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Abstract 14 

Understanding the structure and drivers of gut microbiota remains a major ecological endeavour. 15 

Recent studies have shown that several factors including diet, lifestyle and geography may 16 

substantially shape the human gut microbiota. However, most of these studies have focused on 17 

the more abundant bacterial component and comparatively less is known regarding fungi in the 18 

human gut. This knowledge deficit is especially true for rural and urban African populations. 19 

Therefore, we assessed the structure and drivers of rural and urban gut mycobiota. Our 20 

participants (n=100) were balanced by geography and sex. The mycobiota of these 21 

geographically separated cohorts was characterized using amplicon analysis of the Internal 22 

Transcribed Spacer (ITS) gene. We further assessed biomarker species specific to rural and 23 

urban cohorts. In addition to phyla which have been shown to be ubiquitous constituents of gut 24 

microbiota, Pichia were key constituents of the mycobiota. We found that several factors 25 

including geographic location and lifestyle factors such as the smoking status were major drivers 26 

of gut mycobiota. Linear discriminant and the linear discriminant analysis effect size analysis 27 

revealed several distinct urban and rural biomarkers. Together, our analysis reveals distinct 28 

community structure in urban and rural South African individuals. Geography and lifestyle 29 

related factors were shown to be key drivers of rural and urban gut microbiota. 30 
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Importance 32 

The past decade has revealed substantial insights regarding the ecological patterns of gut 33 

microbiomes. These studies have shown clear differences between the microbiomes of 34 

individuals living in urban and rural locations. Yet, in contrast to bacteria we know substantially 35 

less regarding the fungal gut microbiota (mycobiome). Here we provide the first insights 36 

regarding the mycobiome of individuals from urban and rural locations. We show that these 37 

communities are geographically structured. Further we show that lifestyle factors, such as diet 38 

and smoking, are strong drivers explaining community variability.  39 

  40 
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Introduction 41 

By comparison to prokaryotes (bacteria and archaea), eukaryotes are considered part of the rare 42 

“biosphere” of the gut (1, 2). Despite their low abundances, fungi play significant roles in host 43 

physiology (2-5). Recent studies have shown that the gut fungal community composition is less 44 

stable over time, compared to bacterial communities (4, 6, 7). These studies suggest that the gut 45 

mycobiota is more variable than bacterial communities, and may be influenced substantially by 46 

environmental factors (3, 7). Despite evidence confirming the gut microbiota is diverse and 47 

interacts with the host immune system (3, 8, 9), knowledge regarding the community structure of 48 

healthy human gut mycobiota remains scant. 49 

Most studies have focused on the potential roles played by the mycobiota in the aetiology of gut 50 

diseases (10-12). These studies have provided crucial insights on the role of the mycobiota as a 51 

potential drivers of immunological disorders and as opportunistic pathogens in 52 

immunocompromised hosts (13). Further, dysbiosis of gut mycobiota has been linked to obesity, 53 

colorectal cancer and Inflammatory Bowel Diseases (IBDs) (12, 14, 15). Decreased abundances 54 

of Saccharomyces cerevisiae and higher proportions of Candida albicans were found in IBD 55 

patients compared to healthy controls. A recent study showed that Crohn’s disease-specific gut 56 

environments may select for fungi to the detriment of bacteria suggesting disease-specific inter-57 

kingdom network alterations in IBD (12). Yet, despite these beneficial effects, there remains a 58 

clear deficit in knowledge regarding the precise role played by the gut mycobiota in disease 59 

prevention. Relatedly, the factors which drive the diversity and community structure of gut 60 

mycobiome remain underexplored. Assessing the influence of environmental factors on the gut 61 

mycobiome across a wider cohort of participants is crucial for determining the effects on host-62 

microbiota dynamics and health. 63 
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Several studies have evaluated the effects of age (16-18), gender (17), diet (19), diabetes and 64 

obesity (15, 20, 21), anorexia nervosa (22), differences across body sites (23, 24) and 65 

geographical locations (6, 25, 26) on mycobiome composition and diversity. Yet, these studies 66 

are mostly disease centric or focussed on Asian (26) and/or Western populations (6, 7, 19). To 67 

our knowledge, only one study has investigated the gut eukaryotic diversity of African 68 

individuals (27). Although these studies improved our understanding of the mycobiome, there 69 

may be several confounding factors such as genetic differences. These differences make it 70 

difficult to assess, for instance, the effects of living in urban or rural areas on the microbiome. 71 

