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Abstract 23 
 24 
The gut microbiota is an immense reservoir of antimicrobial resistance genes (ARGs); however, in 25 
Australia the profile of the gut ‘resistome’, or ensemble of ARGs, has not been investigated. This 26 
study provides a first preliminary mapping of the major bacterial ARGs present in human, domestic 27 
dog and wild duck fecal samples collected from south-eastern Victoria, Australia; and evaluates 28 
the use of shotgun metagenomics sequencing (SMS) and targeted amplification of ARGs. We 29 
analysed SMS data using an in-house method and web-based bioinformatics tools: ResFinder and 30 
KmerResistance. We examined targeted sequences using One Codex or the PanBacterialAnalysis 31 
Torrent Suite plugin. All methods detected ARGs in all samples, with resistance to up to 13 32 
classes of antibiotics detected overall. ARGs were more abundant in the human and dog samples 33 
than the duck samples. They mostly conferred resistance to three classes of antibiotics that are 34 
the most frequently prescribed in Australia: tetracycline, b-lactams and MLSB (macrolide, 35 
lincosamide, streptogramin B). Targeted sequencing significantly improved sensitivity for detection 36 
of ARGs included in the panel; however, SMS provided quantitative information and allowed 37 
tentative identification of the host bacteria. For SMS, web-based and in-house methods gave 38 
comparable results, with discrepancies mostly due to different reference databases. The in-house 39 
method allowed manually checking results and potential errors, while web-based methods were 40 
user-friendlier and less time-consuming. More samples need to be investigated to fully describe 41 
the resistome in humans and animals in Australia. 42 
 43 
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Introduction 46 
 47 
Antimicrobial resistance (AMR) occurs naturally in bacteria and other microorganisms, but 48 
increases when antimicrobials (antibiotics, antivirals, antifungals) are used1. According to WHO, 49 
AMR accounts for an estimated 700,000 deaths per year and is one of the ten threats to global 50 
health in 20192. Reservoirs of multi drug-resistant (MDR) bacteria are ubiquitous, and the concept 51 
of an “antibiotic resistome” was first coined to describe the large collection of bacterial 52 
antimicrobial resistance genes (ARGs) found in a specific environment3. Although AMR is most 53 
clinically relevant in pathogenic bacteria, ARGs exist in both pathogenic and non-pathogenic 54 
bacteria, and large reservoirs of these genes exist in all ecosystems, including in commensals at 55 
all sites of the human or animal body4.  56 
 57 
The adult human gastrointestinal tract harbours up to 1,000 molecular species or phylotypes often 58 
referred to as operational taxonomic units (OTUs) in 16S rRNA metagenomics5,6. This vast array 59 
of resident bacteria responds to environmental conditions inside the host, including altered dietary 60 
intake and antibiotic-induced disturbances. That can result in modifications in the microbial 61 
community structure and genetics, including the enrichment of ARGs within the gut microbiota. 62 
Recent studies have suggested potential links between the gut resistome and the spread of AMR: 63 
horizontal transfer of ARGs from commensal bacteria mediated by mobile genetic elements may 64 
affect potentially pathogenic organisms7-9. Although the development of culture-independent 65 
sequencing techniques has expanded our knowledge of the different reservoirs of ARGs, it is 66 
currently unclear how widespread commensal bacteria carrying ARGs are in the gut microbiota, 67 
and how they develop over time10. 68 
 69 
There is however considerable evidence that antibiotic exposure promotes the development of a 70 
resistome in the gut microbiota11-13. Different features such as class, potency, spectrum and 71 
regimen of the antibiotics can influence the observed pattern of resistance of the gut microbiota13. 72 
Geographical differences also exist between countries in relation to the ARGs detected in human 73 
fecal samples14. For example, the number and abundance of ARGs was higher in the fecal 74 
samples of Chinese individuals than in the Spanish and Danish groups studied15. Variation in the 75 
total usage of antibiotics between countries may be one explaining factor for those differences. 76 
Indeed, both antibiotic exposure and the number of ARGs were higher in individuals from Spain, 77 
France and Italy than in individuals from Denmark, Japan and the United States16. In other 78 
countries such as Australia, very little is known about the resistome of humans and animals, with 79 
available studies focusing primarily on ARGs in pathogenic bacteria (e.g. Campylobacter or 80 
Escherichia coli) or in environmental samples, e.g. studying the soil resistome after swine, cattle or 81 
poultry manure usage17-19. One recent study however assessed the diversity and abundance of 82 
ARGs transcribed in the fecal microbiota of water birds of Australia20, but currently no study 83 
focused on the human fecal microbiota and its associated resistome in Australia. This clearly 84 
represents a significant knowledge gap. Regular surveillance of the resistome in Australia could be 85 
used to monitor trends in AMR over time and the emergence of resistance alleles. Resistome 86 
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surveillance could also inform future prescribing guidelines for doctors in hospitals and community 87 
clinics, and veterinarians in companion and production animal settings, to help preserve the 88 
effectiveness of valuable antibiotics. 89 
 90 
The declining costs of metagenomic sequencing technologies has led to increased molecular 91 
investigation of ARGs and has enabled a shift from phenotype to genotype-based approaches to 92 
investigate AMR21,22. The ultimate goal of ARG sequencing and related bioinformatic analyses is 93 
the accurate detection of the resistome and prediction of the antibiogram from genomic and 94 
metagenomic data23. Several major databases provide collections of ARGs covering broad 95 
categories of AMR mechanisms including the Comprehensive Antibiotic Resistance Database 96 
(CARD)24, Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT)25, the Bacterial Antimicrobial 97 
Resistance Reference Gene Database26 hosted by the National Center for Biotechnology 98 
Information (NCBI) as part of the National Database of Antibiotic Resistant Organisms (NDARO), 99 
and ResFinder27 (see 23 for a more exhaustive list of available AMR bioinformatics software, 100 
databases, and data-sharing resources). These resources and their associated prediction tools 101 
enable detection and annotation of specific AMR elements in sequenced samples by comparing 102 
user-submitted sequences against representative sets of ARGs sequences. While identifying 103 
ARGs from a bacterial isolate from a sick patient is reasonably straightforward using whole 104 
genome sequencing, the exhaustive description of a resistome in complex environments with high 105 
bacteria diversity and relatively low abundances of ARGs is challenging. Two different strategies 106 
have been developed to study AMR in complex environments like the gut. Deep shotgun 107 
metagenomic sequencing is used to produce millions of reads that are filtered to map the ARGs. 108 
However, because reads corresponding to ARGs can be low (e.g. less than 2% of the total 109 
sequencing data in 28), targeted approaches (including an initial amplification of a panel of ARGs) 110 
with increased sensitivity have been developed. As new methods and new commercial panels 111 
become available, it is currently unclear what method is best to study resistomes when no pre-112 
existing information is available, e.g. in Australia. 113 
 114 
We investigated for the first time the diversity and abundance of ARGs in a broad range of fecal 115 
microbiota samples (a number of infants, healthy pregnant women, domestic dog, wild ducks) 116 
collected in south-eastern Victoria, Australia. We used both non-targeted NGS (analyzed in-house 117 
and with web-based tools) and targeted NGS (using two commercially available panels) and 118 
assessed and compared the performance of these tools for the analysis of bacterial resistomes in 119 
an Australian context. This preliminary study will pave the way for a broader analysis of bacterial 120 
resistomes in humans and animals in Australia. 121 
 122 
Methods 123 
 124 
Sample collection and processing 125 
 126 
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Sample collection 127 
Human and animal samplings were performed in accordance with relevant guidelines and 128 
regulations. We collected stool samples from two infants and seven adults from the southeast of 129 
Australia (Table 1). The children were: one infant sampled at 4 weeks of age (ST5-1mo) and again 130 
at 18 months (ST5-18mo), and another infant sampled at 3 months of age (ST4-3mo). The study 131 
involving these samples was deemed negligible or low risk by the Barwon Health Human 132 
Research Ethics Committee and therefore exempt from full committee review (HREC approval 133 
17/119). The adult samples originated from pregnant women at 36-weeks gestation between 2010 134 
and 2013 with informed consent for study participation as part of the Barwon Infant Study (BIS), a 135 
birth cohort study–eligibility criteria and cohort profile are described elsewhere29. Ethics approval 136 
for this study was granted by the Barwon Health Human Research and Ethics Committee (HREC 137 
10/24). All human stool samples were stored at -80ºC prior to DNA extraction. 138 
 139 
Table 1. List of tested human and animal samples (n = 13). Fecal samples were DNA extracted 140 
using two different methods, as described.  141 

