 30, which should be explored in future studies of 181 
younger individuals. 182 
 183 
To demonstrate the statistical basis of our observed sex-specific participation bias, we 184 
simulated a phenotype uncorrelated with sex and with a heritability of 30% in 350,000 185 
individuals, half males, and half females (Figure 3A). Under different sampling scenarios, we 186 
could show that sex becomes significantly heritable if the enrollment into the study is dependent 187 
on the phenotype in a sex-specific manner, (Figure 3B). If this bias exists, variants associated 188 
with the phenotype are also associated with sex in a dose-response manner. As a 189 
consequence, Mendelian randomization (MR) analysis would wrongly identify a causal 190 
relationship between sex and the phenotype (Figure 3C). 191 
 192 
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[FIGURE 3] 193 
 194 
Genetic analyses reveal determinants of sex-differential participation bias 195 
 196 
We next sought to comprehensively assess which complex traits have a shared genetic 197 
architecture with sex-differential participation bias in UK Biobank and 23andMe. Using results 198 
from 4,155 publicly available GWASs20, we showed that sex-associated loci were more likely to 199 
be pleiotropic than expected by chance (P<2x10-16; chi-square test comparing sex-associated 200 
SNPs vs all SNPs);  half of the genome-wide significant imputed signals for sex were associated 201 
with a least one complex trait and one-fifth with five or more traits (Supplementary Table 5). 202 
Genetically correlated traits spanned a diverse range of health outcomes, including blood 203 
pressure, type 2 diabetes, anthropometry, bone mineral density, auto-immune disease, aspects 204 
of personality and psychiatric diseases. 205 
 206 
Genome-wide genetic correlation analyses with 38 health and behavioral traits highlighted 22 207 
significant associations with sex in 23andMe and 5 in UK Biobank (Figure 4 and 208 
Supplementary Table 6). We noted that the genetic correlates of sex were only partially 209 
overlapping between 23andMe and UK Biobank (rg=0.50, P-value=4x10-34), which was reflected 210 
in several trait-specific discordant associations. For example, higher educational attainment was 211 
associated with female sex in UK Biobank (rg=0.25, P=7x10-12), while the opposite association 212 
was observed in 23andMe (rg=-0.31, P=9x10-81). This finding demonstrates that determinants of 213 
participation bias can vary substantially between studies. 214 
 215 
A notable association with sex was the obesity-associated FTO gene locus, where the body 216 
mass index (BMI) increasing allele was observed in 23andMe at higher frequency in males 217 
compared to females (rs10468280, OR 1.02 [1.02-1.03], P=4.4x10-36 Supplementary Table 1). 218 
The same direction and magnitude of effect at the FTO locus was also observed in the UK 219 
Biobank study (OR= 1.02 [1.01-1.03], P=3.6x10-5), with subsequent Mendelian Randomization 220 
analyses supporting a causal effect of BMI on sex in both 23andMe and UK Biobank 221 
(Supplementary Table 7). We note however that there was considerable heterogeneity in the 222 
dose-response relationship between BMI variants and sex, and it remains unclear through what 223 
mechanism genetically increased BMI leads to sex-differential study participaiton. 224 
Intriguingly the genetic correlation between BMI and sex was discordant between UK Biobank 225 
(rg=-0.13, P=2x10-04) and 23andMe (rg=0.10, P=9x10-08), a difference which appeared 226 
attributable to negative confounding by educational attainment (Supplementary Table 7). 227 
These results reinforce the need to take caution when inferring causality from a genetic 228 
correlation. 229 
 230 
[FIGURE 4] 231 
 232 
Traditional approaches to identify participation bias compare the distribution of the phenotype in 233 
the study with a representative population. For example, by comparing UK Biobank participants 234 
with UK census data, we could confirm that the difference in education level between 235 
participants and non-participants in UK biobank was higher in females compared to males 236 
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(Figure 5A and Supplementary Table 8). Such disproportional participation among females 237 
with higher education can be observed, without the need for census data, by comparing the 238 
distribution of polygenic scores in males vs females. By using data from the SSGAC 239 
consortium21, which did not include UK Biobank or 23andMe, we constructed a polygenic score 240 
for educational attainment. In UK Biobank, the average polygenic score was higher in females 241 
compared to males (P=7x10-23; t-test), consistent with the census analysis. We notice, however, 242 
that the observed education level in UK Biobank is significantly higher in males compared to 243 
females (t-test P=1x10-113) (Figure 5B). That is, the distribution of the phenotype between sexes 244 
among study participants does not provide information about the direction and degree of sex-245 
differential participation bias. 246 
Educational attainment is one of few examples where truly representative information at 247 
population level is available via the census. For other traits, where such information is not 248 
collected, genetic analysis provides a unique opportunity to identify novel sex-differential 249 
determinats of participation.  250 
 251 
 252 
[FIGURE 5] 253 
 254 
 255 
Sex-differential participant bias can influence downstreamn genetic analyses 256 
 257 
Next, we illustrate the potential effect of sex-differential participation bias on downstream 258 
genetic analyses using simulated and empirical data (Supplementary Figures 3-8, 259 
Supplementary Notes and Supplementary Table 9-10).  260 
 261 
First, we performed simulation analyses which demonstrate this bias can lead to spurious 262 
genetic correlations between two traits (Supplementary Figure 4). Furthermore, it can lead to 263 
an incorrect causal inference (assessed by MR analyses) between two phenotypes in a sex-264 
specific manner (Supplementary Figure 5). For example, a recently published paper by Censin 265 
and colleagues explored sex-specific differences in the causal effect of BMI on cardiometabolic 266 
outcomes in UK Biobank22. They concluded that the increased risk for Type 2 Diabetes (T2D) 267 
due to obesity differs between males and females  Their MR analysis used BMI measures that 268 
were standardised separately in males and females. They found a larger odds ratio (OR) for 269 
T2D per standardized increase in BMI genetic score in females (3.77) than in males (2.79). 270 
However, the standard deviation of BMI in UK Biobank is larger in females (~5.1 kg/m2) than in 271 
males (~4.2 kg/m2), and we find that this sex difference in the variance of BMI accounts for the 272 
apparent sex difference in the effect of BMI on T2D risk. In an alternative approach, using 273 
exactly the same UK Biobank data, we scaled the BMI in males and females to the same sex-274 
combined standard deviation (~4.75 kg/m2) and observed no difference in the effect of BMI 275 
genetic score on T2D risk between males and females (OR 3.03 vs 3.03). Therefore BMI 276 
contributes more to T2D risk in women than it does to men as it has a wider phenotypic 277 
distribution, but importantly a one unit increase of BMI is no more harmful for T2D risk in women 278 
than men. Although in this case the differences in the variance of BMI between males and 279 
females likely reflects the distribution in the general population, similar differences could 280 
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potentially arise from sex differences in study participation bias. We performed simulation 281 
analyses to demonstrate the possible extent of participation bias by BMI on the relationship 282 
between BMI genetic score and T2D (Supplementary Table 10). Under even modest BMI 283 
sampling biases we saw artificial sex differences in the association between BMI genetic score 284 
and T2D, and in the most extreme sampling parameters the direction of sex differences flipped, 285 
with BMI genetic score-T2D effect estimates ranging from ORmale=2.71 and ORfemale=3.49 to 286 
ORmale=3.86 and ORfemale=2.61. These results highlight the challenges of performing and 287 
interpreting sex-specific analyses in studies where the exposure variable may be influenced by 288 
sex differences in participation bias. 289 
 290 
Second, in a scenario where sex-differential participation bias exists, adjusting for sex as a 291 
covariate in a GWAS could bias effect estimates of individual variants (Supplementary Figure 292 
6). To confirm this observation from simulations, we ran 565 GWASs of heritable traits in the UK 293 
Biobank, with and without including sex as a covariate and estimated genetic correlations 294 
between them. The results were highly consistent (Supplementary Figure 7) between the two 295 
analyses, with sizable differences observed for only highly sex-differentiated traits (e.g. 296 
testosterone levels). Importantly, sex-differential participation bias does not impact the genetic 297 
correlation between males and females for a given phenotype (Supplementary Figure 8). We 298 
caution that although current sample sizes do not seem impacted by the inclusion of sex as 299 
covariate, this may become more problematic as sample sizes continue to grow. 300 
 301 
 302 
A proposed framework for correcting for participation bias in genetic studies 303 
 304 
Whilst study design and participant recruitment strategy are the most likely factors influencing 305 
participation bias, we identified both novel and existing methodologies that can be used to 306 
reduce the associated biases. Inverse-probability-of-sampling-weighted (IPW) regression has 307 
been applied to achieve unbiased estimates from analyses of case-control data23,24. Dudbridge, 308 
Mahmoud and colleagues25,26 have proposed a correction for a special type of participation bias 309 
that occurs when only cases of a disease are considered, for example, to identify genetic factors 310 
associated with disease prognosis. We propose two additional conceptual frameworks and 311 
show how they can be implemented in genomicSEM27. The key quantities included in the two 312 
methods are illustrated in Figure 6, where the path diagram  depicts the simplest possible 313 
scenarios where selective participation induces collider bias and the method’s description is 314 
further expanded in the Supplementary Notes and Supplementary Figure 9. 315 
First, we derive a generalization of Heckman correction for genetic data. Heckman correction28 316 
is commonly used in econometrics to correct for the association between an exposure X and 317 
outcome Y when the outcome is observed only in study participants (hereby called Y*) and thus 318 
subjected to participation bias. The intuition behind Heckman’s regression is that the predicted 319 
probability of study participation (S) can be used to adjust the association between Y* and X*. 320 
Such predicted probability is obtained from X, which needs to be observed in the entire 321 
population, and an additional variable U that partially determines sample selection and is 322 
uncorrelated with Y. Such a variable is also called “instrument” in epidemiology and 323 
econometrics. 324 
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 325 
Second, we propose a novel method that is built on the following intuition: The magnitude of 326 
participation bias introduced between X* and Y* is proportional to the effects of Y and X on the 327 
probability of study participation (S).  By specifying a model where the bias and the effects 328 
which introduce the bias are forced through a single path, the genetic correlation between Y and 329 
X can be retrieved from the GWAS of Y*, X* and S. The proposed model, by constraining the 330 
covariance between Y and S, allows for only 1 path between S and Y, which means this path 331 
must accommodate both the source of the bias, and the bias. As these two quantities are 332 
proportional and in opposite directions, they cancel out. This method, unlike Heckman 333 
regression, does not require the predicted probability of study participation but rather a GWAS 334 
of participating individuals versus the population will suffice.  335 
 336 
[FIGURE 6] 337 
 338 
Whilst we validated the two approaches via simulations (Supplementary Table 11),  339 
future work is needed to generalize these methods to real data. The biggest hurdle to 340 
implementation of both bias corrections is they require (genetic) information, in the form of allele 341 
frequencies of common variants, from the general population or at least a representative sample 342 
therefore. The collection of this information, for example by establishing a “Census of human 343 
genetic variation”, should be the primary focus of future activities in this area. 344 
 345 
Discussion 346 
 347 
Most large-scale biobank studies do not employ a study design that guarantees participants to 348 
be representative of the general population29,30,31,32,33,34. Lack of representativeness is not per-se 349 
problematic if this is taken into account in the interpretation of the results6. In this study, we 350 
show an example of how sex-differentiated participation bias can lead to spurious associations 351 
and ultimately an incorrect biological inference. In practice, the impact of more general forms of 352 
participation bias on genetic results is hard to tease apart for most traits. Here we use sex, 353 
which provided a robust  negative control, to identify determinants of participation  of bias that 354 
differentially impact male and female participants.  355 
We demonstrate that sex-differential participation bias results in sex being heritable on the 356 
autosomes and genetically correlated with the complex traits that influence sex-differential study 357 
participation. For example, alleles associated with increased BMI are under-represented in 358 
females compared to males in both UK Biobank and 23andMe. This suggests that females with 359 
a higher genetic risk of obesity may be less likely to participate in studies than their male 360 
equivalents (or that genetically lean males are more likely to), although the mechanism by which 361 
genetically determined BMI influences participation is unclear. These sex-differentiated biases 362 
could also have opposing effects between studies - alleles associated with increased 363 
educational attainment were over-represented in females from 23andMe but under-represented 364 
in males in UK Biobank. While these results reflect group differences in participation between 365 
male and female, we cannot make inferences about the mechanism by which changes in BMI 366 
(for example) between sexes leads to differential participation. This may be due to clinical, 367 
social or cultural factors that lead to changes in the perception or expectations of individuals 368 
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engaging in research studies. Our results are consistent with the larger effect - and bias - 369 
observed in the association between sex and cardiovascular mortality when UK Biobank was 370 
compared with a population-representative health survey35.  We conclude that sex specific 371 
participation can obscure true, or induce false, sex specific associations, and complicate the 372 
study of health disparities between males and females.  373 
 374 
Ultimately better understanding of the distribution of allele frequencies in a sample 375 
representative of the general population would enable detection and correction of participation 376 
bias. However, databases of genetic variation such as gnomAD36 are unlikely to be 377 
representative because they include studies with a wide range of enrollment designs and 378 
settings. We suggest that national efforts aimed at establishing a “Census of human genetic 379 
variation” could complement and enhance current approaches. This could  be achieved via 380 
genotyping of neonatal dried blood spots. Ethical concerns on privacy breaches can be 381 
prevented by using sample pooling approaches within pre-defined geographical strata and 382 
ethnic groups, as well as releasing solely the population allele frequency for scientific use and 383 
restricting access to the underlying genotype data. Where legislation allows, efforts like the 384 
iPSYCH study can be implemented5. This study has already shown the benefits of providing 385 
accurate population-based estimates of rare copy number variants37. An effort far more modest 386 
than iPSYCH could obtain the population allele frequency from neonatal dried blood spots in a 387 
manner that guarantees anonymity, while significantly strengthening inference in studies whose 388 
sample isn’t representative. Such an approach would be necessary to implement the correction 389 
frameworks that we proposed. 390 
 391 
In summary, we demonstrate that genetic analyses can uniquely profile the complex traits and 392 
behaviours underpinning aspects of participation bias in epidemiological studies. We hope that 393 
future studies will build on our observations,create resources and tools for more systematically 394 
identifying and correcting broader forms of participation bias and its effect on genetic 395 
association testing. 396 
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--------------------------------- 413 
Box 1 414 
 415 
Participation bias:  Participation - also called “selection” or “sampling” - bias is observed when 416 
participation in a study is not random38,39. Participation bias can impact prevalence estimates 417 
and results in biased association estimates. This latter phenomenon is caused because 418 
participation in a study acts as a “collider”. If two variables independently cause a third variable 419 
(the collider), conditioning on the collider (i.e. conditioning on study participation) can cause a 420 
spurious association between the two variables. In Supplementary Figure 2 we draw 3 path 421 
diagrams representing different types of participation bias. 422 
 423 
Sex-differential participation bias: Sex-differential participation bias is a special case of 424 
participation bias where the determinants of study participation are sex-specific. While 425 
participation bias can only be detected if information about individuals that did not participate in 426 
the study is available, sex-differential participation bias can be detected by comparing variant 427 
frequencies between males and females that participated in the study.  428 
 429 
-------------------------------- 430 
 431 
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Tables and Figures 457 
 458 
Figure 1: Manhattan plot for a GWAS of sex in 2,462,132 participants from 23andMe 459 
 460 
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Figure 2: SNP-heritability on the liability scale for sex across 5 studies. For each study, we 462 
report the number of females/males included in the analysis. In red studies characterized by 463 
“active” participation, in blue studies with “passive” participation. iPSYCH heritability is negative 464 
and therefore set to 0. Definitions of “active” and “passive” are ad-hoc for this study and 465 
encompass heterogeneous enrollment strategies and consent modalities. 466 
 467 
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Figure 3: Illustration of the concept and consequences of sex-differential participation bias. A. 482 
Schematic representation of sex-differential participation bias. Because males and females 483 
distribute differently for a certain trait in the selected study population, variants associated with 484 
the trait become associated with sex. B. heritability of sex increases as function of sex-485 
differential participation bias expressed as the percentage of males and females above the 486 
median of the phenotype included in the study. If there is no bias this value is 50% for both 487 
males and females. Error bars represent the confidence intervals for the heritability estimate. C. 488 
variants associated with sex are also associated with the phenotype in a dose-responded 489 
manner. Mendelian randomization would indicate a causal relationship between sex and the 490 
phenotype. Here we consider only variants genome-wide significantly associated with the 491 
phenotype in the fourth scenario of panel B (39%,61%). Error bars represent the confidence 492 
intervals for the SNP effect size. 493 