The effects of diet, geographic locality and lifestyle, on the gut microbiome are often assumed 72 

but rarely examined. Where these relationships are assessed, the majority of studies have 73 

primarily focused on the ecologically abundant bacteria (28, 29) with assertions that their 74 

patterns will likely hold for other taxa, including mycobiomes.  75 

Here, we applied amplicon sequencing of the fungal internal transcribed spacer (ITS) of the 76 

rRNA gene on samples collected from individuals living in urban and rural areas in Africa. We 77 

provide the first insights regarding the drivers of mycobiome community structure and potential 78 

biomarkers specific to individuals from urban and rural locations. Previous studies of the gut 79 

mycobiome have primarily investigated small cohorts with fewer than 20 individuals (25, 30, 31) 80 

with very few studies investigating larger cohorts (6, 32). This study represents the first analysis 81 

of the faecal mycobiota in a large cohort of healthy sub-Saharan individuals (100 volunteers). 82 

Furthermore, this is the first study which compares the composition and diversity of the gut 83 

mycobiome of geographically separated non-western individuals with the same ethnicity. We 84 

further explored potential biomarker taxa in urban and rural individuals and explore how these 85 

taxa vary between the two areas. Using extensive predictor variables collected from participants, 86 
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we show that geography and lifestyle structure the gut mycobiome of rural and urban South 87 

African individuals.  88 

 89 

Results 90 

Similarities and differences between urban and rural individuals 91 

We assessed the faecal mycobiota of South African adults living in rural (n=50) and urban 92 

regions (n= 50) by assessing stool samples (see details regarding sample recruitment in 93 

Methods). We recruited an equal number of male and female volunteers across two villages in 94 

the Limpopo region of South Africa, which is located roughly 500km from the urban site 95 

(Pretoria) (Figure 1a). To gain insights regarding predictive variables which may shape the gut 96 

microbiome, detailed questionnaires were distributed to all volunteers. The volunteers from Ha-97 

Ravele and Tshikombani villages (population size of roughly 200,000, representing the rural 98 

participants) were on average 24 years (mean ± 6.3). Volunteers from Pretoria (total population 99 

of approximately 2.1 million) were on average 31 years (mean ± 9.1). The BMI of all 100 

participants was above 26.45, resulting in a cohort of individuals classified as obese, less than 101 

15.9% of participants were smokers. 102 

Amplicon sequence data from 95 volunteers (samples from 5 rural volunteers were excluded due 103 

to low quality reads) generated 5,936,454 raw reads. A total of 5,414,023 fungal reads were 104 

retained after sequence filtering and chimera removal. Of these, 1,636,180 reads were assigned 105 

to OTUs and these were further clustered into 1,911 OTUs using a 97% cut-off. A higher 106 

proportion of fungal OTUs were unique to location with urban and rural samples accounting for 107 

47.9% and 45.3% of reads, respectively (Supplemental Figure 1a). 108 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2020. ; https://doi.org/10.1101/2020.03.19.999656doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.19.999656
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

After random subsampling to the lowest read count, 155 OTUs were excluded from further 109 

analyses. The resulting accumulation curves showed reasonable sequence saturation, at a 110 

regional level (Supplemental Figure 1b). Fungal species richness was significantly higher in the 111 

stool samples of rural volunteers (Observed; W = 615.5, p-Value = 1.471e4) compared to urban 112 

volunteers (Figure 1b). However, we did not find significant differences in richness based on 113 

gender and age group. 114 

Two ubiquitous fungal phyla in urban and rural locations 115 

Overall, four distinct fungal phyla were detected in urban and rural gut mycobiomes, based on 116 

sequences with relative abundances above 0.1% (Figure 1c). The majority of sequences were 117 

assigned to members of the phyla Ascomycota and Basidiomycota, that constituted 80.7% and 118 