Sample ID Host Extraction method 

ST5-1mo Human - child 1 month of age PowerSoil® DNA Isolation Kit - Mo Bio 

ST4-3mo Human - child 3 months of age QIAamp Fast DNA Stool Mini Kit 

ST5-18mo Human - child 18 months of age QIAamp Fast DNA Stool Mini Kit 

HS21 Human - adult PowerSoil® DNA Isolation Kit - Mo Bio 

HS22 Human - adult PowerSoil® DNA Isolation Kit - Mo Bio 

HS23 Human - adult PowerSoil® DNA Isolation Kit - Mo Bio 

HS24 Human - adult PowerSoil® DNA Isolation Kit - Mo Bio 

HS25 Human - adult PowerSoil® DNA Isolation Kit - Mo Bio 

HS26 Human - adult PowerSoil® DNA Isolation Kit - Mo Bio 

HS28 Human - adult PowerSoil® DNA Isolation Kit - Mo Bio 

ST1-MAD* Pool from 6 Pacific black ducks (Anas superciliosa) QIAamp Fast DNA Stool Mini Kit 

ST3-MUD* Muscovy duck (Cairina moschata) QIAamp Fast DNA Stool Mini Kit 

DFS** Pool from 2 dogs QIAamp Fast DNA Stool Mini Kit 

HS: human sample; DFS: dog fecal sample. * See 30. ** See 31. 142 
 143 
Samples from ducks and dogs were collected in the south-eastern part of Victoria, Australia, as 144 
part of other projects investigating fecal microorganisms. Fresh fecal samples from one Muscovy 145 
duck (MUD) and a pooled sample from six juvenile Pacific black ducks (MAD) were collected in 146 
November and December 2016 respectively30. Bird sample collection was approved under Deakin 147 
University’s Animal Ethics Committee project number B43–2016 and Department of Environment, 148 
Land, Water and Planning permit number 1008206. 149 
A pooled dog fecal sample (DFS) originating from two pups (7 weeks of age) was collected from 150 
the ground immediately after being deposited, with the consent of the owner31. These puppies 151 
were healthy at the time of collection, but they had been sick just 1-2 weeks before and an 152 
astrovirus was detected in the 7-week sample31. However, they were originally thought to have a 153 
Campylobacter infection and were likely treated with antibiotics at 5 weeks of age. Swabs from 154 
dog samples were placed in Universal Transport Medium (UTM) and stored on ice overnight. The 155 
following morning, swabs were aliquoted and frozen at -80ºC until DNA extraction. 156 
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 157 
DNA extraction 158 
DNA was extracted from fecal samples and swabs using the Qiagen Powersoil® DNA Isolation Kit 159 
(Cat#12888-100) (QIAGEN Pty Ltd., Victoria, Australia) or the QIAamp Fast DNA Stool Mini Kit 160 
with MoBio bead shearing (Mo Bio, Carlsbad, CA USA). The manufacturer’s protocol was slightly 161 
modified following optimization: for the inhibitors’ removal steps, 375 µL of Solution C2 and 335 µL 162 
of Solution C3 were used instead of the prescribed volumes. DNA concentrations were measured 163 
using a NanoDrop™ spectrophotometer (Thermo Fisher Scientific, Scoresby, VIC, Australia), and 164 
the quantity and size distribution of the fragments after DNA extraction was visualized on an 165 
Agilent Bioanalyzer DNA 7500 chip (Agilent Technologies) using the High sensitivity DNA kit 166 
(Agilent Technologies). 167 
 168 
Library preparation and sequencing  169 
Extracted DNA was sequenced using three different methods relying on Next Generation 170 
Sequencing (NGS). We used a non-targeted sequencing of sheared DNA, hereafter referred to as 171 
“Shotgun Metagenomic Sequencing” (SMS) method, as well as a targeted metagenomic 172 
sequencing method using two commercially available Ion AmpliseqTM (PCR) panels (Life 173 
Technologies). 174 
 175 
Non-targeted sequencing: Shotgun Metagenomic Sequencing 176 
Genomic libraries were prepared separately for each genomic sample from 100 ng of DNA. DNA 177 
was fragmented using the Ion ShearTM Plus Reagents (Life Technologies, Grand Island, NY). 178 
Aiming for a 200 base-read library, the chosen reaction time for the enzymatic incubation at 37°C 179 
was 15 minutes, as advised in the manufacturer’s protocol. Sheared DNA was purified with 180 
Agencourt AMPure® XP Reagent (1.8x sample volume) (Beckman Coulter, Lane Cove, NSW, 181 
Australia). The quantity and size of sheared material was visualized on an Agilent Bioanalyzer 182 
DNA 7500 chip (Agilent Technologies) using the High sensitivity DNA kit (Agilent Technologies) 183 
assuming a targeted 200 base-read library. 184 
The adapter ligation and nick repair were performed using the Ion Plus Fragment Library kit and 185 
Ion Xpress barcode adapters following the manufacturer’s recommendations (Life Technologies). 186 
Ligated and nick repaired DNA was purified with Agencourt AMPure® XP Reagent (1.4x sample 187 
volume) (Beckman Coulter) assuming a targeted 200 base-read library. The ligated and nick 188 
repaired DNA was size-selected individually with the E-Gel® SizeSelectTM Agarose Gel (Life 189 
Technologies). The size selected (and unamplified) libraries were quantified as per the 190 
manufacturer’s instructions using the Ion Library qPCR Quantitation Kit (Life Technologies) to 191 
determine if library amplification was required. 192 
If required (i.e. final library quantity was < 50 pM), the size selected libraries were further amplified 193 
using Platinum® PCR SuperMix High Fidelity and Library Amplification Primer Mix as per 194 
manufacturer’s instructions (Life Technologies). This was necessary for four samples (ST4-3mo, 195 
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MUD, MAD and DFS), which were amplified for 10 PCR cycles prior to purification and 196 
quantification. 197 