 494 
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Figure 4: Genetic correlation with being born female vs male and 38 traits in UK biobank and 496 
23andMe. Only correlations that are significant in at least one of the two studies are highlighted. 497 
Error bars represent the confidence intervals for the genetic correlation estimate. 498 
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 500 
Figure 5: (A) Comparing highest education level between 2011 England and Wales census 501 
data (in red) with UK Biobank (in blue). We only considered regional census districts with at 502 
least one UK Biobank participant. The difference in the average education level between males 503 
and females is higher in the general population than in participants in UK Biobank. Error bars 504 
represent the confidence intervals for the mean taking into account the sampling design. No 505 
confidence intervals were considered for the census data because the entire population was 506 
included. (B) Polygenic score (PS) for educational attainment is significantly higher in females 507 
compared to males in UK Biobank, vice versa, the number of years of schooling is higher in 508 
males. Error bars represent the confidence intervals for the mean.  509 
 510 
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 512 
Figure 6: Path diagram for a simple case of participation bias. X is the exposure and Y is the 513 
outcome. S is the “participation” into the study. U represents a variable that also influences 514 
selection but is not associated with Y. This is often called “instrument”.  Each of these quantities 515 
is heritable and a GWAS can be performed. When a variable is observed only among study 516 
participants we add a * to the notation.  X* or Y* represents X or Y only in individuals that 517 
participate in the study (S=1). 518 
 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.22.001453doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.001453
http://creativecommons.org/licenses/by-nd/4.0/