6.1% of the total relative abundance, respectively. Unknown sequences constituted 12.9% of the 119 

fungal mycobiome. In total, 13 distinct fungal classes were identified with Saccharomycetes 120 

constituting the majority of sequences (50.1%) followed by Dothideomycetes (20.3%), 121 

Eurotiomycetes (4.8%) and Sordariomycetes (3.9%). Unknown fungal genera dominated our 122 

cohort (18.4%), followed by Pichia (17.6%) Candida (17.1%) and Cladosporium (5.9%). 123 

However, no significant difference was found between taxa abundance at the class level for the 124 

gut mycobiota of rural and urban participants (W = 1054, p-value = 0.5992). The difference 125 

between the gut mycobiota of rural and urban individuals, across the two locations, was not 126 

statistically significant (Kruskal-Wallis chi-squared = 2.9875, df = 3, p-value = 0.3936). 127 

To assess the degree of uniqueness of a given sample in relation to the overall community 128 

composition, we assessed the local contribution to beta diversity (LCTBD). We found that 129 

samples from urban volunteers contributed a greater fraction of the overall community diversity 130 

(p-Value < 0.05). Samples with high local contribution to beta diversity (LCTBD) had a high 131 
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abundance of Basidiomycota and other unknown taxa. In contrast, only two samples from the 132 

rural location contributed to overall community diversity (Supplemental Figure 1c). 133 

Distinct mycobiota among urban and rural volunteers unrelated to gender 134 

Differences in the fungal community structure between the rural and urban localities were 135 

visualized in an NMDS plot (Figure 2a). Urban and rural samples formed distict clusters 136 

[PERMANOVA (R
2
 = 0.070; p-Value = 0.0001), ANOSIM (R = 0.43, p-Value = 0.001) and 137 

ADONIS (R
2
 = 0.07034 p-Value = 0.0001)]. However, male and female samples did not cluster 138 

separately. Pairwise analysis of permutational multivariate analysis of variance (PERMANOVA) 139 

showed that there was no significant difference between female vs male urban, and female vs 140 

male rural individuals (R
2 

= 0.018; R
2 

= 0.023; respectively and p-Value > 0.4 for both). 141 

However, there was a significant difference between the gut mycobiota of urban versus rural 142 

female and male participants (R
2 
< 0.074 for all; p-Value = 0.001 for all). 143 

Ecological drivers of gut mycobiota  144 

Redundancy analysis (RDA) was performed to determine which predictor variables significantly 145 

explained the variation in fungal community composition (Figure 2b). Four predictive variables 146 

were significant (r
2 

> 0.2; p-Value < 0.05) drivers of community composition and structure. 147 

Predictive variables included; breastfeeding, smoking, mode of birth and location; all of which 148 

significantly influenced the fungal community composition. 149 

We conducted correlation analyses to explore the relationships among dominant gut species. Our 150 

results showed a few highly positive correlations in the rural cohort: between Mucor and 151 

Dipodascus, Mucor and Naganishia, Clavispora and Lentendrea, and between Udeniomyces and 152 

Lentendrea (Figure 4a). Whereas, the strongest negative correlation was found between 153 
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Dipodascus with Trichoderma, Dipodascus with Ascotricha and Dipodascus with 154 

Chalastospora. Within the urban cohort, Xeromyces and Agaricus, Diutina and Clavispora, and 155 

Dekkera and Diutina exhibited the strongest positive correlations (Figure 4b). The strongest 156 

negative correlations were detected between Clavispora with Filobasidium, and with Verrucaria 157 

and Malassezia. 158 

Biomarker taxa 159 

Linear discriminant analysis (LDA) and the linear discriminant analysis effect size (LEfSe) (33) 160 

test for biomarkers was used to detect taxa that showed the strongest effect on group 161 

differentiation (Figure 3a). OTU level analysis uncovered 14 urban-associated species from 10 162 

genera. Whereas, 17 rural-associated species from 11 genera, were detected as possible 163 

biomarkers. The most abundant rural-associated biomarker genera were Hypopichia and 164 

Dipodascus, with species Hypopichia burtonii and Dipodascus geotrichum being the most 165 

ubundant (Figure 3b). Whereas, the urban-associated biomarkers were dominated by the class 166 