All libraries were standardized to a concentration of 100 pM. Libraries were then pooled and 198 
diluted to 50 pM prior to loading onto Ion 530TM or 540TM Chips using the Ion Chef Instrument and 199 
Ion 530TM or Ion 540TM Kit (Thermo Fisher Scientific). Following template preparation, the chips 200 
were run on the Ion Torrent S5xl System (Thermo Fisher Scientific) as per company protocols. 201 
NGS and associated reactions were performed at the Geelong Centre for Emerging Infectious 202 
Diseases (GCEID), Geelong, Victoria, Australia.  203 
 204 
Targeted sequencing: IonAmpliSeqTM panels 205 
We used two commercially available community panels designed to target AMR determinants, 206 
both kindly donated by Life Technologies. The first panel used was the Ion AmpliSeqTM Pan-207 
Bacterial Research panel, consisting of two primer pools: the one pool contained 269 amplicons 208 
targeting 21 specific bacterial species and 716 amplicons targeting 364 known ARGs; the other 209 
pool was comprised of 24 amplicons for 16S rRNA gene profiling of up to approximately 400,000 210 
16S rRNA sequences. From this panel, we only used the first primer pool targeting the ARGs. 211 
The second panel used was the Ion AmpliSeqTM Antimicrobial Resistance (AMR) Research panel 212 
that also consisted of two primer pools comprising a total of 815 amplicons targeting 478 known 213 
ARGs32. Both primer pools were used from this panel. The list of primers is available upon request 214 
from Life Technologies (https://www.thermofisher.com/). 215 
Ten nanograms of extracted DNA were PCR-amplified with the Ion AmpliSeqTM Library Kit (Life 216 
Technologies) and Ion AmpliSeqTM Panels, both panels including a 5X Ion AmpliSeqTM HiFi Master 217 
Mix. With the Pan-Bacterial Research panel, PCR conditions were as follows: enzyme activation at 218 
99ºC for 2 minutes followed by 18 cycles of 99ºC for 15 seconds and 60ºC for 8 minutes before 219 
holding at 10ºC. With the AMR Research panel, PCR conditions were as follows: enzyme 220 
activation at 99ºC for 2 minutes followed by 19 cycles of 99ºC for 15 seconds and 60ºC for 221 
4 minutes before holding at 10ºC. The following steps (adaptors and barcodes ligation, purification, 222 
and qPCR quantification) were done as per the manufacturer’s instructions. None of the 223 
AmpliSeqTM libraries required further amplification at this stage. Libraries were then pooled prior to 224 
loading onto an Ion 530TM Chip and loading into the Ion Chef Instrument. Following template 225 
preparation, the chip was run on the Ion Torrent S5xl System (Thermo Fisher Scientific) following 226 
company protocols. We submitted reads obtained from the SMS and targeted sequencing to the 227 
European Nucleotide Archive (ENA) under project accession number PRJEB36405. 228 
 229 
Next generation sequence analyses 230 
We obtained three sets of sequence data that we analysed using different tools and methods. A 231 
schematic flowchart summarizing the different sequencing and analysis methods is presented in 232 
Figure 1. 233 
 234 
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Figure 1. Flowchart describing three methods to identify the presence of the most common 235 
ARGs in clinically healthy human/animal samples using NGS without culturing. (A) Non-236 
targeted sequencing of sheared DNA or “Shotgun Metagenomic Sequencing” (SMS) method, 237 
versus (B) and (C) targeted sequencing using two commercially available AmpliSeqTM panels 238 
targeting ARGs. Sequences obtained with the SMS method were analysed using different web-239 
based tools (ResFinder and KmerResistance, https://cge.cbs.dtu.dk/services/), and an in-house 240 
method based on the comparison of reads and contigs with a NCBI-curated ARGs database 241 
(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047). *Targeted sequencing was tested on 242 
human samples only: 4 with the AMR Research panel, 8 with the Pan-Bacterial panel. ** refers to 243 
Ion Torrent Suite plugins available from the Thermo Fisher Scientific Plugin store. *** refers to the 244 
“One Codex” online platform (available at: https://app.onecodex.com/) used with the AMR 245 
Research panel. “ID”: percentage identity threshold; “minL”: minimum length: minimum percentage 246 
of coverage compared to reference length or minimum number of nucleotides (nt); “ref”: reference 247 
sequences used for comparison with reads and/or contigs. 248 
 249 
Analysis of the sequences obtained by Shotgun Metagenomic Sequencing 250 
Raw sequences were analysed using the Ion Torrent Server linked to the Ion Torrent S5xl 251 
instrument, based on each sample having a unique barcode. We developed an “in-house method” 252 
based on the comparison of our data with references in the NCBI-curated AMR gene database 253 
(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047) containing a total of 4,528 sequences 254 
(downloaded on the 2nd of August 2018).  255 
The reads were queried against the NCBI’s ARGs database using Magic-BLAST33 with 256 
parameters as follows: 98% minimum identity between the read and the reference, and 70 257 
nucleotides minimum length. Concomitantly, the Torrent Suite AssemblerSPAdes 5.6.0 plugin was 258 
used to generate contigs from the reads for each sample34. These contigs were also queried 259 
against the NCBI’s ARGs database but using nucleotide BLAST (BLASTN)35,36 with parameters as 260 
follows: 80% minimum identity between the contig and the reference and 1e-10 minimum E-value. 261 
