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Abstract: 

We study the structural ensembles of human chromosomes across different cell types.  

Using computer simulations, we generate cell-specific 3D chromosomal structures and 

compare them to recently published chromatin structures obtained through super-
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resolution microscopy. We demonstrate using a combination of machine learning and 

polymer physics simulations that epigenetic information can be used to predict the 

structural ensembles of multiple human cell lines. The chromosomal structures obtained in 

silico are quantitatively consistent with those obtained through super-resolution 

microscopy as well as DNA-DNA proximity ligation assays. Theory predicts that 

chromosome structures are fluid and can only be described by an ensemble, which is 

consistent with the observation that chromosomes exhibit no unique fold. Nevertheless, 

our analysis of both structures from simulation and super-resolution microscopy reveals 

that short segments of chromatin make transitions between a closed conformation and an 

open dumbbell conformation. This conformational transition appears to be consistent with 

a two-state process with an effective free energy cost of about four times the effective 

information theoretic temperature.  Finally, we study the conformational changes 

associated with the switching of genomic compartments observed in human cell lines. 

Genetically identical but epigenetically distinct cell types appear to rearrange their 

respective structural ensembles to expose segments of transcriptionally active chromatin, 

belonging to the A genomic compartment, towards the surface of the chromosome, while 

inactive segments, belonging to the B compartment, move to the interior.  The formation 

of genomic compartments resembles hydrophobic collapse in protein folding, with the 

aggregation of denser and predominantly inactive chromatin driving the positioning of 

active chromatin toward the surface of individual chromosomal territories. 
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Introduction: 

The 3D spatial organization of the chromosomes in the nucleus of eukaryotic cells appears 

to be cell type specific[1-7]. What determines this cell type specific organization and how 

that organization relates to patterns of gene expression remain crucial questions in 

structural genomics.   

 

DNA-DNA ligation experiments have revealed spatial compartmentalization, generally 

termed A/B compartmentalization[8], and CTCF-mediated loop domains. It was observed 

that the A compartment chromatin contains a larger amount of the expressed genes while 

the B compartment chromatin is less transcriptionally active. Similar A/B 

compartmentalization has been observed across human cell lines[1-3] as well as in other 

species [2, 4, 9-12], suggesting that compartmentalization is a conserved feature of genome 

organization across evolution. While single-cell structures can be interrogated using 

proximity ligation assays[13], high resolution has so far only been achieved through 

ligation methods when the experiments are performed over a large population of cells, thus 

averaging over the respective individual 3D structures.  

 

Recent super-resolution microscopy approaches have begun to reveal the 3D structures of 

segments of chromatin longer than a megabase at a spatial resolution on the nanometer 

scale[14-17]. These approaches not only allow for the quantification of pairwise and higher 

order interactions between loci, but also allow some quantification of the structural 

variability in a population of cells. One consistent observation from the super-resolution 

approaches, as well as from single cell Hi-C [13, 18], has been the high degree of structural 
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variability seen within an apparently homogeneous population of synchronized cells of a 

single cell type. Despite this variability, well-defined cell type-specific DNA-DNA ligation 

maps for the ensemble emerge after population averaging the single cell results.   

 

Polymer models [19-28] that describe the process of chromosome organization have been 

proposed; in particular, physics-based modeling based on energy landscape theory[25, 26, 

29-31] directly simulates the microscopic details of structural variability that have been 

shown to recapitulate the population averaged DNA-DNA ligation maps. The Minimal 

Chromatin Model (MiChroM)[26] is a coarse-grained polymeric representation of 

chromosomes confined in a nucleus. MiChroM is an effective energy landscape model 

describing chromosomes as polymers subject to interactions which depend on chromatin 

biochemical composition and on the genomic distance separating any two loci[25, 26]. In 

MiChroM, transient binding interactions among the chromosomal loci result in the 

emergence of compartmentalization through a process of phase separation, in which 

chromatin of the same type preferentially co-localizes. It was subsequently shown that the 

propensity toward phase separation can be reliably predicted using epigenetic marking 

data; thus, the information contained within the 1D epigenetic marking patterns decorating 

the chromatin polymer appears to be sufficient to predict the ensemble of 3D chromosome 

structures for a given cell type. A neural network called MEGABASE[29] was trained to 

quantify the statistical relationship between the experimental sub-compartment annotations 

and the histone methylation and acetylation markings tracks, as assayed using chromatin 

immunoprecipitation data. Once trained, MEGABASE can be used to predict the 

compartmentalization patterns of a chromosome using a set of epigenetic ChIP-Seq tracks 
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as the sole input. Combining MEGABASE and MiChroM, we are able to simulate the 

structural dynamics of chromosomes using Langevin dynamics on the energy landscape.  