Tremellomycetes and genera Dekkera and Hannaella. Whereas, species Dekkera bruxellensis 167 

and Hannaella sinensis dominated the urban-associated biomarkers. 168 

Discussion 169 

The results from this study suggest that the gut mycobiome of the South African population is 170 

structured by geography and lifestyle. This finding is supported by the clustering of a large 171 

proportion of the fungal OTU’s into discrete rural and urban groups within the Venn diagram. 172 

Only a small percentage of OTUs were shared between the two populations, which may suggest 173 

that factors such as the environment, age and diet may play a role in shaping the differences in 174 
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OTU clustering. These results were further corroborated by two distinct clusters, consistent with 175 

rural and urban locality.  176 

Several studies have investigated the healthy human mycobiome (6, 7, 19, 25, 30, 34). In these 177 

studies, geography was not considered as a potential factor structuring the gut mycobiota. For 178 

instance, Nash et al. (2017) found no association between host phenotypic characteristics with 179 

mycobiome profile. This study suggests that diet, the environment, diurnal cycles, and host 180 

genetics may substantially influence the human gut mycobiome. However, the finding that the 181 

majority of the variation could not be explained by their metadata does suggest that other 182 

environmental factors, such as geography, may contribute to structuring the human microbiome 183 

(6). 184 

Our study provides the first results showing the importance of geography in African populations. 185 

Geographic locality may be associated with different environmental factors, such as different 186 

climatic regimes, which may effect structural changes in the mycobiota. For example, climate 187 

significantly influences vegetation and farming practices and leads to region specific diets. These 188 

region-specific diets may ultimately influence the gut mycobiota. This is a reasonable prediction 189 

given previous findings showing that fungi have climate dependent biogeographic patterns (35, 190 

36). These patterns are likely to determine the type of fungi individuals may be exposed to, 191 

which may in turn impact the colonization of fungi in the human gut. The most abundant rural-192 

associated biomarker species found in this study, Dipodascus geotrichum, is ubiquitous in nature 193 

(37) whereas, Hypopichia burtonii is commonly isolated from corn, wheat, and rice (38). The 194 

urban-associated biomarkers were dominated by the species Dekkera bruxellensis, which are 195 

commonly isolated from fermented food such as wine, beer, feta cheese and sour dough (39-41). 196 

In contrast, Hannaella sinensis is commonly isolated from plants and soil (42, 43). The staple 197 
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diet of the rural South African population primarily consists of a corn-based porridge (called 198 

‘pap’). It is therefore not uncommon for a fungal species commonly isolated from corn to be a 199 

dominant biomarker for the rural population. Conversely, the urban population diet was more 200 

diverse and included fermented foods such as wine, sour dough bread and feta cheese, which are 201 

commonly available in supermarkets. Thus, the species Dekkera bruxellensis was identified as a 202 

dominant biomarker in the urban population. 203 

In addition to geographic location, we found that smoking, mode of birth and breastfeeding 204 

significantly influenced gut fungal communities. Several studies have previously reported that 205 

these factors may significantly influence the initial colonization, subsequent composition and 206 

structure of bacterial members of the human gut microbiome (28, 44-46). Suhr et al. (2016) and 207 

Hallen-Adams et al. (2017) investigated the gut mycobiome of two cohorts that were exclusively 208 

on a vegetarian or a western diet. These studies found that the distribution of fungi differed 209 

considerably between the two cohorts (7, 47). Plant-associated Fusarium, Malassezia, 210 

Penicillium and Aspergillus species were detected at higher abundances within the vegetarian 211 

cohort, compared to the cohort on a conventional diet. The finding that smoking affected fungal 212 

community composition and structure is supported by several studies  (48-50). The 213 

approximately 4000 chemical compounds produced by cigarettes have been shown to alter the 214 

composition of the gut microbiome (48, 50-53).  The reported increase of Clostridia induced by 215 

smoking in murine models has also been indirectly confirmed in humans where an increased rate 216 

of C. difficile infection was greater in former and current smokers compared to never smokers 217 