The contigs identified to carry ARGs were queried against the “Microbes” reference database 262 
using BLAST Genomes in order to tentatively identify the bacterial species carrying ARGs.  263 
After identifying the ARGs present, FASTA files were created by adding chromosomes X, 21 and 264 
mitochondrion from the human genome reference sequence (hg19) to each pre-selected ARG 265 
sequence (listed in Supplementary Table S1). This was done in order to artificially increase the 266 
length of the reference used for the mapping, as it is our experience that mapping issues may 267 
arise from mapping reads against small references such as e.g. ARGs of only around 1,000 to 268 
2,000 bp due to the scaling factor algorithm used by the Torrent Suite TMAP plugin. The extended 269 
FASTA references were added to the Ion Torrent Server and used for the mapping of sequence 270 
reads using the Torrent Suite TMAP plugin. Mapped reads and consensus sequences were 271 
visualised and analysed using the Integrative Genomics Viewer (IGV)37.  272 
 273 
ARGs coverage and depth  274 
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Individual ARGs coverage and depth metrics were calculated using the Torrent Suite 275 
CoverageAnalysis v5.6.0.1 plugin using the filters: library type = whole genome; minimum aligned 276 
length = 100; minimum mapping quality = 20. The “average base read depth” obtained as an 277 
output was used to standardize reads counts. A “mean base depth per 5 million reads” (or BD5M) 278 
was calculated for each ARG in each sample following the formula: (average base read depth * 279 
5,000,000) / total reads. Contrary to the common RPKM (number of reads per kb of gene per 280 
million sequenced reads), BD5M is ‘per base’ and not ‘per read’ and its interpretation is 281 
independent of the size of the reads or the reference. As an example, if 5 million reads were 282 
obtained for a sample, BD5M = 2 for a specific gene is equivalent to reads mapping the whole 283 
gene twice or reads mapping half of the gene four times. To avoid confusion between the raw 284 
coverage from the sequencer and our calculated BD5M, we hereafter refer to the latest as an 285 
abundance rather than a coverage. 286 
 287 
Additional AMR analyses  288 
We analysed the sequences obtained with the SMS method using two web-based tools, 289 
KmerResistance (available at https://cge.cbs.dtu.dk/services/KmerResistance/)38,39 and ResFinder 290 
3.1 (available at https://cge.cbs.dtu.dk/services/ResFinder/)27, in order to compare the results with 291 
those obtained with our “in-house method” (Figure 1). Both tools rely on the same reference 292 
database (available at https://cge.cbs.dtu.dk/services/data.php)27. Raw sequences (FASTQ reads) 293 
from each sample were screened for ARGs present in the ResFinder database with the default 294 
settings of 70% identity threshold and 10% depth correction using “bacteria” as the host database 295 
and “resistance genes” as the gene database. Scoring method was “species determination on 296 
maximum query coverage”. Contigs (FASTA files) from each sample were also screened for ARGs 297 
present in the ResFinder database using the settings of 90% minimum identity and 20% minimum 298 
length. 299 
 300 
Microbiota analysis and host identification  301 
The Torrent Suite Ion ReporterTM software was used to process reads for metagenomics analysis 302 
of the gut microbiota. Data files (Binary Alignment Map, BAM) generated by the Ion Torrent S5xl 303 
with the SMS method were uploaded to Ion Reporter (https://ionreporter.thermofisher.com/ir/). All 304 
analyses were run using a “150-90-3” setting, i.e. minimum read length = 150; minimum alignment 305 
coverage between hit and query = 90%; minimum number of unique reads (or ‘read abundance 306 
filter’) = 3. This means that only reads found as triplicates or more were included in the analysis. A 307 
minimum percentage identity of 97% was required for genus identification of a ribosomal 308 
sequence, and a minimum percentage identity of 99% for species identification. When there was a 309 
difference of less than 0.2% match between the top hit and the next best hit, the sequence was 310 
identified as 'species slash ID' (unidentified species). The relative abundance of the species/genus 311 
identified in the gut microbiota was determined from Ion ReporterTM. 312 
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The contigs generated from SMS allowed tentative identification of host bacteria carrying the 313 
ARGs. This was achieved by running the contigs against the “Microbes” database using BLAST 314 
Genomes or the ResFinder tool. 315 
Analysis of the sequences obtained by Ion AmpliSeqTM panels 316 
Following targeted amplification, sequences obtained from the Ion Torrent S5xl were analysed 317 
based on each sample having a unique barcode and using dedicated platforms or plugins, i.e. (i) 318 
the “One Codex” web-based platform (available at: https://app.onecodex.com/) for the sequences 319 
obtained from using the AMR Research panel, or (ii) the “PanBacterialAnalysis” Torrent Suite 320 
plugin from the Ion Torrent Server for the sequences obtained from using the Pan-Bacterial 321 
Research panel (see Figure 1). One Codex reported the percentage of the ARG sequence 322 
covered by reads in the sample, the percentage identity to the reference ARG sequence, and the 323 
depth of read coverage. The “PanBacterialAnalysis” plugin reported the “read counts” matching 324 
each ARG in the database. 325 
 326 