 

In this manuscript we provide an analysis of the chromosomal structural ensembles of 

different cell types, using computer simulations based on MEGABASE+MiChroM and 

compare them with the structural ensembles obtained through super-resolution 

microscopy[14]. This comparison further validates the present theory and computational 

models, showing that not only the population averages but also the structural heterogeneity 

that is observed in human chromosomes in the interphase are consistent with the energy 

landscape model. We first use the MEGABASE+MiChroM computational pipeline[29] to 

predict the 3D ensemble of chromosomal structures for several well-studied cell types: 

HMEC, HUVEC, IMR90, K562, HeLa-S3, and H1-hESC. To test these simulated 3D 

ensembles, we then generate ensemble averaged simulated ligation maps that are compared 

directly to population averaged DNA-DNA ligation maps[1, 2].  For the cell lines IMR90 

and K562, we also use energy landscape tools to analyze the  structures obtained through 

super-resolution microscopy by Bintu et al[14] for short ~2 Mb segments of chromatin and 

compare the experimental structural ensembles directly with the corresponding regions of 

the simulated chromosome 21 for IMR90 and K562. Chromosomes do not adopt a single 

structure in the interphase, but rather, exhibit a high structural variability characteristic of 

a phase-separated liquid. Using order parameters commonly used to quantify structural 

similarity in protein folding theory, we uncover two dominant clusters of structures in both 

the experimental and simulated structural ensembles. The transition from a closed structure 

to an open set of structures appears to be governed by a two-state process with an apparent 
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free energy cost of about four times the effective information theoretic temperature. 

Additionally, we further examine the structural differences between whole chromosomes 

belonging to different cell types. The simulations show that inactive segments of chromatin 

move to the interior of the chromosome, while gene active chromatin moves to the 

chromosome surface. This effect appears to be driven by the favorable effective 

interactions between loci belonging to the B compartment, which forms a stable interior 

core; a phenomenon reminiscent of the hydrophobic collapse much studied in protein 

folding. 

 

 

 

 

Results & Discussion 

A polymer model of chromatin based on epigenetics features captures chromosome 

organization across different cell types.  

We previously developed a computational pipeline that can predict the 3D ensemble of 

chromosome structures by using chromatin immunoprecipitation tracks for histone 

modifications as input [29] (See Supporting Information for more details). This approach 

was successfully used to predict the 3D chromosome structures for human lymphoblastoid 

cells (GM12878) using the experimental ChIP-Seq tracks for 11 histone modifications[29], 

i.e., H2AFZ, H3K27ac, H3K27me3, H3K4me1, H3K4me2, H3K4me3, H3k79me2, 

H3K9ac, H3K9me3, and H4K20me1. Predicted chromosome structures for human 

lymphoblastoid cells (GM12878) were found to be consistent with both DNA-DNA 
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ligation and fluorescence in situ hybridization (FISH) experiments[1].  Here we test the 

robustness of the model’s predictions beyond GM12878, to other well studied cell lines for 

which we have found sufficient epigenetic marking data.  

 

Using the MEGABASE neural network, which was previously trained using data from 

GM12878, and sourcing from the Encyclopedia of DNA Elements (ENCODE) database 

the ChIP-Seq tracks for the same 11 histone modifications previously used, sub-

compartment annotations for all the autosomes of cell lines were generated that had never 

been used in the training phase of the neural network. These sequences of sub-compartment 

annotations, or chromatin types, then serve as input for molecular dynamics simulations 

using the Minimal Chromatin Model (MiChroM)[26]. Using this combined approach, the 

chromosomal structural ensembles for 6 additional cell lines were generated: human 

umbilical vein endothelial cells (HUVEC), human mammary epithelial cells (HMEC), 

immortalized myelogenous leukemia cells (K562), human fetal lung cells (IMR-90), HeLa-

S3 cells, and human embryonic stem cells (H1-hESC).  

 

For each cell type, averaging the simulated ensemble generates in silico DNA-DNA 

ligation maps, which are in excellent agreement with those determined experimentally. 