References 528 

1. Prictor, M., Teare, H. J. A. & Kaye, J. Equitable Participation in Biobanks: The Risks and 529 

Benefits of a ‘Dynamic Consent’ Approach. Front Public Health 6, 253 (2018). 530 

2. Leitsalu, L. et al. Cohort Profile: Estonian Biobank of the Estonian Genome Center, 531 

University of Tartu. Int. J. Epidemiol. 44, 1137–1147 (2015). 532 

3. Klijs, B. et al. Representativeness of the LifeLines Cohort Study. PLoS One 10, e0137203 533 

(2015). 534 

4. Fry, A. et al. Comparison of Sociodemographic and Health-Related Characteristics of UK 535 

Biobank Participants With Those of the General Population. Am. J. Epidemiol. 186, 1026–536 

1034 (2017). 537 

5. Pedersen, C. B. et al. The iPSYCH2012 case-cohort sample: new directions for unravelling 538 

genetic and environmental architectures of severe mental disorders. Mol. Psychiatry 23, 6–539 

14 (2018). 540 

6. Rothman, K. J., Gallacher, J. E. J. & Hatch, E. E. Why representativeness should be 541 

avoided. Int. J. Epidemiol. 42, 1012–1014 (2013). 542 

7. Keyes, K. M. & Westreich, D. UK Biobank, big data, and the consequences of non-543 

representativeness. Lancet 393, 1297 (2019). 544 

8. Swanson, J. M. The UK Biobank and selection bias. The Lancet vol. 380 110 (2012). 545 

9. Elwood, J. M. Commentary: On representativeness. International journal of epidemiology 546 

vol. 42 1014–1015 (2013). 547 

10. Pizzi, C. et al. Sample selection and validity of exposure-disease association estimates in 548 

cohort studies. J. Epidemiol. Community Health 65, 407–411 (2011). 549 

11. Richiardi, L., Pizzi, C. & Pearce, N. Commentary: Representativeness is usually not 550 

necessary and often should be avoided. International journal of epidemiology vol. 42 1018–551 

1022 (2013). 552 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.22.001453doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.001453
http://creativecommons.org/licenses/by-nd/4.0/


12. Perry, J. R. B. et al. Stratifying type 2 diabetes cases by BMI identifies genetic risk variants 553 

in LAMA1 and enrichment for risk variants in lean compared to obese cases. PLoS Genet. 554 

8, e1002741 (2012). 555 

13. Martin, J. et al. Association of Genetic Risk for Schizophrenia With Nonparticipation Over 556 

Time in a Population-Based Cohort Study. Am. J. Epidemiol. 183, 1149–1158 (2016). 557 

14. Taylor, A. E. et al. Exploring the association of genetic factors with participation in the Avon 558 

Longitudinal Study of Parents and Children. Int. J. Epidemiol. 47, 1207–1216 (2018). 559 

15. Adams, M. J. et al. Factors associated with sharing e-mail information and mental health 560 

survey participation in large population cohorts. Int. J. Epidemiol. (2019) 561 

doi:10.1093/ije/dyz134. 562 

16. Tyrrell, J. et al. Genetic predictors of participation in optional components of UK Biobank. 563 

Preprint at https://www.biorxiv.org/content/10.1101/531210v3 (2020). 564 

17. Munafò, M. R., Tilling, K., Taylor, A. E., Evans, D. M. & Davey Smith, G. Collider scope: 565 

when selection bias can substantially influence observed associations. Int. J. Epidemiol. 47, 566 

226–235 (2018). 567 

18. Boraska, V. et al. Genome-wide meta-analysis of common variant differences between men 568 

and women. Hum. Mol. Genet. 21, 4805–4815 (2012). 569 

19. Ryu, D., Ryu, J. & Lee, C. Genome-wide association study reveals sex-specific selection 570 

signals against autosomal nucleotide variants. J. Hum. Genet. 61, 423–426 (2016). 571 

20. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex 572 

traits. Nat. Genet. 51, 1339–1348 (2019). 573 

21. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association 574 

study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 575 

(2018). 576 

22. Censin, J. C. et al. Causal relationships between obesity and the leading causes of death in 577 

women and men. PLoS Genet. 15, e1008405 (2019). 578 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.22.001453doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.001453
http://creativecommons.org/licenses/by-nd/4.0/


23. Richardson, D. B., Rzehak, P., Klenk, J. & Weiland, S. K. Analyses of case-control data for 579 

additional outcomes. Epidemiology 18, 441–445 (2007). 580 

24. Monsees, G. M., Tamimi, R. M. & Kraft, P. Genome-wide association scans for secondary 581 

traits using case-control samples. Genet. Epidemiol. 33, 717–728 (2009). 582 

25. Dudbridge, F. et al. Adjustment for index event bias in genome-wide association studies of 583 

subsequent events. Nat. Commun. 10, 1561 (2019). 584 

26. Mahmoud, O., Dudbridge, F., Smith, G. D., Munafo, M. & Tilling, K. Slope-Hunter: A robust 585 

method for index-event bias correction in genome-wide association studies of subsequent 586 

traits. Preprint at https://biorxiv.org/content/10.1101/2020.01.31.928077v1 (2020). 587 

27. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the 588 

multivariate genetic architecture of complex traits. Nat Hum Behav 3, 513–525 (2019). 589 

28. Heckman, J. J. Sample Selection Bias as a Specification Error. Econometrica 47, 153 590 

(1979). 591 

29. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide 592 

range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015). 593 

30. Gaziano, J. M. et al. Million Veteran Program: A mega-biobank to study genetic influences 594 

on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016). 595 

31. Chen, Z. et al. China Kadoorie Biobank of 0.5 million people: survey methods, baseline 596 

characteristics and long-term follow-up. Int. J. Epidemiol. 40, 1652–1666 (2011). 597 

32. Dewey, F. E. et al. Distribution and clinical impact of functional variants in 50,726 whole-598 

exome sequences from the DiscovEHR study. Science 354, (2016). 599 

33. Gottesman, O. et al. The Electronic Medical Records and Genomics (eMERGE) Network: 600 

past, present, and future. Genet. Med. 15, 761–771 (2013). 601 

34. All of Us Research Program Investigators et al. The ‘All of Us’ Research Program. N. Engl. 602 

J. Med. 381, 668–676 (2019). 603 

35. Batty, G. D., Gale, C. R., Kivimäki, M., Deary, I. J. & Bell, S. Comparison of risk factor 604 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.22.001453doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.001453
http://creativecommons.org/licenses/by-nd/4.0/


associations in UK Biobank against representative, general population based studies with 605 

conventional response rates: prospective cohort study and individual participant meta-606 

analysis. BMJ 368, m131 (2020). 607 

36. Karczewski, K. J. et al. Variation across 141,456 human exomes and genomes reveals the 608 

spectrum of loss-of-function intolerance across human protein-coding genes. Preprint at 609 

https://www.biorxiv.org/content/10.1101/531210v3 (2019). 610 

37. Olsen, L. et al. Prevalence of rearrangements in the 22q11.2 region and population-based 611 

risk of neuropsychiatric and developmental disorders in a Danish population: a case-cohort 612 

study. Lancet Psychiatry 5, 573–580 (2018). 613 

38. Hernán, M. A., Hernández-Díaz, S. & Robins, J. M. A structural approach to selection bias. 614 

Epidemiology 15, 615–625 (2004). 615 

39. Infante-Rivard, C. & Cusson, A. Reflection on modern methods: selection bias-a review of 616 

recent developments. Int. J. Epidemiol. 47, 1714–1722 (2018). 617 

 618 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.22.001453doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.001453
http://creativecommons.org/licenses/by-nd/4.0/


1 
 

Supplementary notes 
 
Contributing cohorts 2 

23andMe 2 

UK Biobank 4 

iPSYCH 5 

Finngen 7 

Biobank Japan 8 

GWAS of sex 10 

Identification of independent loci and additional QC of results from 23andMe 10 

Pleiotropy analysis 10 

Extract results from the GWAS catalog 11 

Comparison of full GWAS vs individuals < 30 years old in 23andMe 11 

Heritability estimation of sex 12 

Genetic correlations 13 

Generation of genetic scores for educational attainment 13 

Census data analysis 13 

Participation bias simulations 14 

Sex-specific MR analysis 17 

GWAS of 565 heritable traits with and without adjustment for sex 18 

Heckman correction 18 

  
 
 

	  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.03.22.001453doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.001453
http://creativecommons.org/licenses/by-nd/4.0/


2 
 

Contributing cohorts 

23andMe 
 
Cohort description 
23andMe Inc. is a personal genetics company founded in 2006. Data for this study were 
available for approximately 2,462,000 individuals of European ancestry who provided informed 
consent and answered surveys online according to a human subjects protocol approved by 
Ethical & Independent Review Services, a private institutional review board. In this study we 
included 1,301,549 females and 1,160,583 males. 
 
Genotyping and imputation 
Genotyping 
Genotyping was performed on various genotyping platforms: V1 and V2 Illumina 
HumanHap550+Beadchip (560,000 markers), V3 Illumina OmniExpress+Beadchip (950,000 
markers), V4 custom (570,000 markers) and V5 Illumina Infinium Global Screening Array 
(~640,000 SNPs) supplemented with ~50,000 SNPs of custom content.  
 