Results 327 
 328 
All 13 samples were processed using the SMS method; with eight samples processed using the 329 
Pan-Bacterial Research panel, and four of these eight also processed using the AMR panel (Table 330 
2). SMS generated a total of 3.8 to 11 million reads per sample, with average read lengths of 162-331 
201 nucleotides (Table 2). Whatever the method, all samples had reads that mapped to ARGs, 332 
with abundance and composition varying between samples. SMS overall identified ARGs to 2-11 333 
classes of antibiotics in individual samples (Figure 2 and Table 3), with ARGs to two additional 334 
classes identified using targeted sequencing methods. 335 
 336 
Table 2. Summary of NGS sequencing results using three methods: (1) shotgun 337 
metagenomics sequencing (SMS) or (2) targeted sequencing using community panels from Life 338 
Technologies: (2a) the Ion AmpliSeqTM Antimicrobial Resistance (AMR) Research panel and (2b) 339 
the Ion AmpliSeqTM Pan-Bacterial Research (PBR) panel. BC: barcode adapter identifier; Reads: 340 
number of short read sequences per sample; MRL: mean read length in nucleotides. The four 341 
human samples tested with all three methods are in dark grey, the four human samples tested with 342 
two methods are in light grey and the five samples tested only with the SMS method are in white. 343 
 344 