Figure 1 shows the comparison between simulated and experimental maps for IMR90 

(Figure 1A), HUVEC (Figure 1B) and K562 (Figure 1C), demonstrating quantitative 

agreement. The annotations generated by MEGABASE agree with the compartment 

annotations obtained from the ligation maps (Figures 1A-C; Figure S1). In particular, the 

Pearson’s R between the simulated and experimental maps as a function of genomic 
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distance shows that the long-range patterns of compartmentalization are captured over tens 

of mega-bases. To establish a term of comparison we calculated the Pearson’s R between 

the simulated maps and the experimental DNA-DNA ligation maps of different cell types. 

While the experimental observations on different cell lines do correlate with each other, 

computational modeling delineates the difference between cell type and appears to best 

match the experimental map when the cell types of simulation and experiment are matched 

up. This last result demonstrates that the present theoretical model discriminates well 

between different cell lines.  

 

While we have focused so far on the spatial organization of entire chromosomes on the 

micrometer length scale, for a better comparison with the structures of chromosome 21 of 

IMR90 and K562 obtained from microscopy[14], we have also incorporated in the polymer 

physics simulation the loops mediated by the activity of the protein CTCF. 

 

Figure 1D shows that the inclusion of CTCF-loops, which are easily be incorporated into 

the model, improves the quality of the results for the shorter range features of chromosome 

organization within 10Mb in genomic distance; at larger length scales the model appears 

to be completely insensitive of CTCF-mediated loops. 

 

Figure 1E shows the Pearson’s R between the AB annotation vectors derived directly from 

the DNA-DNA ligation maps and those obtained from MiChroM simulations for different 

cell types. The diagonal of Figure 1E corresponds to the Pearson’s R between AB 

annotations derived from experiment and simulation of matching cell types. The simulated 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 22, 2020. ; https://doi.org/10.1101/2020.03.21.001917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.21.001917


and experimental annotations for the same cell types agree well with each other.  Figure 

S1 shows the Pearson’s R between AB annotations derived from experiment alone for the 

different cell types. Notably, the high degree of correlation between the myelogenous 

leukemia cell line K562 and human lymphoblastoids (GM12878) maps observed in Figure 

1E is apparent from DNA-DNA ligation maps alone (Figure S1). The agreement between 

the simulated and experimental A/B annotations is the highest quality (Pearson’s r ~ 0.9) 

for the DNA-DNA ligation maps of GM12878, which is not surprising since the GM12878 

has an order of magnitude more reads than any other map and consequently has the highest 

resolution.   

 

Corresponding comparisons of the compartmentalization patterns are also provided in 

Figure S1 for additional cell types HMEC, HeLa-S3, and H1-hESC, as well as for 

GM12878 in Ref:[29]. These results demonstrate that long range compartmentalization 

observed in the DNA-DNA ligation maps is well captured by the simulated structural 

ensembles for these well-studied cell lines using only information about the epigenetic 

marking patterns as input. 
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Figure 1. Prediction of chromosome structures for differentiated cell lines and 

for immortalized leukemia cells. The 3D ensemble of chromosome structures was 

predicted for the cell types (A) IMR90, (B) HUVEC, and (C) K562 using the ChIP-

Seq histone modification tracks for the respective cell lines found on ENCODE—

shown are the structural predictions for chromosome 2. As validation, the 

chromosome structures were compared with the DNA-DNA ligation experiments 

of Rao et al[1], where the simulated map is shown on the top right triangle and the 

experimental map is shown on the bottom left triangle. The datasets are visualized 

using Juicebox[32]. The MEGABASE chromatin type annotation is shown as a 

color vector under the contact probability map, followed by the A/B compartment 
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annotation[1] for the simulated map (red) and the experimental map (black), 

respectively. The Pearson’s R between the simulated and experimental contact 

maps for fixed genomic distances are plotted for the cell types IMR90, HUVEC, 

and K562, respectively, in thick lines. The Pearson’s R between the simulated maps 

and the experimental maps of other cell types are also shown with thin lines. For 

comparison, the correlation between a simulated map of a polymer model with 

lengthwise compaction but no specific chromatin-type interactions (without 

compartmentalization) and the experimental map is shown as a baseline in with a 

bold, blue line.   (D) Pearson’s R as a function of genomic distance is plotted 

between the experimental map for chromosome 21 (IMR90) and MiChroM 

simulation with loops (thick red line) and without loops (thin red line).  (E) A matrix 

of Pearson’s R between the AB annotation of the experimental ligation map and the 

simulated contact maps for different cell types, respectively. The high Pearson’s R 

signifies the consistency between the simulated maps and the experimental DNA-

DNA ligation maps.  