Imputation 
We combined the May 2015 release of the 1000 Genomes Phase 3 haplotypes1 with the UK10K 
imputation reference panel2 to create a single unified imputation reference panel. To do this, 
multiallelic sites with N alternate alleles were split into N separate biallelic sites. We then 
removed any site whose minor allele appeared in only one sample. For each chromosome, we 
used Minimac33 to impute the reference panels against each other, reporting the best-guess 
genotype at each site. This gave us calls for all samples over a single unified set of variants. We 
then joined these together to get, for each chromosome, a single file with phased calls at every 
site for 6,285 samples. Throughout, we treated structural variants and small indels in the same 
way as SNPs. 
In preparation for imputation, we split each chromosome of the reference panel into chunks of no 
more than 300,000 variants, with overlaps of 10,000 variants on each side. We used a single 
batch of 10,000 individuals to estimate Minimac3 imputation model parameters for each chunk. 
To generate phased participant data for the v1 to v4 platforms, we used an internally-developed 
tool, Finch, which implements the Beagle graph-based haplotype phasing algorithm4, modified to 
separate the haplotype graph construction and phasing steps. Finch extends the Beagle model to 
accommodate genotyping error and recombination, in order to handle cases where there are no 
consistent paths through the haplotype graph for the individual being phased. We constructed 
haplotype graphs for all participants from a representative sample of genotyped individuals, and 
then performed out-of-sample phasing of all genotyped individuals against the appropriate graph. 
 
GWAS 
Ancestry assignment 
We restrict participants to a set of individuals who have a specified ancestry determined through 
an analysis of local ancestry. Briefly, our algorithm first partitions phased genomic data into 
short windows of about 300 SNPs. Within each window, we use a support vector machine 
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(SVM) to classify individual haplotypes into one of 31 reference populations 
(https://www.23andme.com/ancestry-composition-guide/). 
The SVM classifications are then fed into a hidden Markov model (HMM) that accounts for 
switch errors and incorrect assignments, and gives probabilities for each reference population in 
each window. Finally, we used simulated admixed individuals to recalibrate the HMM 
probabilities so that the reported assignments are consistent with the simulated admixture 
proportions. The reference population data is derived from public datasets (the Human Genome 
Diversity Project, HapMap, and 1000 Genomes), as well as 23andMe customers who have 
reported having four grandparents from the same country. European participants were identified 
using the following classification probabilities: European + Middle Eastern > 0.97, European > 
0.90. 
 
Relatedness 
A maximal set of unrelated individuals was chosen for each analysis using a segmental identity-
by-descent (IBD) estimation algorithm5. Individuals were defined as related if they shared more 
than 700 cM IBD, including regions where the two individuals share either one or both genomic 
segments IBD. This level of relatedness (roughly 20% of the genome) corresponds 
approximately to the minimal expected sharing between first cousins in an outbred population.  
 
Association 
We compute association test results for the genotyped and the imputed SNPs. For case-control 
phenotypes, we compute association by logistic regression assuming additive allelic effects. For 
tests using imputed data, we use the imputed dosages rather than best-guess genotypes. As 
standard, we include covariates for age, the top five principal components to account for residual 
population structure, and indicators for genotype platforms to account for genotype batch effects. 
The association test P-value we report is computed using a likelihood ratio test, which in our 
experience is better behaved than a Wald test on the regression coefficient.  
For QC of genotyped GWAS results, we excluded SNPs that were only genotyped on our “v1” 
and/or “v2” platforms due to the small sample size. Using trio data, we excluded SNPs that failed 
a test for parent-offspring transmission; specifically, we regressed the child’s allele count against 
the mean parental allele count and flagged SNPs with fitted β<0.6 and P<10−20 for a test of β<1. 
We excluded SNPs with a Hardy-Weinberg P<10−20, or a call rate of <90%. We also tested 
genotyped SNPs for genotype date effects and flagged SNPs with P<10−50 by ANOVA of SNP 
genotypes against a factor dividing genotyping date into 20 roughly equal-sized buckets. We 
excluded SNPs with a large sex effect (ANOVA of SNP genotypes, r2>0.1). Finally, we excluded 
SNPs with probes matching multiple genomic positions in the reference genome (‘self chain’). 
For imputed GWAS results, we excluded SNPs that had strong evidence of a platform batch 
effect. The batch effect test is an F test from an ANOVA of the SNP dosages against a factor 
representing v4 or v5 platform; we flagged results with P<10−50. Variants with imputation INFO 
score < 0.8 or MAF < 0.01 were excluded from the analysis. 
 

UK Biobank       
 
Cohort description     
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The UK Biobank cohort is a population-based cohort of approximately 500,000 participants that 
were recruited in the United Kingdom between 2006 and 20106 . Invitations to participate were 
sent out to approximately 9.2 million individuals aged between 40 and 69 who lived within 25 
miles of one of the 22 assessment centers in England, Wales, and Scotland. The participation rate 
for the baseline assessment was about 5.5%. From these participants, extensive questionnaire 
data, physical measurements, and biological samples were collected at one of the assessment 
centers. In this study, we included 245,351 females and 206,951 males. 
 
Genotyping and imputation 
We used genotype data from the May 2017 release of imputed genetic data from the UK 
Biobank. The quality control and imputation were done by UK Biobank and have been described 
elsewhere6 . Briefly, genotyped variants were filtered based on batch effects, plate effects, 
departures from HWE, genotype platform, and discordance across control replicates. Participant 
samples were excluded based on missing rate, inconsistencies in reported versus genetic sex, and 
heterozygosity based on a set of 605,876 high-quality autosomal markers. Imputation was 
performed using IMPUTE4 with the HRC UK10K and 1000 Genomes Phase 3 dataset used as 
the reference set.  
 
GWAS 
 
Ancestry assignment 
We defined a subset of ‘white European’ ancestry samples using a k-means-clustering approach 
that was applied to the first four principal components calculated from genome-wide SNP 
genotypes. Individuals clustered into this group who self-identified by questionnaire as being of 
an ancestry other than white European were excluded.  
 
Association 
Association testing was performed using a linear mixed model implemented in BOLT-LMM7 to 
account for cryptic population structure and relatedness. Only autosomal genetic variants that 
were common (minor allele frequency (MAF) > 1%), passed quality control in all 106 batches 
and were present on both genotyping arrays were included in the genetic relationship matrix. 
Genotyping chip, age at baseline and ten genetically derived principal components were included 
as covariates. Variants with imputation INFO score < 0.8 or MAF < 0.01 were excluded from the 
analysis.  
 

iPSYCH 
 
Cohort description 
The iPSYCH sample is a population-based case-cohort sample extracted from a baseline cohort 
consisting of all children born in Denmark between May 1st, 1981 and December 31st, 20058. 
Eligible were singletons born to a known mother and resident in Denmark on their one-year 
birthday. Cases were identified from the Danish Psychiatric Central Research Register 
(DPCRR)9, which includes data on all individuals treated in Denmark at psychiatric hospitals 
(from 1969 onwards) as well as at outpatient psychiatric clinics (from 1995 onwards). Cases 
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were identified with schizophrenia, bipolar affective disorder, affective disorder, ASD and 
ADHD up until 2012. The controls constitute a random sample from the set of eligible subjects. 
The average (standard deviation) age of the individuals at recruitment (1st January 2012) was 
18.3 (6.38) for males and 20.5 (6.16) for females. In this study, we included 31,012 females and 
34,879 males. 
 
Genotyping and imputation 
 
Genotyping 
Genotyping was performed at the Broad Institute (Cambridge, MA, USA) using the PsychChip 
array from Illumina (CA, San Diego, USA) according to the instructions of the manufacturer. 
Genotyping was carried out on the full iPSYCH sample in 23 waves and so was the subsequent 
data processing. Genotype calling of markers is described elsewhere 
(https://sites.google.com/a/broadinstitute.org/ricopili/utilities/merge-calling-algorithms). Prior to 
the subsequent QC and imputation SNPs were excluded when they were on either of two lists: a) 
a global blacklist comprising SNPs for which genotyping failed in 4 cohorts genotyped at the 
Broad as part of the PsychChip project (Psychiatric Genomics Consortium) with Illumina’s 
PsychChip and/or b) a local blacklist of SNPs for which the MAF in the GenCall and Birdseed 
call sets where substantially different (∆MAF > 5%) prior to the merging of variants. 
 
Imputation 
Before subsequent imputation, the data was (strand) aligned with the respective reference 
sample. Phasing was achieved using SHAPEIT v210 and imputation was done by IMPUTE211 
with haplotypes from the 1000 Genomes Project, phase 3 (1kGP3) as reference.  
 
GWAS 
Relatedness 
Totally 78,050 genotyped individuals were available for analysis. Among them, 11,128 
individuals were identified to be related (piHAT > 0.2). Relatedness was measured using Identity 
by descent (IBD) analysis using Plink V.1.90. Those individuals with piHAT > 0.2 were 
considered as related. Among the 11,128 related individuals, one of each pair of related 
individuals was removed randomly. Totally 5,652 individuals were removed and 5,476 
individuals were retained. Hence, a total of 72,398 individuals were taken forward for principal 
component analysis. 
 