(52). Moreover, the abundance of the fungus Candida tropicalis has also been reported to be 218 

significantly higher in C. difficile infection patients compared to healthy individuals.  (54). The 219 

abundance of C. tropicalis has also been detected to be positively correlated with levels of anti-220 
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Saccharomyces cerevisiae antibodies (ASCA) (54). In our study C. tropicalis was detected to be 221 

higher in individuals who smoke compared to non-smokers whereas, the inverse was true for S. 222 

cerevisiae. These findings may confirm the antagonistic association between the species C. 223 

tropicalis and S. cerevisiae, as previously reported by Hoarau et al., (2016). 224 

Most studies have identified the genera Candida, Saccharomyces, Malassezia and Aspergillus as 225 

the three most abundant in the gut of healthy individuals (6, 25, 32). To the best of our 226 

knowledge, our study is the first to report Pichia as one of the top four most abundant genera in 227 

the human gut mycobiome. This may be due to several factors including differences in cohort 228 

characteristics (e.g., geographical location, diet, genetic predisposition and climate). Pichia have 229 

been identified as both constituent members of the human oral (55, 56) and gut microbiome (34). 230 

Mukherjee detected a 1:1 abundance ratio in the oral mycobiome of individuals when Candida 231 

and Pichia were present together (56). Pichia was also observed to have an antagonistic effect 232 

against Candida, Fusarium and Aspergillus.  233 

The yeast genera, Pichia, Candida and Cladosporium, dominated the South African gut 234 

mycobiome.  Our findings agree with previous studies which show that members of the 235 

Aspergillus, Candida, Debaryomyces, Malassezia, Penicillium, Pichia, and Saccharomyces 236 

genera were the most recurrent and/or dominant fungal genera (34, 47, 57). In contrast to 237 

previous findings, our data indicate higher relative abundances of Cladosporium, detection of 238 

Mucor and the absence or low abundance of genera such as Cyberlindnera, and Galactomyces 239 

(6, 19, 58). Previous studies found that the gut mycobiome of a cohort from Houston, Texas, was 240 

dominated by Saccharomyces, Malassezia and Candida (6). By contrast, the genus Malassezia 241 

was not detected in the gut mycobiome of a Pennsylvania cohort, which was instead dominated 242 

by the genera Saccharomyces and Candida (19). Differences in study methodologies may be a 243 
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source of these conflicting findings (6). One study amplified the Internal Transcribed Spacer 2 244 

(ITS2) region of the fungal rRNA gene (6), and the second amplified the ITS1 region (19). 245 

Studies similar to the work by Gardes et al. (1993) and White et al. (1990), where ITS1F and 246 

ITS2 primer sets were used to amplify the ITS2 region, did not detect Malassezia (59, 60). The 247 

second reason for the observed differences has been attributed to differences in cohort 248 

characteristics, such as diet and/or geographical location. Strati (2016) and Raimondi’s (2019) 249 

investigating cohorts in Italy, detected same dominant fungal genera (58, 61), and the 250 

investigation of cohorts in two different states in the USA observed different results (6, 46). We 251 

used ITS1 and ITS4 in this study and found that the genera Pichia, Candida and Cladosporium 252 

dominated the urban cohort, whereas genera Pichia, Candida and Aspergillus dominated the 253 

rural cohort. The dominant taxa identified in urban and rural locations further support our 254 

assertion that geographic location plays a major role in the observed differences. 255 

Candida albicans was the most dominant taxa n our cohort and is frequently reported as the most 256 

abundant Candida species in both diseased (62) and healthy individuals (63). Candida spp. not 257 

only colonize the gut (19, 34) but several other body sites, including the oral cavity (55, 64), 258 

vagina (65), and skin (66, 67). However, Candida are autochthonous to the mammalian digestive 259 

tract and species including Candida albicans, C. tropicalis, C. parapsilosis, and C. glabrata may 260 

grow and colonize at 37˚C (7).  A review of the literature suggest that C. albicans carriage in 261 

healthy individuals ranges from 30–60% (68) and that living mammals are considered a niche for 262 

these species as they are not found in significant concentrations in soil, food or air (69, 70). 263 