 

 

Chromatin structural ensembles from DNA tracing reveal coexistence of open and 

closed structures. 

Recent developments in DNA-tracing have allowed the direct experimental determination 

of three-dimensional structures using super-resolution microscopy[14-17]. DNA tracing is 

a technique that labels consecutive stretches of DNA with optical probes, which can be 

used to spatially resolve the positions of those probes using super-resolution microscopy.  
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It has become increasingly clear that unlike the situation for folded globular proteins, which 

typically can be reasonably well approximated for many purposes by a single native 

structure corresponding to the average conformation, chromatin appears to be highly 

dynamical and cannot be characterized by any single conformation. The heterogeneity of 

the chromosomal structural ensembles was first suggested by the analysis of the free energy 

landscape of chromosomes[25, 26] and has been indirectly observed through single cell 

Hi-C experiments[13, 18]. The heterogeneity has now been confirmed by direct imaging 

of individual chromosomal structures[14-16]. As a consequence of this conformational 

plasticity, statistical ensembles [25, 26, 29, 30, 33-38] must be used in order to describe 

chromosomal structures in vivo.  

 

In order to improve our understanding of the genomic structural ensembles, we directly 

compare chromatin structures imaged using super-resolution with those obtained from the 

simulated structural ensembles.  

 

We first focus on the traced structures of Bintu et al[14], who obtained hundreds of images 

structures for short ~2Mb segments of chromatin belonging to chromosome 21. These 

regions are 29.37-31.32Mb (referred to here as Segment 1) of IMR90 and K562 cell types 

and 20.0-21.9Mb (referred to as Segment 2) of IMR90. Only structures where the positions 

of over 90% of the loci were resolved are used in the present analysis. There are then 692 

usable structures for IMR90 Segment 1, 752 usable structures of IMR90 Segment 2, and 

244 usable structures of K562 Segment 1. While MEGABASE+MiChroM, provides us 
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with structures of entire chromosomes, we focus specifically on Segment 1 and Segment 2 

of chromosome 21 for our direct comparison.  

 

As previously reported[14-16], the traced structures can be used to generate a population 

averaged contact maps, which turn out to be consistent with DNA-DNA ligation maps. 

Shown in Figure S2A-C are the averaged contact maps for the chromatin Segments 1 

(IMR90 & K562) and Segment 2 (IMR90), respectively. Nevertheless, information is lost 

when converting from a 3D structural ensemble to a 2D contact map.  

 

Focusing on the structural details that cannot be found in a contact map, we make a close 

examination of the types of structures observed in the tracing dataset using an order 

parameter commonly used in studying protein folding landscapes, Q, which quantifies the 

structural similarity between two structures a and b: 

 

     (Eq. 1) 

where   and  are the distances between chromatin loci i and j in structures a and 

b:, respectively, N is the number of pairs of loci included in the summation, and 

  is the resolution length scale for which deviations in the distances between 

structures a and b are treated as being similar. The Q between any two structures ranges 

from 0 (dissimilar) to 1 (identical) over the entire set of pairwise distances between loci. 

The order parameter Q is not solely based on contacts; a pair of chromatin loci can 

Qαβ = N exp −
rij
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contribute to Q even if they are not spatially proximate if they are separated in both 

structures by a similar distance as set by d. In this way Q measures structure more 

stringently than a simple contact map does. 

 

Using   to define the distance between any two structures, hierarchical clustering of 

the traced structures for Segment 1 was applied to identify clusters having distinct 

structural features. These cluster sub-ensembles can be considered distinct conformational 

states.  To see whether the segment 1 structures for IMR90 and K562 exhibit a high degree 

of structural similarity, we combined their datasets before clustering. 

 

When applied to the 936 combined experimental structures for Segment 1, the clustering 

algorithm yields three distinct clusters. These correspond to a closed dumbbell (Cluster 1), 

an open dumbbell (Cluster 2), and a highly dense chromatin state (Cluster 3) shown in 

Figure 2. The closed dumbbell, where the head and tail globular domains make contact 

with one another, is the dominant state observed for Segment 1 in both IMR90 and K562, 

accounting for 97.4% of the imaged structures (  ). Cluster 1 can further be 

sub-divided into subgroups 1a, 1b, 1c, and 1d (Figure 2), which account for 75.5% of the 

structures in Cluster 1. The subgroups appear to capture various stages of the process of 

opening. The structures in subgroup 1a are fully collapsed, while structures in 1b, 1c, and 