Ancestry assignment 
Principal component analysis was done for 72,398 individuals using EIGENSOFT program 
(SMART PCA). Only high quality imputed variants (N markers=22,576) with MAF > 0.01, 
missing rate < 0.01 and INFO > 0.8 were used to perform PCA. The variants were LD pruned 
(R2 < 0.2) before PCA. All the pairwise scatter plots for PCs 1 to 10 were visualized and the first 
3 PCs were chosen for outlier detection. Among the 72,398 individuals, 44,158 individuals were 
Danes for at least three generations (they, their parents, their paternal and maternal grandparents, 
all born in Denmark). A 3-dimensional Ellipsoid was constructed using the principal components 
1, 2 and 3 of only the pure Danes with a radius of 5 standard deviations. Totally 6,499 
individuals lied outside this ellipsoid and so were considered population outliers and were 
removed, leaving behind 65,899 individuals for further analysis.  
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The principal component analysis was repeated after restricting to 65,899 European individuals. 
The first ten PCs were then used as covariates. 
 
Association 
Among the 65,899 individuals, information about sex was missing for eight individuals (either 
NA or mismatched during cross-verification), hence they were removed leaving behind 65,891 
for GWAS analysis, which comprises 31,012 females and 34,879 males. The 65,891 individuals 
comprise of individuals with at least one of the six psychiatric disorders and controls (without 
any of the six psychiatric disorders). 22,439 individuals were controls. 
The GWAS analyses were conducted using Plink V1.90 using --dosage argument. The covariates 
included were: age, age squared, 10 first principal components, wave number (as one-hot 
encoding), psychiatric disorder type (as one-hot encoding). After the GWAS, the variants with 
INFO < 0.8 and MAF < 0.01 are removed. Analysis done only on the controls gave similar 
results, but with lower power because of the smaller sample size.  
 

Finngen 
 
Cohort description 
FinnGen is a public-private partnership project combining genotype data from Finnish biobanks 
and digital health record data from Finnish health registries (https://www.finngen.fi/en). Six 
regional and three country-wide Finnish biobanks participate in FinnGen. Finngen also includes 
data from previously established populations and disease-based cohorts. However, since we are 
interested in “passive” participation, we excluded individuals enrolled via epidemiological 
studies and only considered “passive”, hospital-based recruitments. We used genotype and 
phenotype data of 150,831 participants (86,694 females and 64,137 males), excluding population 
outliers via PCA. Finngen participants ages ranged from 18 to 110 years.  
 
Genotyping and imputation 
 
Genotyping 
Samples were genotyped with Illumina (Illumina Inc., San Diego, CA, USA) and Affymetrix 
arrays (Thermo Fisher Scientific, Santa Clara, CA, USA). Genotype calls were made with 
GenCall and zCall algorithms for Illumina and AxiomGT1 algorithm for Affymetrix data. Chip 
genotyping data produced with previous chip platforms and reference genome builds were lifted 
over to build version 38 (GRCh38/hg38) following the protocol described here: 
dx.doi.org/10.17504/protocols.io.nqtddwn. In sample-wise quality control, individuals with 
ambiguous sex, high genotype missingness (>5%), excess heterozygosity (+-4SD) and non-
Finnish ancestry were removed. In variant-wise quality control variants with high missingness 
(>2%), low HWE P-value (<1e-6) and minor allele count, MAC<3 were removed. Chip 
genotyped samples were pre-phased with Eagle 2.3.5 
(https://data.broadinstitute.org/alkesgroup/Eagle/) with the default parameters, except the number 
of conditioning haplotypes was set to 20,000. 
 
Genotype imputation with a population-specific reference panel 
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High-coverage (25-30x) WGS data (N= 3,775) were generated at the Broad Institute and at the 
McDonnell Genome Institute at Washington University; and jointly processed at the Broad 
Institute. Variant call set was produced with GATK HaplotypeCaller algorithm by following 
GATK best-practices for variant calling. Genotype-, sample- and variant-wise QC was applied in 
an iterative manner by using the Hail framework (https://github.com/hail-is/hail) v0.1 and the 
resulting high-quality WGS data for 3,775 individuals were phased with Eagle 2.3.5 as described 
above. Genotype imputation was carried out by using the population-specific SISu v3 imputation 
reference panel with Beagle 4.1 (version 08Jun17.d8b, 
https://faculty.washington.edu/browning/beagle/b4_1.html) as described in the following 
protocol: dx.doi.org/10.17504/protocols.io.nmndc5e. Post-imputation quality-control involved 
non-reference concordance analyses, checking expected conformity of the imputation INFO-
values distribution, MAF differences between the target dataset and the imputation reference 
panel and checking chromosomal continuity of the imputed genotype calls. 
 
GWAS 
 
Ancestry assignment  
For principal components analysis, FinnGen data was combined with 1000 genomes data. 
Related individuals (<3rd degree)  were removed using King software12. We considered common 
(MAF >= 0.05)  high quality variants: not in chromosome X, imputation INFO>0.95, genotype 
imputed posterior probability>0.95 and missingess<0.01. LD-pruned (r2<0.1) common variants 
were used for computing PCA with Plink 1.92.  
 
Association 
SAIGE mixed model logistic regression 
(https://github.com/weizhouUMICH/SAIGE/releases/tag/0.35.8.8 ) was used for association 
analysis. Age and 10 PCs and genotyping batch were used as covariates. Each genotyping batch 
was included as a covariate for an endpoint if there were at least 10 cases and 10 controls in that 
batch to avoid convergence issues. Variants with imputation INFO score < 0.8 or MAF < 0.01 
were excluded from the analysis. 
 

Biobank Japan 
 
Cohort description 
The BioBank Japan Project (https://biobankjp.org/english/index.html) is a national hospital-
based biobank started since 2003 as a leading project of the Ministry of Education, Culture, 
Sports, Science and Technology, Japan. The BBJ collected DNA, serum and clinical information 
from approximately 200,000 patients with any of 47 target diseases between fiscal years of 2003 
and 2007. Patients were recruited from 66 hospitals of 12 medical institutes throughout Japan 
(Osaka Medical Center for Cancer and Cardiovascular Diseases, the Cancer Institute Hospital of 
Japanese Foundation for Cancer Research, Juntendo University, Tokyo Metropolitan Geriatric 
Hospital, Nippon Medical School, Nihon University School of Medicine, Iwate Medical 
University, Tokushukai Hospitals, Shiga University of Medical Science, Fukujuji Hospital, 
National Hospital Organization Osaka National Hospital, and Iizuka Hospital). All patients were 
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diagnosed by professional physicians at the cooperating hospitals. Details of study design, 
sample collection, and baseline clinical information were described elsewhere13,14. 
 
Genotyping and Imputation 
We genotyped samples using i) the Illumina HumanOmniExpressExome BeadChip or ii) a 
combination of the Illumina HumanOmniExpress and the HumanExome BeadChip. We applied 
standard quality-control criteria for samples and variants as described elsewhere15. The 
genotypes were prephased using Eagle and imputed using Minimac3 with a reference panel 
using a combination of the 1000 Genomes Project Phase 3 (version 5) samples (n = 2,504) and 
whole-genome sequencing data of Japanese individuals (n = 1,037)15. 
 
Phenotype and GWAS 
We retrieved individuals’ sex from medical records, and excluded samples who have 
inconsistent sex with genetically determined sex based on genotypes. In total, we used 95,778 
males and 82,464 females for analysis. GWAS was conducted using PLINK v2.0 under a linear 
regression model with covariates including age and top 20 PCs. Variants with imputation INFO 
score < 0.8 or MAF < 0.01 were excluded from the analysis. 
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GWAS of sex 
The software and approach used were study-specific and described in Contributing cohorts. All 
studies coded females as “cases” and men as controls. In the 23andMe dataset, we further run a 
GWAS of sex only individuals younger than 30 years old at recruitment. 
 

Identification of independent loci and additional QC of results from 
23andMe 
To evaluate if the results of the GWAS of sex at birth in 23andMe were due to a technical 
artifact we embarked in additional quality controls. First, we used the FUMA pipeline16 to 
identify independent loci. In particular, we used pre-calculated LD (linkage disequilibrium) 
structure based on the European 1000 Genome panel to identify genome-wide significant SNPs 
independent from each other at r2 < 0.6. Based on the identified independent significant SNPs, 
independent lead SNPs are defined if they are independent of each other at r2 < 0.1. Additionally, 
if LD blocks of independent significant SNPs are closely located to each other (< 250 kb based 
on the most right and left SNPs from each LD block), they are merged into one genomic locus. 
Each genomic locus can thus contain multiple independent significant SNPs and lead SNPs. This 
approach resulted in 158 loci. For each locus, we identified one directly genotyped SNPs with P-
value < 5x10-8. This resulted in 78 SNPs since not all loci had a genome-wide significant directly 
genotyped SNP. We extracted 50 bp upstream and downstream of each SNP using h19 reference 
genome and the R function getSeq from the package BSgenome. We chose 50 bp as this is the 
probe length on the Illumina Global Screening array. We used BLAT 
(https://genome.ucsc.edu/cgi-bin/hgBlat?command=start) to search each extracted sequence vs 
the human genome. We considered only matches on chromosome X and Y with 95% or greater 
similarity. We also considered stricter quality control metrics: Hardy-Weinberg disequilibrium 
threshold > 1x10-6, MAF > 5% and call rate > 98%. 
 