Sample ID Host 
SMS method AMR panel PBR panel 

BC Reads MRL BC Reads BC Reads 

ST4-3mo Human - child BC062 5,057,157 184 - - - - 
ST5-1mo Human - child BC002 10,998,563 201 BC049 1,486,710 BC053 505,192 

ST5-18mo Human - child BC063 5,656,858 195 - - - - 

HS21 Human - adult BC021 3,829,581 
 

182 
 

BC050 523,118 BC054 524,591 

HS22 Human - adult BC022 5,721,672 
 

184 
 

- - BC055 377,819 

HS23 Human - adult BC023 9,313,335 
 

197 
 

- - BC056 262,060 

HS24 Human - adult BC024 7,303,016 
 

195 
 

BC051 709,047 BC057 491,234 
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 345 
Figure 2. Overview of antimicrobial resistance genes (ARGs) abundance and composition 346 
in human and animal samples (n = 13) using the shotgun metagenomics sequencing (SMS) 347 
method. (A) Major versus (B) minor ARGs. ARGs abundance is calculated as a “mean base depth 348 
per 5 million reads” (BD5M) for each reference gene in each sample, and then summed for ARGs 349 
belonging to the same class of antibiotics. 350 

HS25 Human - adult BC025 6,986,354 
 

193 
 

- - BC058 174,895 

HS26 Human - adult BC026 9,411,554 
 

198 
 

BC052 730,272 BC059 431,487 

HS28 Human - adult BC028 7,952,415 
 

180 
 

- - BC060 110,975 

ST1-MAD Pacific black ducks BC065 5,671,145 162 - - - - 

ST3-MUD Muscovy duck BC066 8,438,563 169 - - - - 
DFS Pool from 2 dogs BC070 8,570,346 192 - - - - 
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Table 3. Antimicrobial resistance genes (ARGs) identified from the shotgun metagenomics sequencing (SMS) using the “in-house” analysis (based 351 
on queries against the NCBI’s “Bacterial Antimicrobial Resistance Reference Gene Database” BioProject PRJNA313047). Mean depth coverage per 5 million 352 
reads (BD5M) between 1 and 10 is highlighted in yellow, BD5M > 10 is highlighted in red. Additional ARGs identified with the ResFinder and/or 353 
KmerResistance tools but not the in-house method are not listed here (see text). 354 
 355 

Class of antibiotics Gene ST4-
3mo 

ST5-
1mo 

ST5-
18mo HS21 HS22 HS23 HS24 HS25 HS26 HS28 MAD MUD DFS 

Aminoglycosides aac(6’) 0 0 0 0 0 0.9R 0 0 0 0 0 0 0  
aadA1 0 0 0 0 0 0 0 0 0 0.9 9* 1.2 0 

 aadE (or ant6-Ia) 0 0 0 6.7KR 1.3K 3.4R 10.2KR 0.4 1.7KR 2.6K 0 0 1.1R  
aadS § 0 0 0 0 0 1.0§ 41.7§ 0 0 0 0 0 18.2§  
spw for ant9 § 0 0 0 0 0 0.1§ 8.9§ 0 2.2§ 0 0 1.3§ 0 

 aph(3')-la 0 0 0 0 0 0 0 0 0 0 0 0 2.7R  
aph(3')-llla 0 0 0 1.0 1.4 1.2 0.2 1.0R 0.1 0.2 0 0 0  
aph(6)-ld 0 0 0 0 0 0 0 0 0 0 0 0 0.6 

 aac(6')-Ie / aph(2'')-Ia § 0 0 0.5§ 0 0.1§ 0 0 0 0.9§ 0.2§ 0 0 0.1§ 
Beta-lactams blaEC § 46.8§ 95.9§ 0 2.9§ 0 0.4§ 0 0.6§ 0.3§ 0 0.5§ 0.1§ 0 
 blaOXA 0 0 0 0 0 0 0 0 0 0 0 1.2K 0 
 blaTEM 53.7KR 0 0 0 0 0 0 0 0.1 0 0.2 0 2.7 
 cblA § 0 0 32.4§ 1.6§ 4.4§ 0.7§ 0 1.2§ 0.5§ 2.8§ 0 0 0  

cepA 0 69.5KR 11.8KR 0 0.3 0.1 0.9 0.1 0.2 0 0 0 0  
cfxA 0 0 35.9KR 16.2K 4.0K 1.7R 0 1.5 1.5R 0 0 0.5 66.5 

Chloramphenicol catD § 0 0 0.2§ 0 0.7§ 4.6§ 0 0 0.1§ 0.8§ 0 0 0 
catP 0 0 0.2 0 0.7 6.4 0 0 0 0.8 0 0 0 