1d capture the progressive opening of the closed dumbbell. The distribution of the Radius 

of Gyration for  structures belonging to sub-clusters 1a-1d is shown in Figure S3.  The open 

dumbbell structures where the head and tail domains have dissociated from one another, 

account for approximately 1.8% of the imaged data (   ). Additionally, 7 dense, 

1−Q

Nclosed = 912

Nopen = 17
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highly compact structures were identified from clustering.  Representative structures from 

the three clustered structural groups are shown in Figure 2 and the corresponding 

population averaged contact maps are shown in Figure 2B and 2C for the closed and open 

structures, respectively.  

 

The high density chromatin, cluster 3, which was found when imaging both Segment 1 and 

Segment 2[14], is characterized by an extraordinarily high density of DNA

, as estimated for naked dsDNA. For comparison, the 

density of heterochromatin that is estimated using microscopy data is  [39](5 

orders of magnitude smaller); for this reason, we believe that these chromatin 

conformations are likely artifacts of the experimental protocol. We therefore have excluded 

Cluster 3 from further analysis. 

 

Assuming that the opening of the chromatin Segment 1 is in an effective thermodynamic 

equilibrium would imply a relative stability of , 

where  is an apparent free energy difference between the closed and open 

states and T is an information theoretic temperature characterizing the ensemble[40]. 

Interestingly, the relative number of open and closed structures found in the simulations 

(discussed in the proceeding section) is in remarkable agreement with this experimental 

finding.   

 

5.8×104kb / µm3 ~ 4×107mg / ml

~ 200mg / ml

log Nclosed / Nopen( ) = Eopen − Eclosed ~ 4kBT
Eopen − Eclosed
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We then used the radius of gyration, , as an additional order parameter for the 

structural ensembles of segment 1 belonging to IMR90 and K562 (Figure 2D). A 

corresponding potential of mean force can be extracted from the distribution of as 

, which also shows the free energy difference of   

between the closed (Cluster 1) and open (Cluster 2) structural sub-ensembles. The 

distributions of are also shown for Clusters 1 and 2 in Figure 2D. Interestingly, the 

open conformations belonging to Cluster 2 possibly belong to a free energy minima in the 

PMF located between between . Additional statistics however would be 

necessary to firmly establish the presence of this additional conformational mode.  

Unlike Segment 1, Segment 2 of IMR90 completely lacks loop domains and, consequently, 

the averaged contact maps for Segment 2 exhibit no additional features beyond the decay 

in contact probability as a function of genomic distance (Figure S2). Structural analysis 

reveals that, without the presence of loop domains, Segment 2 is highly disordered; no 

distinct structural clusters such as an open and closed dumbbell could be identified by the 

clustering algorithm.  

 

 

 

Rg

Rg

PMF = −kBT logP(Rg ) ~ 4kBT

Rg

Rg ~ 0.6− 0.8µm
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Figure 2. Hierarchical Clustering and the detailed structural analysis of traced 

Segment 1. (A) The dendrogram representation of the hierarchical clustering of Segment 

1 (chr21 29.37-31.32Mb for IMR90 and K562 of [14]), where  is used as the distance 

between two structures. The clustering reveals three main clusters: closed dumbbell, open 

dumbbell, and highly dense structures. Further analysis of Cluster 1 reveals the presence 

of sub-clusters labeled 1a-1d that represent the gradual opening of the closed dumbbell. 

Representative traced structures are shown for each of the clusters and sub-clusters. The 

1−Q

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 22, 2020. ; https://doi.org/10.1101/2020.03.21.001917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.21.001917


population averaged contact maps for the closed and open structure clusters are shown 

respectively in (B) and (C), where 165nm is used to define a contact between two 30kb 

loci. (D) The distribution of the Radius of Gyration (top), the corresponding potential of 

mean force (center), and the distributions of Radius of Gyration for Cluster 1 and Cluster 

2 (bottom) are shown for the traced structures of Segment 1 of IMR90 and K562. The 

distribution exhibits a heavy tail to the right of the average value, indicating the existence 

of open, elongated structures.  

  

The chromosomal structures obtained from physical modeling are consistent with 

those observed with super-resolution microscopy.  

We compare the chromosome structures sampled in the simulations to the super-resolution 

microscopy structures of Bintu et al[14], finding that the conformational states observed 

using microscopy are also found in the simulated structural ensemble without any 

calibration or fine tuning of parameters. 