Pleiotropy analysis 
To test for association between the results from the GWAS of sex (imputed data) and other traits 
we used the results from the analysis of Watanabe et al17 , which considered GWAS results from 
4,155 publicly available GWASs. For each SNP we count the number of associated traits and 
categorized as 0, 1, 2, 3, 4, 5+. These results can be obtained by combining results from 
Supplementary Table 4 of Watanabe et al together with all the SNPs tested for pleiotropy, which 
are available here: https://github.com/dsgelab/genobias. We then use a chi-square test to compare 
the count distribution for the number SNPs that were GW-significant associated with sex vs all 
SNPs considered by Watanabe et al.  
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Extract results from the GWAS catalog 
We considered the most significant SNP for each of the 158 genome-wide significant loci and 
extracted all the SNPs in LD (r2 > 0.2 and distance < ±500Mb). To extract these SNPs we used 
the R implementation of LDproxy (https://ldlink.nci.nih.gov/?tab=ldproxy) and used an LD 
reference panel from 1000 genomes Northern Europeans. To identify traits significantly 
associated with these proxy SNPs we interrogate the GWAS catalog18 using the R package 
gwascat. The GWAS catalog was extracted in date 2nd December, 2019. We only considered 
reported association with P < 5x10-8 and extracted the EFO terms. 
 

Comparison of full GWAS vs individuals < 30 years old in 
23andMe 
To identify loci significantly associated with sex in individuals younger than 30 years old at 
recruitment we used the same pipeline described in “Identification of independent loci and 
additional QC of results from 23andMe”. To test the difference in effect sizes between the two 
analysis we used the following test: 
 

#$%%	&'	()*
1
,$%% #$%% −

1
,()* #()*

. 1
,$%%/

+ 1
,()*/ − 2 ∗ 3 1

,$%%/
1

,()*/ ∗ 456

	

 
Where ,$%%  = 78$%%  where Nall is the full sample size and ,()* = 78()*  where N<30 is the 
sample size for the people younger than 30. z-scores #$%% and #()* are obtained from the 
corresponding GWAS results, and cti is the intercept from the LD-score genetic correlation 
between the two analyses. We can obtain z-scores for the difference between the two analyses 
reweighted by the corresponding sample size to allow for differences in sample sizes between the 
two analyses.  
In order to verify if sample overlap would affect our results, we derived the expected z-scores for 
the GWAS run without the samples with age < 30. This was estimated as: 
 

#9)* =
#$%%7,9)*/ + ,()*/ − #()*,()*

,9)*
	

 
Where #9)*	is the expected z-score in people older than 30, and ,9)* = 78$%% − 8()* .  
Differences tested between the >30 and <30 datasets showed no difference with the ones 
observed in the overall dataset.  
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Heritability estimation of sex 
We used LD-score regression19 to estimate the proportion of variance in liability to sex at birth 
that could be explained by the aggregated effect of the SNPs. The method is based on the idea 
that an estimated SNP effect includes the effects of all SNPs in LD with that SNP. On average, a 
SNP that tags many other SNPs will have a higher probability of tagging a causal variant than a 
SNP that tags few other SNPs. Accordingly, for polygenic traits, SNPs with a higher LD-score 
have on average stronger effect sizes than SNPs with lower LD-scores. When regressing the 
effect size obtained from the GWAS against the LD-score for each SNP, the slope of the 
regression line gives an estimate of the proportion of variance accounted for by all analyzed 
SNPs. We included 1,217,312 SNPs (those available in the HapMap 3 reference panel). We used 
stratified LDscore regression, including LD and frequency annotation, similar to what is used by 
Gazal et al.20 since this has been shown to reduce bias in heritability estimation21–23  
Since sex is a dichotomous trait, which frequency changes across studies, we have transformed 
the observed heritability ℎ*/ into liability scale ℎ%/ using the following formula24: 
 

ℎ%/ =
ℎ*/(=(1 − >))/
@(1 − @)#/ 	

 
Where K is the prevalence of sex in the population (50%), P is the proportion of females in the 
study and z is the height of the normal curve corresponding to the prevalence of sex in the 
population. 
For estimation of heritability in Japan Biobank we used a LD score reference panel based on East 
Asian participants in 1000 genomes. 
 

Genetic correlations 
We used cross-trait LD-score regression to estimate the genetic covariation between traits using 
GWAS summary statistics25. The genetic covariance is estimated using the slope from the 
regression of the product of z-scores from two GWAS studies on the LD-score. The estimate 
obtained from this method represents the genetic correlation between the two traits based on all 
polygenic effects captured by SNPs. Standard LD-scores were used as provided by Bulik-
Sullivan et al.25 based on the 1000 genomes reference set, restricted to European populations. 
The decision of which summary statistics to include in the genetic correlation analysis was taken 
before analyzing the data by consensus across the authors of the paper. 
 

MR analysis and genomicSEM regression for BMI and sex  
We tested for possible casual effects of BMI on sex in both 23andMe and UK Biobank through 
MR. As instruments for the exposure, we utilized the 97 index SNPs associated BMI reported by 
Locke and colleagues [25673413]. We tested different methods (MR Egger, Weighted median, 
Inverse variance weighted, Simple mode, Weighted mode) as implemented in the R package 
TwoSmapleMR [29846171].  
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We then further investigate wether the discordance in genetic correlations between BMI and sex 
in UK Biobank (rg=-0.13, P=2x10-04) and 23andMe (rg=0.10, P=9x10-08 ) is due to a confounding 
effect of educational attainment. We implemented the following multiple regression model in 
genomicSEM [30962613] to estimate the genetic correlation between BMI and sex controlling 
for educational attainment: 
 

ABC	 = 	DEFGH	 +	D/IJ	 + 	K	 
BMI = β3EA + ε                                                                                                       

 
Results for both analyses are reported in Supplementary Table 7. 

 

Generation of genetic scores for educational attainment 
We used summary statistics for a GWAS of years of education26, which didn’t include Uk 
Biobank and 23andMe. To construct the polygenic score we used PRSice v.2.027. Briefly, PRSice 
performs a pruning (distance=250KB and r2=0.1) and thresholding approach. We then selected 
the P-value threshold that maximizes the predictive power of the score (P=0.195, 
N.SNPs=39,014). Polygenic score was only constructed for a subset of the UK Biobank 
including only white-British unrelated individuals (N=361,501) as described here: 
https://github.com/Nealelab/UK_Biobank_GWAS 
We constructed the polygenic score on the dataset including both males and females and then we 
compared if the average polygenic score differed between males and females using a t-test. Next, 
we compared the average years of education in the same dataset. We recorded the education 
level variable in Uk Biobank (“6138”) into years of education following the approach used by 
the SSGAC consortium: 1=20 years; 2=15 years; 3=13 years; 4=12 years; 5=19 years; 6=17 
years; -7=6 years; -3=missing.We then test for significant differences in education between 
males and females using a t-test. 
 

Census data analysis 
We obtained information about educational attainment from the UK Census from the year 2011. 
Data were extracted from the Office for National Statistics: 
https://www.nomisweb.co.uk/census/2011. We coded the qualification level collected in the 
census to match the corresponding levels in UK Biobank: 
 
Census: 
No qualifications => 1 
Level 1 qualifications => 2 
Level 2 qualifications => 3 
Apprenticeship => 4 
Level 3 qualifications => 5 
Level 4 qualifications and above: 6 
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Other qualifications => NA 
 
UK Biobank: 
1: College or University degree => 6 
2: A levels/AS levels or equivalent => 5 
3: O levels/GCSEs or equivalent => 2.5 
4: CSEs or equivalent => 2.5 
5: NVQ or HND or HNC or equivalent => 6 
6: Other professional qualifications eg: nursing, teaching => 6 
-7: None of the above => 1 
-3: Prefer not to answer => NA 
 
Information from the 2011 census was grouped by three age bins (35-49, 50-64, 65+), sex and 
Middle Layer Super Output Area (MSOA) regions from England and Wales. In total, 6,050 
MSOA regions with at least one UK Biobank participant were included. To map each individual 
to an MSOA region we used the home location coordinates (variables 22702 and 22704) with the 
moving date that was closest to 2011. We then use the sp R package (over function) to map the 
coordinates to the MSOA region coordinates obtained from 
https://census.mimas.ac.uk/dataset/2011-census-geography-boundaries-middle-layer-super-
output-areas-and-intermediate-zones-7. To estimate the average education level, separately in 
men and women in UK Biobank and in the census, we use the svydesign function from the 
survey R package. This function implements different types of sampling designs and, in this 
analysis, we used a stratified sampling design with three strata: age, sex, and MSOA region.  
 