Fosfomycin fosA 1.0R 0 0 0 0 0 0 0 0 0 0 0 0 
Glycopeptides vanG § 0 0 0 0 0.5§ 0 0 0 0 0 0 0 0  

vanS-D 0 0 0.4 0 0.1 0.2 1.1 0.2 0 0 0 0 0 
 vanY-D 0 0 0.7 0 0 0 0 0 0 0 0 0 0 
MLSB eat(A) § 0 0 0 0 0 1.0§ 0 0 0 0 0 0 0.1§ 
 ere(D) 0 0 0 0 0 1.0R 0 0 0 0 0 0 0  

erm(B) 0 0 1.4 0.3 2.8KR 1.2R 20.8KR 5.2KR 21.4KR 13.4KR 0 0.2 0  
erm(F) 0 0 0 0 0 0 29.4KR 0.3 0 0 0.2 4.2KR 0  
erm(G) 0 0 0 0 0 0.1 0 0 0 0.1 0 0.5 26.4KR  
erm(Q) 0 0 0 0 0 0 0 0 0 0 0 2.2KR 0.6  
lnu(A) 0 0 0 0 0 0 0 0 0 0 0 0 2.3R 

 lnu(AN2) § 0 63.2§ 29.5§ 0 0.7§ 1.2§ 14.6§ 0.2§ 25.0§ 1.0§ 0 1.1§ 56.6§  
lnu(C)  0 0 0 0 1.1 0.4 0 4.9KR 0.7 0.2 0 5.8KR 64.2KR 
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lnu(P) 0 0 0 0 0 0 0 0 0.3 0 0 3.0KR 0 

 lsa(A) 0 0 0 0 0 0 0 0 0 0 6.1KR 0 0  
mef(A) 0.5 1.1KR 0.1 0 0.1 0.7 14.4KR 0.6 3.7KR 0.1 0 10.0KR 20.5KR  
mef(En2) § 0 61.8§ 32.8§ 0.4§ 0.3§ 1.3§ 15.7§ 0.2§ 17.3§ 2.2§ 0 2.7§ 65.9§ 

 msr(C) 0 0 0 0 0 1.3R 0 0 0 0 0 0 0.3  
msr(D) (or meI) 0.3 0.6KR 0.2 0 0.1 0 0 0.1 0.1 0.1 0.1 1.3 23.9KR 

Quinolone oqxA 0.6 0 0 0 0 0 0 0 0 0 0 0 0 
Sulfonamide sul1 0.2 0 0 0 0 0 0 0 0 0.4 0 0 0  

sul2 0 0 0 0 0 0 0 0.1 0 0 0 0 0.8R 
Tetracyclines tet(32) 0 0 24.8KR 3.5K 12.1KR 43.9KR 14.7R 12.5K 25.4KR 38.0 0 0.3 7.2  

tet(40) 0 0 3.3KR 1.6 9.1KR 2.6R 7.5KR 1.4 13.0KR 4.1KR 0 0.1 1.7R 
 tet(44) 0 0 0 0.2 0.2 0.1 0.3 0.4 1.1 1.4R 0 0.1 0.7  

tet(A) 279.8KR 0 0 0 0.1 0 0 0 0 0.2 0 0 0  
tetA(P) 0 3.4KR 0 0.7 0.2 0 0 0 0.3 0 0 40.8KR 1.1R  
tetB(P) 0 0 0 0.6 0.4 0.6 0 0 0.3 0 0 42.3KR 1.2R 

 tetB(46) 0.2 0 0 0.2 0.5 0 0 1.3R 0.1 0 0 0 0 
 tet(C) 0 0 0 0 0 0 0 0 0 0.6R 0 0 0 
 tet(M) 0.2 0 1.4R 0.2 0.7 1.5 0.9 0.2 1.5 2.0 0 0.1 0.9R  

tet(O) 0.1 0.1 34.2K 5.2 16.1KR 73.9KR 19.4KR 5.9KR 29.8K 67.5KR 0 0.5 15.6R  
tet(Q) 0.2 54.5KR 52.9KR 29.8KR 33.7KR 6.2KR 68.4KR 9.7K 11.7KR 2.7KR 0 5.1KR 14.9KR  
tet(W) 0 0 13.3KR 7.4KR 43.3KR 76.6KR 55.6KR 43.7KR 13.1KR 67.5KR 0 3.8KR 12.2KR  
tet(X) 0 0 0 0 0 0 96.2KR 0 0 0 0 0 20.5KR 

Trimethoprim dfrF § 0 0 17.6§ 0 2.2§ 2.0§ 1.9§ 2.9§ 5.3§ 0.9§ 0 0 0.2§ 
Trimethoprim/ 
streptothricin estX/sat1 § 0 0 0 0 0 0 0 0 0 0 0 1.5§ 0 