 

It is important to note that the simulated model, and the structural variability that it 

captures, was derived from the energy landscape learned from population-averaged DNA-

DNA ligation data using the principle of maximum entropy[26]. MiChroM has been shown 

to be consistent with experimental ligation maps (Figure 1 and Refs:[26, 29, 31]), as well 

as the distribution of distances between Fluorescence in Situ Hybridization (FISH) 

probes[29] and several observations regarding chromatin dynamics[30].  
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Using the  as the distance between all simulated structures for Segment 1, we now 

performed hierarchical clustering of the simulated structures. The dendrogram of this 

clustering is shown in Figure 3A, which uncovers two main clusters in the structural 

ensemble: a closed dumbbell (Cluster 1) and an open dumbbell (Cluster 2). The closed and 

open structures are consistent with those observed in the Bintu et al[14] datasets. The 

representative structures of the closed and open conformations are shown in Figure 3, 

alongside the averaged contact maps for each of the clusters, which are consistent with 

those determined experimentally (Shown in Figure 2B-C). The simulated Cluster 1 can 

again further be sub-divided into subgroups; 1a, 1b, 1g, and 1d represent the 4 most 

populated sub-groups (Figure 3), which comprise 66% of the simulated structures. The 

subgroups appear to capture various stages of the process of opening. The structures in 

subgroup 1a are fully collapsed, while structures in 1b, 1g, and 1d capture the progressive 

opening of the closed dumbbell. The Radius of Gyration of sub-clusters 1a-1d are shown 

in Figure S4. 

 

No highly dense structures exist in the simulations. Such structures would collapse the 

entire chromatin segment to the volume of a single monomer, an occurrence that is 

prohibited by the energy function used to model the system. This is in harmony with our 

view that Cluster 3 seen in the experiments are artifacts of some sort. 

 

For Segment 1, we performed our analysis on a set of 6400 structures, a representative 

subset of the simulated trajectories. Both closed (  ) and open structures 

) were identified by the clustering algorithm. Since MiChroM assumes an 

1−Q

Nclosed = 6275

Nopen = 125
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effective equilibrium thermodynamics representation of chromosome structures and 

dynamics, we can quickly calculate the relative stability between closed and open 

structures in the simulated ensemble as , where 

 is the effective free energy difference between the closed and open states. 

This free energy difference is remarkably consistent with the value estimated using only 

the experimentally traced structures in the preceeding section.  

 

Finally, we calculated the distribution of the radius of gyration, , for the experimetal 

traced structures of Bintu et al [14] and for the simulated MiChroM structures for Segment 

1 belonging to IMR90 and K562 (shown in Figure 3D and Figure 3E respectively). Using 

a length scale calibrated previously[29] from a single FISH experiment of 0.165µm yields 

excellent quantitative agreement between the experimentally observed structures and those 

predicted de novo from simulation.  It is particularly remarkable that any discrepancies 

between the experimental and simulated datasets can in fact be captured within 10% error 

of our original length estimate (Figure S5). Similarly, Figure 3F shows the direct 

comparison between the distribution of for Segment 1 as well as the corresponding 

potential of mean force. We see then that MiChroM appears to reproduce the relative 

apparent free energy differences between open and closed structures found using the 

experimentally traced structures. Additional direct comparison between the traced and 

simulated structures a coarser resolution of 150 kb (matching resolutions) can be found in 

Figure S6. 

 

log Nclosed / Nopen( ) = Eopen − Eclosed ~ 4kBT
Eopen − Eclosed

Rg

Rg
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Figure 3. Hierarchical Clustering and the detailed structural of simulated chromatin 

segment. (A) The dendrogram representation of the hierarchical clustering of simulated 

Segment 1 (chr21 29.37-31.32Mb for IMR90 and K562) where  is used as the 

distance between two structures. The clustering reveals two main clusters: closed dumbbell 

(6275 out of 6400 structures) and open dumbbell (125 out of 6400 structures). The closed 

dumbbell can be subdivided into sub-clusters labeled 1a-1d that represent the opening 

1−Q
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transition of the closed dumbbell. Representative structures are shown for each of the 

clusters and sub-clusters. The population averaged contact maps for the clusters are shown 

respectively in (B) and (C), where 165nm is used to define a contact between two 50kb 

loci of the MiChroM model. The distribution of the Radius of Gyration is shown for 

Segment 1 IMR90 (D) and K562 (E) traced structures in comparison with the experimental 

structures. (F) Distribution of the Radius of Gyration and the corresponding potential of 

mean force is shown for both experiment and simulation for all of the structures of Segment 

1. 