Participation bias simulations 
To assess the effects of sex-differential participation bias we devised a sampling strategy to 
modulate the degree of bias and applied it to simulated data. 
We used genotype data of 350,000 unrelated individuals of European ancestry from UKBB and 
1,159,813 common HapMap variants to generate two synthetic phenotypes, y0 and y1. To ensure 
the phenotypes to be uncorrelated with sex and to have the same proportion of males and 
females, we first assigned to each individual a dummy variable representing sex, drawing values 
from a binomial distribution with p=0.5 
The phenotypes were simulated using the infinitesimal model28 as implemented in Hail version 
0.2.24, which assumes that the genetic component of a trait comes from a large number of small 
effects: 
 
LM = NOPMODO + KM, 
 
where LM is the phenotype of individual i, PMOis the genotype of individual i at SNP j, DO is the 
effect size of SNP j and KM is environmental noise. SNP effect sizes are modelled as normally 
distributed with mean 0 and variance equal to the imposed SNP-heritability divided by the 
number of SNPs, M: 
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D ∼ 8(0, ℎ//G). 
 
We looked at the effects of moderate and higher heritability, with values of ℎ/ =0.1 and ℎ/ =0.3 
for both traits. In both cases the traits were simulated as genetically uncorrelated. 
 
Sampling strategy 
 
Supplementary Figure 3 shows the basic workflow to simulate the phenotypes L0	and L1	and 
induce sex-differential participation bias. L0	and L1	are simulated to be genetically uncorrelated 
in the full population. Each individual is then assigned to a probability of being selected as 
follows: 
 

1. A variable z is computed as the weighted sum of the phenotypes: 
 

# = L0	UVW(XY) + L1	UVW(XY) + K,	
 
where K is random normally-distributed noise, K ∼ 8(0, 0.01), and the odd ratio (OR) 
represents the degree of participation bias. The higher the OR, the higher the participation 
bias since more individuals with greater values of the phenotypes will be selected. OR=1 
represents the case when no participation is induced. 
 

2. A sex-specific effect is given multiplying z by the parameter K in one sex: 
 
#[ 	= = ∗ #, #\ 	= # 
 
Lower (negative) values of K represent an higher sex-differential bias. K=0 and K=1 
represent two special cases where, respectively, one sex is sampled randomly and both 
sex are sampled equally (no sex-specific bias). 
 

3. The probability associated to each individual is computed as the logistic function of the 
sex-specific z 
 
](ABUB45B^|G) 	= E

E`a(bcd)	,  
](ABUB45B^|e) 	= E

E`a(bcf)
. 

 
We used different combinations of the parameters K ([-0.5,-0.3,0,0.3,0.7,1,1.5]) and OR ([1.2, 1.5, 
1.8, 2, 3]) to control the degree of bias induced. At each step the subsampled population 
contained nearly half of the original population.  
 
In Figure 3 we simulated an example scenario sampling only on phenotype L0 with ℎ/=0.3. We 
used K=-1 and OR=[1.2, 1.5, 1.8, 2, 4, 6, 8, 10]. 
 
Results 
 
Heritability of sex and Mendelian Randomization 
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Figure 3B shows how sex becomes heritable at the increasing of participation bias (keeping sex-
differential effect fixed.). Moreover, a causal effect between L0 and sex is induced, as shown is 
Figure 3C for OR=1.8. 
We reported the complete results from the simulations in Supplementary Table 9. As expected, 
with the increasing of participation bias also the SNP-heritability for sex increases and becomes 
significant. 
 
Genetic correlation between y0 and y1 
Supplementary Figure 4 shows that a spurious negative genetic correlation between the traits 
L0 and L1 (simulated as genetically uncorrelated) is induced and this effect increases at the 
increase of both parameters. Moreover, as shown in Supplementary Figure 6, this effect is 
exacerbated when adjusting for sex. However, this is issue arises only when there is a substantial 
sex-differential effect and in a realistic scenario (see Consistency between our simulation 
parameters and real data) corresponding to OR=1.2 and k=0.7 none of the mentioned effects is 
observed. 
 
Genetic correlation between males and females for a given phenotype 
Supplementary Figure 8 reports the genetic correlation between males and females for L0 and 
L1. This shows how participation bias does not arise any effect when stratifying the analysis for 
sex. 
 
Consistency between our simulation parameters and real data 
Our simulation strategy was designed to provide realistic scenarios of sampling bias. We used 
the differences in educational attainment (EA) between those UK Biobank individuals that 
participated in all the online 24-h diet follow up questionnaires vs. those that did not 
(Supplementary Table 8) and compared it with the differences in sampled and non-sampled 
individuals for L0 and L1 obtained from simulations. However, results reported in 
Supplementary Table 8 are on the observed scale and therefore not directly comparable with 
results from simulations, which use standardized variables. Thus, we standardized EA and 
obtained standardized differences between individuals that participated in all the online 24-h diet 
follow up questionnaires vs. those that did not of 0.30 and 0.37 standard deviations, in males and 
females respectively. Next, we assessed which OR and k parameter in the simulations would 
provide similar changes between the original group and the “sampled” group.  In our simulation, 
the closest value to these differences was observed for an OR=1.25 and a k parameter=0.7. 
 

Sex-specific MR analysis 
In order to verify the impact of sex differential participation bias on causal inference through MR 
using real data, we imposed additional bias to a real example from the literature29.  We focused 
on the sex-specific causal relationship between body mass index (BMI) and Type 2 diabetes 
(T2D) recently reported by Censin and colleagues29 . In the original paper, the authors report a 
strong difference in the effect of BMI on T2D in men and women (p=1.4x10-5). We thus 
wondered if this could be explained by sex differential selection on BMI. That is, if changing the 
degree of sex-differential selection on BMI would change the sex-specific estimates. 
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We first notice that Cansin and colleagues standardized BMI separately for males and females. 
This approach results in effect estimates which refer to different scales and are, in our opinion, 
not comparable. In fact, the differences disappeared when the effects are referred to either to the 
original BMI scale or when BMI is standardized across sexes. We were thus unable to replicate 
the reported differences. Nonetheless, the goal of this analysis is to show that a sex-specific 
causal effect can be induced by sex-differential participation bias. Thus, bias was introduced 
differently for men and women based on the standardized BMI. 
We used the same sampling strategy described in Participation bias simulations and with K=([-
0.5,-0.3,0,0.3,0.7,1,1.5]) and OR=([0.33,0.5,0.56,0.67,0.83,1,1.2,1.5,1.8,2,3]). These OR values 
are symmetric around 0 on the log(OR) scale. This sampling choice was selected because of the 
different prevalence between man and women at baseline.   
In order for our results to be comparable with the published results MR estimates were obtained 
using the Wald ratio method whiles SE were estimated using the delta method and second order 
weights. The wald ratio method consists of running the regression of the exposure trait on it’s 
instrument (the polygenic score (PGS) in our case) and then the logistic regression between the 
outcome and the instrument. 
The causal estimate is then estimated by the ratio of 	ghij→lmnghij→opq

 
For each regression, we used as covariates array type, batch of genotyping, 40 Principal 
components, age, age2, and sex only for the combined analysis. 
The overall and sex-specific weights were obtained from the supplementary material in the 
Censin and colleagues paper29. As an outcome, we used T2D using “probable” and “possible” 
cases as defined in the algorithm from Eastwood and colleagues30. Supplementary Figure 5 
reports the results for K=-1 while full results can be found in Supplementary table 10 
 

GWAS of 565 heritable traits with and without adjustment for sex 
To determine trait heritability we used the approach by Walters and colleagues31. In particular we 
select 565 traits with confidence="high" and significance level ≥ "z4" and available in both 
sexes. Individuals included in the analyses and methods used to run the GWASs are described at 
http://www.nealelab.is/uk-biobank/ukbround2announcement, with the only difference that the 
following covariates were used: 20 principal components and age. We run two set of GWASs: 
one including sex as a covariate, the other without including sex as a covariate. We conducted 
two main analyses on these results. First, for the same trait, we calculate genetic correlation 
between the GWAS adjusted and non-adjusted by sex. Second, we calculate the genetic 
correlations between each trait and all the other traits for the two sets of GWASs (adjusted and 
non-adjusted by sex) using a faster version of LDscore regression 
(https://github.com/astheeggeggs/ldsc). We then compared the two correlation profiles. 
 

Proposed correction methods and implementation in 
GenomicSEM 
Heckman correction generalization 
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Participation bias is a known problem in epidemiology and econometrics and several corrections 
have been proposed. Heckman correction32 is widely used in econometrics, but only recently re-
discovered in epidemiological research33,34. 
 
We are interested in the relationship between Y (outcome) and X (exposure) but we only observe 
these variables among individuals that participated in the study (S=1). If the variables were 
observed only among study participants, we use the notation Y* and X*. 
 
The main challenge is that the distribution of Y* in the entire population is not available. 
Heckman correction addresses this challenge in two steps. 
 
First, fit a probit model of participation: 
P(S=1 | X,U) =  ωX  + rU + ε     (1)                                                                                           
Where the probability of participating S=1 depends on some explanatory variables, X the 
variable of interest and other variables U related to S but independent of Y. It is important that 
the model includes at least one U variable as to act as an instrumental variable and avoid 
excessive collinearity with X. 
For each participant an expected probability of participation P(S) is then obtained based on (1). 
 