Raimondi et al., (2019) reported that C. albicans was frequently detected and dominated the 264 

cultivable mycobiota of different faecal samples (61).  265 

 266 
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Conclusions 267 

This study provides the first insight into the importance of geography and lifestyle factors on the 268 

gut mycobiome in rural and urban locations in Africa. We found that fungi in the gut display 269 

distinct patterns consistent with geographic locality. Redundancy analysis showed that several 270 

lifestyle factors were major drivers explaining the distinct community structure. The results of 271 

biomarker analysis revealed several ecologically important fungal taxa, which were unique to 272 

individuals from urban and rural areas. These results have significant health implications, 273 

particularly for immunocompromised individuals living in rural and urban locations. Such 274 

findings provide a valid basis for the development of novel therapeutics or preventative measures 275 

reliant on modulating the gut mycobiome.  276 

 277 

Methods 278 

Ethical clearance  279 

All experiments were approved by the Ethics Approval Committee of the Faculty of Health 280 

Sciences at the University of Pretoria (EC 160630-051). Participants approved and provided 281 

informed consent prior to enrolment in this study. All experimental methods and experiments 282 

were in accordance with the Helsinki Declaration. 283 

Participant enrolment criteria for urban and rural areas 284 

Volunteers were recruited from two rural locations and one urban location. For rural volunteers, 285 

we recruited individuals following traditional diets, with generally low levels of processed foods. 286 

Urban cohorts reported mixed diets and increased consumption of processed foods. Volunteers 287 
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from the Ha-Ravele and Tshikombani villages located in the Vhembe District of the Limpopo 288 

Province comprised the rural cohort. Both villages are approximately 391 km and 439 km, 289 

respectively, from the closest city (Pretoria). This city, in the Gauteng province of South Africa, 290 

served as the urban sampling area (Figure 1a). In total, 100 stool samples were collected from 291 

healthy volunteers. These samples were equally divided between gender and locality [i.e. rural 292 

(25 males and 25 females) and urban (25 males and 25 females)]. Self-stool collection kits were 293 

provided to all volunteers (Easy Sampler® Stool collection Kit, Hounisen Lab Equipment A/S, 294 

Skanderborg, Denmark). 295 

Inclusion and exclusion criteria  296 

The participants were all healthy adults age 18 – 50 years. Volunteers reporting antibiotic 297 

use/other treatments in the sample collection sheets were excluded from the study. Similarly, 298 

individuals who had been diagnosed with any inflammatory-related bowel diseases or 299 

gastrointestinal diseases within six months prior to sample collection were excluded from the 300 

study. 301 

DNA extraction 302 

DNA was isolated using the PowerSoil DNA Isolation Kit (MO BIO Laboratories Inc., Carlsbad, 303 

CA) following the manufacturer’s specifications with minor modifications. Briefly, 304 

approximately 0.25g of stool sample was transferred into the Power-Bead tubes using a sterile 305 

disposable wooden spatula (Lasec Laboratories, RSA). The sample was homogenized by gently 306 

vortexing the tubes for 10 s before adding 60 µL of the lysis buffer. This was then incubated for 307 

30 min. at 55°C prior to centrifugation at room temperature for 30 s at 10,000 x g. The 308 

supernatant from this step was transferred to sterile 2 mL tubes and 250 µL of inhibitor removal 309 

reagent was added to this.  The samples were incubated on ice for 5 min., thereafter 310 
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approximately 1.2 mL of binding buffer was added. Next, 70% ethanol (500 µL) was added and 311 

the contents precipitated by centrifugation at room temperature for 60 s at 10,000 x g. The DNA 312 

was eluted with 100 µL filter-sterilised autoclaved Millipore water and quantified using the 313 

NanoDrop™ 2000/2000c Spectrophotometer (Thermo Scientific, Waltham, MA, USA). The 314 

quality of isolated DNA was confirmed by agarose gel electrophoresis, on 1% (w/v) agarose gel 315 

in 1 X TAE buffer (0.2% [w/v] Tris, 0.5% [v/v] acetic acid, 1% [v/v] 5 M EDTA [pH 8]) at 90 316 

Volts for 45 min. in a BioRad Sub-Cell® GT gel electrophoresis system with gel red visualising 317 

agent. The gel was visualised using the BioRad Gel Doc system and viewed with a UV Trans-318 

illuminator. 319 

ITS gene region amplification, sequencing and data processing 320 

The internal transcribed spacer (ITS) region was amplified using fungal-specific primers (60): 321 