 

 

 

 

Comparative analysis of the chromosomal structural ensembles of different cell lines: 

connecting the epigenetic markings of loci with their radial positioning within 

territories 

The frequency of chromatin type annotations predicted by MEGABASE over different cell 

types is shown in Figure 4A as a stacked bar chart that represents the distribution of 

chromatin type annotations predicted for each locus of chromosome 2 over all of the cell 

types.  It is evident that certain loci have similar epigenetic markings patterns in all the cell 

types that we examined, either by being generally transcriptionally active loci, thus likely 

belonging to the A compartment, or by being transcriptionally inactive B compartment 

loci. On the other hand, several segments of chromatin switch compartments between 

different cell types. 
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Using the structural ensemble from the simulations based on the predicted compartments 

we then quantified the conformational differences between different cell types. On the 

chromosomal scale, structural differences emerge primarily from changes in the phase 

separation of epigenetically marked segments of chromatin. An example is illustrated in 

Figure 4B, which focuses on the region 39.9-40.6Mb of chromosome 2 for HMEC, 

HUVEC, and IMR90. The MEGABASE classification (Figure 4B) identifies the segment 

in HMEC and IMR90 as belonging to the A compartment, whereas the segment for 

HUVEC should belong to the B compartment. Representative 3D structures for this 

segment for each of the respective cell types are shown in Figure 4C.  

 

A plot of the radial density of A compartment loci and B compartment loci is shown in 

Figure 4D. These radial densities are consistent with previously reported simulations[26]. 

Taking a look at the radial distance of the center of mass of the segment of chromatin in 

each of the cell types, one finds that the A compartment loci tend to localize towards the 

surface of the chromosome, while the B compartment loci of the HUVEC cell type tend to 

localize in the interior (Figure 4E). A similar positioning of transcriptionally active 

chromatin toward the periphery of chromosomal territories was also observed by Nagano 

et al[13] in mouse cells using Hi-C experiments.   

  

We additionally use simulations to predict and examine the spatial positioning of the 

segments of chromatin examined by Bintu et al in the context of the entire chromosome 

21.  The experimental traced structures could not be used to ascertain the spatial positioning 
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of those chromatin segments within chromosome 21 since only short segments were 

imaged rather than the entire chromosome.  Figure 4F shows a stacked bar chart that 

represents the distribution of chromatin types predicted by MEGABASE for each genomic 

position of chromosome 21. Figure 4G shows the MEGABASE predictions for the traced 

segments, showing that IMR90 Segment 2 (20.0-21.9Mb) is composed of A-type 

chromatin while IMR90 Segment 1 (29.37-31.32Mb) primarily is composed of B 

compartment chromatin types. K562 Segment 1 (29.37-31.32Mb) appears to contain both 

A and B chromatin types. Figure 4H shows the radial distance distribution of the center of 

mass of these segments of chromatin, showing that IMR90 Segment 2 tends to be in the 

interior, IMR90 Segment 1 tends to lie near the chromosome surface, and K562 Segment 

1 occupies an intermediate region. 

 

The finding that there exists a radial ordering associated with the spatial 

compartmentalization is consistent with the fact that according to the MiChroM 

potential[26], contact interactions between B loci exhibit the most favorable energetic 

stabilization of all chromatin interactions. On the other hand, A to B or A to A type 

interactions are significantly weaker than the B to B interaction, but are comparably strong 

to each other (See Supporting Information). In other words, according to the MiChroM 

energetic parameters (which were originally learned from HiC maps), B loci drive the 

phase separation of the chromosomes. Much like a hydrophobic-polar model from protein 

folding, the B compartmentalization forms the stable core of the simulated chromosome 

and the weaker interactions between A compartment loci with A or B loci tends towards 

the surface, to minimize the free energy of the molecular assembly.  Our theoretical model 
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thus corroborates recent experiments that suggests heterochromatin phase separation is a 

major driving force behind genome organization[41, 42]. 