Second, the expected probability of participation among individuals selected in the study P(S*) is 
used as covariates in the model when testing the association between X* and Y*. Given that we 
have assumed a probit model, the resulting distribution will be a truncated normal we first 
estimate the inverse mills ratio of the predicted probabilities only in the selected samples. 
 
s = tu(v∗)

Ewxu(v∗)       (2) 
 
Where φ denotes the standard density function while Φ is the standard normal cumulative 
distribution function.  
λ is then  added in the regression as covariate: 
 
Y* = βX* + λ                                                                                                        (3) 
 
The problem can be at this point simplified by retrieving the correlation matrix between Y*, X* 
and S*. 
Given that under the “Cheverud’s Conjecture”35,36 genetic correlations can be used as proxies of 
phenotypic correlations, we can use the genetic correlations obtained from LDscore regression 
for the GWAS of Y*, X* and λ to fit (3) using Genomic SEM37. 
 
However, there are several limitations.  First, we need to assume an underlying bias model which 
should include at least X and an instrument variable U. The latter might be challenging to obtain. 
Second, X and any additional variable used to calculate P(S) have to be measured in the 
population of interest and the analysis must be limited to the samples which have all these 
variables. These two conditions may not always be easy to achieve and thus a method which 
does not require them is more desirable. 
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Genomic structural equation model to estimate the genetic correlation between pairs of  
traits despite the presence of collider bias induced by selection on both traits 
 
As an illustration of the modeling possibilities afforded by access to the allele frequency those 
that do not participate in a study or biobank we construct a genomic structural equation model 
that corrects for collider bias induced by sample selection.  
 
We are interested in the relationship between Y (outcome) and X (exposure) but we only observe 
these variables among individuals that participated in the study (S=1). If the variables were 
observed only among study participants, we use the notation Y* and X*. 
 
If the probability of selection into the sample is caused by X and Y, then selection results in 
collider bias of the relationship between Y* and X*. If the effects of Y and X on S are positive 
(e.g. higher X or Y results in selection into the sample), a negative (genetic) correlation is 
induced between Y* and X*.  
 
Suppose we obtain the summary statistics for 3 GWAS: a GWAS of Y*, X* and a GWAS where 
the sample allele frequency is compared to the true population allele frequency (S).  
 
We can then construct a 3*3 genetic covariance matrix of Y*, X* and S, where S positively 
correlates with Y* and X* and, due to collider bias, Y* and X* negatively correlate. Important to 
note is that the positive effects of Y and X  on S  are what cause the negative correlation between 
Y* and X* and are proportional to it, a bigger effect on S, or stronger selection, induce stronger 
collider bias and negative (genetic) correlation between Y* and X*. 
 
We use Genomic SEM37 to fit a path model which only allows for a single path for the 
assortation between S and X, Sand Y and X and Y: 
 
 
Y* = β1X* + λ1                                                                                                         
X* = β2S* + λ2                                                                                                         
 
Where we constrain: 
 
Cov(S*,Y*) = 0                                                                                                        
 
Because the estimate DEy needs to accommodate the positive association between S* and Y*, and 
the (proportional) negative association between Y* and X* induced by collider bias, the cancels 
these quantities out and is ± equal to βt in the regression: 
 

 

Y = βtX + λt                    
 
This result is validated in a simulation described below. The model assumes no unmeasured 
confounders distort the relationship between Y* and S or the relationship between X* and S. The 
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model could be extended based on instrumental variable techniques to accommodate the 
presence of unmeasured confounders. However, as the model merely exists to illustrate the value 
of observing the true population allele frequencies extending the model for such eventualities is 
beyond the scope of the current paper. Code to fit the model is found here: 
https://github.com/dsgelab/genobias. 
 
 
Application to simulated data 
 
To validate the two correction approaches we propose, we simulated phenotypes X and Y to 
have rg=[-0.3, -0.1, 0, 0.1, 0.3]. For each case we induced participation bias as described in 
Participation bias simulation, with OR=[1.2, 1.5, 1.8, 2, 3] and adding a variable U, 
uncorrelated with both X and Y, to determine sample selection: 
 

# = P	UVW(XY) + z	UVW(XY) + 	{	UVW(2)	
](ABUB45B^) 	= 1

1 + B(w| )	
	

Simulations results are shown in Supplementary Table 11. 
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Supplementary figures 
 
 

 
Supplementary figure 1: effect size for association between SNPs and sex in 23andMe. On x-axis the effect in the 
entire study population, on the y-axis only among those younger than 30 years. The horizontal and vertical bars 
represent confidence intervals. 
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2Supplementary figure 2: Different participation bias scenarios. S=selection (i.e. participation in the study), Y=outcome, X=exposure, G1=genotype causing X, 

G2=genotype causing Y, U=unmeasured variable. In blue the assumed causal paths. A. Participation bias. Conditioning on collider S opens non-causal pathways G1 -> X -
> S <- Y <- G2. Therefore the association between X and Y will be biased. This will also induce a correlation between G1 and G2. B. Sex-differential participation bias. This 
example is similar to A, but SEX modifies the effect of X -> S and Y -> S. This opens several non-causal pathways  G1 -> X -> Y <- SEX, G1 -> X -> S <- SEX, G2 -> Y -> S 
<- SEX and G2 -> Y <- SEX. In addition to adding bias to X -> Y, it opens a pathway between G1,G2 and SEX. This makes SEX “heritable”. C. Participation bias induced by 
X and U. This example is not discuss in the manuscript, but we report it here to highlight that S doesn’t need to be caused by both X and Y. In this example unmeasured 
variable U is a common cause for S and Y. This opens non-causal pathway G1 -> X -> S  <- U -> Y <- G2. Additional examples of direct acyclic graphs for participation bias 
can be found in Hughes et al. 
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Supplementary figure 3:  simulations pipeline. A dummy sex variable is assigned to 350,000 unrelated individuals from UKBB and, considering 1,159,813 
HapMap variants, two genetically uncorrelated traits (rg(y0,y1)=0) with the same SNP-heritability are simulated. The simulated population is then sampled inducing 
sex-differential participation bias and the effects of this sampling are assessed looking at the heritability of sex (h2(sex)) and of the simulated traits (h2(y0), h2(y1)), 
the genetic correlation between the traits (rg(y0,y1)) and between males and females for a given trait (rg(y0:M,y0:F)). 
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Supplementary figure 4: Effect of sex-differential participation bias on the genetic correlation between y0 and y1, when the phenotypes have both h2=0.1 and 
h2=0.3. Each line represents a different degree of participation bias, expressed as the odd ratio (OR) used for the sampling. Higher the OR, higher the degree of 
participation bias. The x-axis represents different values for the parameter k, that gives the sex-differential effect. Smaller is k, higher is the degree of sex-
differential effect.  
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Supplementary figure 5: Effects of sex differential bias on the BMI->T2D relationship. The forestplot shows the effect of sampling man and women differentially 
based on BMI. The x axis represents different values of bias introduced. For higher values heavier males and leaner women have are randomly picked. The 
number on top of the segment represents the p-value of the difference in effect between the two sexes. The bias becomes large enough to be detected as 
“significant” even at the lower values of bias applied. The straight lines represent the effect of BMI on T2D estimated without any sample selection. 
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Supplementary figure 6: Effect of adjusting for sex when a spurious genetic correlation between y0 and y1 is induced by participation bias, when the phenotypes 
have both h2=0.1 and h2=0.3. Each line represents a different degree of participation bias, expressed as the odd ratio (OR) used for the sampling. Higher the OR, 
higher the degree of participation bias. The x-axis represents different values for the parameter k, that gives the sex-differential effect. Adjusting for sex increases 
the degree of bias especially for lower values of k, for which the difference in the distribution of y0 and y1 in the two sexes is greater. 
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Supplementary figure 7: GWAS of 565 traits in UK Biobank with and without adjustment for sex. Panel A. genetic correlation between the sex-adjusted and sex-
unadjusted GWAS. Top 5 traits with lowest genetic correlation are reported. Panel B. Genetic correlation between each trait and all the other, on the x-axis the 
results are from a sex unadjusted GWAS, on the y-axis the results are from a sex-adjusted GWAS. The horizontal and vertical bars represent confidence intervals. 
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Supplementary figure 8: Genetic correlation between males and females for a given phenotype. Each line represents a different degree of participation bias, 
expressed as the odd ratio (OR) used for the sampling. Higher the OR, higher the degree of participation bias. The x-axis represents different values for the 
parameter k, that gives the sex-differential effect. Sex-differential participation bias does not impact the genetic correlation between males and females. 
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Supplementary figure 9 : A schematic representation of the data generating model, where S, the selection probability, is caused by X, Y and unmeasured 
variable(s) U. B. the expected relationships between GWAS of X*,Y* and S*, where the * indicates the GWAS of Y and X are performed in selected individuals and 
the GWAS of S* is a GWAS of the dichotomous variable selected yes/no. C. the GenomicSEM model which forces the relationship between Y* and S*, as well as 
the relationship between X* and Y* trough a single path, resulting in a corrected estimate of the relationship between X and Y based on Y*, X* and S*. 
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