ITS1F (5‘ -CTTGGTCATTTAGAGGAAGTAA-3‘) and ITS4 (5‘- 322 

TCCTCCGCTTATTGATATGC-3‘) and the HotStarTaq Plus Master Kit (Qiagen, Valencia, 323 

CA). Amplicons from different samples were pooled to equimolar concentrations and purified of 324 

short fragments using Agencourt Ampure beads (Agencourt Bioscience Corporation, USA). 325 

Paired-end 2 x 250bp sequencing was performed on an Illumina MiSeq instrument (Illumina 326 

Inc., San Diego, CA, USA) at Mr DNA (Shallowater, TX 79363). 327 

The resultant data were analysed using the Quantitative Insights into Microbial Ecology 328 

(QIIME2) software version 2018.8.0 (71). Demultiplexed sequences were assessed for quality 329 

and those shorter than 200 bp, with quality scores below 25, containing more than two 330 

ambiguous characters or more than one mismatch to the sample-specific barcode or the primer 331 

sequences, were excluded from further downstream analyses. Chimeric sequence detection and 332 

operation taxonomic unit (OTU) selection was performed at 97% sequence similarity using 333 
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USEARCH v11 (72). Taxonomies were assigned to each OTU using the UNITE (release 7_99) 334 

databases for fungi (73). Singletons were excluded, and each sample was randomly subsampled 335 

(rarefied) to the same number of sequences per sample (17 980).  336 

Statistical analyses  337 

All statistical analyses were performed in R version 3.5.1 using R studio (74, 75). Alpha 338 

diversity indices (observed, Chao1, Shannon, and Simpson indices), together with rarefaction 339 

curves were calculated and visualized using the R packages “phyloseq” and “ggplot”. First, the 340 

Shapiro-Wilk’s test was applied to determine data distribution (76). Subsequently, the unpaired 341 

two-sample Wilcoxon rank sum test (77, 78) was applied to determine significant differences 342 

between the alpha diversity indices using the R packages “dplyr” version 0.4.3 and the “ggpubr” 343 

version 0.1.8. (79, 80). In these analyses, the rural or urban location was specified as a random 344 

factor.  345 

The R packages “phyloseq” (81) and “microbiomeseq” (82) were used to calculate and visualize 346 

relative taxa abundance at phylum and class level. OTU abundance was transformed to relative 347 

abundance and taxa with relative abundance less than 0.1% were removed. The Wilcoxon rank 348 

sum test was applied to determine significant differences between taxa in the urban and rural 349 

samples. Whereas, the Kruskal-Wallis test (83) was applied to determine significant differences 350 

between taxa in the four sample types.   351 

The local contribution to beta diversity (LCBD) was calculated according to (84). The LCBD 352 

describes the degree of uniqueness of a given sample in relation to the overall community 353 

composition. The taxa abundance was normalized to obtain the proportion of most abundant taxa 354 
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per sample. Location was used as the grouping variable and the Hellinger method was used for 355 

the dissimilarity coefficients calculation.  356 

Pairwise similarities among samples were calculated using the Bray–Curtis index of similarity. 357 

The resulting matrix was represented visually in a nonmetric multidimensional scaling (NMDS) 358 

plot to observe community structure.  Using the vegan package (85), a permutational 359 

multivariate analysis of variance (PERMANOVA) (86) based on 9999 permutations of the data, 360 

was performed to test whether differences between sample groupings in the NMDS ordinations 361 

were statistically significant. Microbial community similarities and the homogeneity of 362 

dispersion between the rural and urban sample groups were tested using the ANOSIM and 363 

ADONIS tests, respectively (87, 88). 364 

The effect of the different recorded environmental factors on fungal community composition and 365 

structure was determined through redundancy analysis (RDA). First, the OTU-count data were 366 