 

Figure 4. Conservation of compartmentalization across cell types and the 

radial dependence of marked chromatin. (A) A stacked bar chart is used to 

represent the distribution of chromatin type annotations predicted by MEGABASE 

as a function of the genomic position along chromosome 2 (hg19). The colors 

correspond the chromatin types given in the Figure Legend. For a given genomic 

position, the relative height of a particular color indicates the fraction of that 

particular chromatin type predicted at that locus. (B) The MEGABASE prediction 
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of the chromatin type is shown for the chromatin segment 39.9-40.6 Mb of 

chromosome 2 for HMEC, HUVEC, and IMR90. A black arrow in (A) highlights 

the location of this segment.  (C) The chromatin segment 39.9-40.6 Mb of 

chromosome 2 is shown in a representative structure for each of the cell types, 

where the color of the segment denotes its MEGABASE annotation. For HMEC 

and IMR90, the segment of chromatin tends towards the chromosome surface, 

whereas the segment tends towards the interior for HUVEC. (D) The radial density 

as a function of the normalized radial distance is plotted for A compartment loci, B 

compartment loci, and all loci. (E) The probability density functions of the radial 

distance are shown for the center of mass of the segment 39.9-40.6 Mb of 

chromosome 2 for HMEC, HUVEC, and IMR90, respectively. (F) A stacked bar 

chart is used to represent the distribution of chromatin type annotations predicted 

by MEGABASE as a function of the genomic position along chromosome 21 

(hg19). The arrows indicate the locations of the traced segments of Bintu et al[14]: 

Segment 1 (29.37-31.32Mb) and Segment 2 (20.0-21.9Mb). (G) The MEGABASE 

annotation of the traced chromatin segments are given for IMR90 and K562. (H) 

The distribution of radial distances of the center of mass of each traced segment is 

shown.   

 

Discussion 

DNA-tracing and super-resolution microscopy are beginning to shed light on the high 

degree of variability that is characteristic of chromosomal structures in the interphase[14-

17]. These studies add to the growing body of evidence that a unique chromosomal fold 
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simply does not exist in the interphase. Chromosome structures in the nucleus appear to be 

highly dynamical, owing to the many non-equilibrium processes in the cell, such as the 

activity of motor proteins. 

 

The advances in super-resolution imaging and the molecular simulation of chromosomes 

allows the development of order parameters able to quantify the structural similarities 

between different chromosome structures, and the degree of heterogeneity in the ensemble 

of structures. Our results demonstrate that the order parameter Q, commonly used in protein 

folding studies and structural biophysics, is a good order parameter for characterizing the 

structural ensemble of a segment of chromatin. Despite the high degree of conformational 

plasticity, it appears that for segments of chromatin as short as the ones imaged by Bintu 

et al [14] (~2Mb in length), there do exist distinct clusters of chromatin structures that can 

be distinguished using the Q order parameter. The dominant structures found for the short 

chromatin segment (chr21 29.37-31.32Mb) examined using data from microscopy as well 

as from simulation can be described as being a closed dumbbell and an open dumbbell, 

where the ends of the dumbbell are the globular domains at the head and tail the chromatin 

segment. 

 

It is known that CTCF proteins bound along the genome acts as gene insulators, probably 

through their suppressing activity toward loop extrusion[43, 44]. Interestingly, a survey of 

the positioning of genes along Segment 1 reveals that the vast majority of genes appear 

clustered in the linker region of the chromatin segment (Figure S5), sandwiched between 

the head and tail loop domains. This finding seems to suggest a role in transcriptional 
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regulation for the opening and closing of the chromatin segment; how open and closed 

structures would achieve such regulation of the transcriptional activity remains to be 

investigated.  It is however clear that understanding the structure-function relationship in 

the genome is a crucial question that can only be answered using an accurate statistical 

characterization of the conformational ensembles.  

 

Finally, our work refines the classical view of the spatial compartmentalization of 

chromatin. We find a striking dependence between radial positioning of chromatin and 

epigenetic marking patterns. Our theoretical model, MiChroM, predicts that 

transcriptionally active loci, typically belonging to the A compartment, move towards the 

surface of the chromosomal territory, while B compartment loci, typically inactive, move 

to the interior[26]. Since interactions among B-B loci result in the greatest energetic 

stabilization, aggregation of these loci seems to be driving force behind both the phase 

separation of epigenetically similar chromatin into compartments and the expulsion of the 

active chromatin toward the periphery of chromosomal territories. In other words, 

according to the present energy landscape model, when the epigenetic marking patterns of 

a locus are rewritten from A to B, the locus moves towards the interior of the chromosome, 

perhaps affecting the transcriptional activity of the associated genes.  

 

Notes 

Unless explicitly stated otherwise, all genomic positions are reported using the positions 

of the hg19 assembly. 
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