Hellinger-transformed. The contribution of highly correlating OTUs (p-Value < 0.05) with 367 

redundancy axes was identified using the envfit function from the R package vegan (85). To 368 

measure the relationship of abundant taxa with measured anthropometric factors (age, BMI, 369 

height, and weight), a Spearman correlation analysis was done and visualized in the R package 370 

microbiomeseq (82).   371 

Fungal-fungal relationships were interrogated using SparCC (89). Correlation was based on 372 

measuring the linear relationship between log transformed abundances. First, data were filtered 373 

to remove OTUs that had less than 2 reads on average. SparCC was used to generate true 374 

correlation coefficients from which pseudo p-values were calculated. The calculate pseudo p-375 

values were false discovery rate (FDR) adjusted (90) and the correlation matrix was visualized 376 

using the “corrplot” function (91) in R.  377 
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Potential biomarker taxa which differed in abundance and occurrence between the two 378 

geographic groups were detected by linear discriminant analysis (LDA) effect size (LEfSe) (33). 379 

The LEfSe was calculated using the online Galaxy web application (92) with the Huttenhower 380 

lab’s tool (https://galaxyproject.org/learn/visualization/custom/lefse/). First the nonparametric 381 

factorial Kruskal–Wallis sum rank tests (alpha = 0.01) was used to detect differential abundant 382 

features (at genera, family, class and phylum level) within the two geographic locations (rural 383 

and urban). The phylogenetic consistency was then tested using the pairwise Wilcoxon rank-sum 384 

tests (alpha = 0.01). Finally, the effect size of each differentially abundant feature was estimated 385 

using the LDA. The all-against-all classes were compared (most stringent) and a linear 386 

discriminant analysis score value of 2.0 was chosen as threshold for discriminative features.  387 
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Figure captions 407 

Figure 1 Geographic locations and diversity estimates a) The three sampling locations in 408 

Gauteng (Pretoria) and Limpopo (Ha-ravele and Tshikombani) provinces of South Africa b) The 409 

differences in mycobiota species richness between the two locations, gender and age group and, 410 

c) The relative abundances of taxa at phylum and class levels within each location. The 411 

abundance of each taxon was calculated as the percentage of sequences per gender (RF = Rural   412 

female, RM = Rural male, UF = urban female and UM = Urban male) from each location for a 413 

given microbial group. The group designated as 'Unknown' encompasses unclassified sequences 414 

together with classes representing > 0.1% of the total sequences. The bar size represents the 415 

relative abundance of specific taxa in the particular group, with colours referring to taxa 416 

according to the legend. 417 

 418 

Figure 2 Overview of mycobiota structure and significant environmental drivers a) The non-419 

metric multidimensional scaling (NMDS) plot based on Bray–Curtis dissimilarity and, b) 420 

Redundancy analysis (RDA) showing community structure in response to four selective 421 

variables. The filled shapes reflect fungal community composition in the different locations, with 422 

colours referring to location and the different explanatory variables according to the legend.  423 

 424 

Figure 3 The results of Linear discriminant analysis (LDA) effect size (LefSe) analysis of rural 425 

and urban gut mycobiota a) The cladogram shows the output of the LEfSe algorithm, which 426 

identifies taxonomically consistent differences between rural (Ha-ravele and Tshikombani 427 

villages) and urban (Pretoria) fungal community members, respectively. Taxa with 428 
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nonsignificant differences are represented as yellow circles and the diameter of the circle is 429 

proportional to relative abundances b) The histogram of the LDA scores was computed for 430 

differentially abundant taxa between the rural and urban gut mycobiota. The bar size represents 431 

the effect of the size of specific taxa in the particular group at species level 432 

 433 

Figure 4 Correlations occurring between fungal taxa in a) rural and b) urban fungal mycobiota 434 

with P < 0.05 after FDR adjustment. Red squares represent significant negative correlations and 435 

blue squares represent significant positive correlations. The darker colours represent stronger 436 

correlations and non-significant correlations have been excluded from the plot. 437 

 438 

Supplemental Figure legend 439 

Figure S1 Comparison of mycobiota between urban and rural participants a) Venn diagram 440 

showing the unique and shared phylotypes for samples collected from urban and rural 441 

participants. b) Rarefaction plot showing sequencing coverage. c) Taxa abundance data was 442 

normalised to obtain the proportion of most abundant taxa per sample. The diameter of the points 443 

at the bottom of the plot corresponds to the magnitude of the LCBD value for a particular 444 

sample. The bars correspond to taxa that are most abundant with the top taxa sharing a bigger 445 

portion of the bar for each sample. 446 

  447 
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