HS: human sample; MAD: Pacific black duck; MUD: Muscovy duck; DFS: dog fecal sample. K ARGs detected from the SMS that were also detected with the KmerResistance tool. R ARGs detected 356 
from the SMS that were also detected with the ResFinder tool. § ARGs that were absent from the ResFinder database. * Gene aadA1 was calculated to be present in bird MAD at BD5M = 9 but the 357 
mapping shows that only 23% (226 / 989 bp) of the gene (reference NG_047324) is present. 358 
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SMS-based analysis of ARGs 359 
All 13 samples were processed using the SMS method, allowing comparison of ARGs diversity 360 
between the human samples; three young infants and seven adults; as well as the pooled 361 
domestic dog fecal sample (DFS), and two bird samples (MAD being a pool of six birds). We 362 
identified ARGs from both the reads and the contigs (see Table S1).  363 
 364 
Resistance - antibiotic classes 365 
Using the “in-house method”, we detected genes conferring resistance to 11 classes of antibiotics 366 
(out of 16 classes included in the NCBI’s ARGs database). ARGs conferring resistance to at least 367 
one class of antibiotics at BD5M >50 were found in 12 samples (Figure 2 and Table 3). ARGs 368 
conferring resistance to tetracycline (BD5M 49 to 280), macrolide, lincosamide, streptogramin B 369 
(MLSB) (BD5M 0.7 to 260), b-lactams (BD5M 1.9 to 165) and aminoglycoside (BD5M up to 61) 370 
were found at higher abundances in all 13 samples (Figure 2A, Table 3). ARGs to six other 371 
classes of antibiotics were found in ten samples at lower abundance (Figure 2B): trimethoprim 372 
(BD5M up to 17.6), chloramphenicol (BD5M up to 11), glycopeptides, quinolones, fosfomycin and 373 
sulfonamide (all last four classes with BD5M ≤ 1) (Figure 2B and Table 3). An eleventh class of 374 
antibiotics was only detected as a bifunctional gene estX/sat1 conferring resistance to 375 
trimethoprim/streptothricin. 376 
The wild ducks (MAD) and the 1-month old human (ST5-1mo) carried genes conferring resistance 377 
to the fewest classes of antibiotics –three classes (or two classes at BD5M ≥ 1 for sample MAD)– 378 
while HS23, HS24, duck MUD and dog DFS carried ARGs attributable to the most classes of 379 
antibiotics, i.e. seven classes (or six classes at BD5M ≥ 1) (Table 3). 380 
 381 
Resistance - gene level (ARGs) 382 
 At the gene level, 62 ARGs were detected from the SMS-generated reads: 54 using the “in-house 383 
method” (or 45 at BD5M ≥ 1), 43 using the ResFinder tool and 28 using the KmerResistance tool 384 
(Figure 3B). Within a same class of antibiotics, the lowest diversity of ARGs was observed for 385 
fosfomycin, quinolones and trimethoprim/streptothricin (n = 1), while the highest diversity of ARGs 386 
was observed for MLSB (n = 15) and tetracycline (n = 13) (Table 3).  387 
Out of 54 ARGs identified with the in-house method, 18 could not be detected using the web-388 
based tools. Of these, twelve were absent from the ResFinder database and thus could not have 389 
been detected using the web-based tools (Figure 3B). Conversely, eight ARGs identified from the 390 
SMS reads using the ResFinder and KmerResistance tools could not be detected using the in-391 
house method (Figure 3B).  392 
 393 
Incongruent results between methods at the individual level 394 
ARGs identified by all three methods at the gene level could sometimes be identified by only two 395 
or one method at the individual level (see supplementary Table S2 for detailed results). 396 
Gene cfxA (b-lactam resistance) was detected with all three methods in sample ST5-18mo but 397 
was detected only with the in-house method in dog DFS (BD5M = 66.5). The best match in the 398 
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NCBI’s AMR reference database (NG_047636.1) was only 89% similar to the consensus 399 
sequence, while the best match by BLASTN against the full NCBI nucleotide database (98.9% 400 
similarity) was gene cfxA6 (GQ342996), which was absent from the NCBI’s AMR database.  401 
Gene tet(32) (tetracycline resistance) was detected only with the in-house method in HS28 (BD5M 402 
= 38.0) with the best match in the NCBI’s AMR reference database being NG_048124.1. However, 403 
reads coverage against NG_048124.1 was very high for the first 350 bp and last 700 bp only, 404 
probably related to recombination events with other ‘tet’ genes (see Discussion). The best match 405 
with BLASTN (97.8% similarity) was a recombinant tet(O/32/O) gene (JQ740052). Even though 406 
the ResFinder database includes five recombinant tet(O/32/O) gene references, it was not 407 
detected in HS28 with the web-based tools. 408 
 409 
Figure 3. Resistance patterns identified from shotgun metagenomics sequencing (SMS) 410 
using three analysis methods (A) per gene and per sample or (B) per gene. SMS reads were 411 
screened for the presence of antimicrobial resistance genes using (i) an “in-house method” (based 412 
on queries against the NCBI’s AMR reference gene database BioProject PRJNA313047), (ii) 413 
ResFinder and/or (iii) KmerResistance tools. 414 
 415 
At the individual level, ARGs identified using the web-based tools but not the in-house method 416 
were: aadA24 and aph(3’)-III (aminoglycosides); cfxA6 (b-lactams); catS (chloramphenicol); 417 
mdf(A) (MLSB); tet(O/W), tet(O/32/O) and tet(W/32/O) (tetracycline). Out of these, seven genes 418 
were absent from the NCBI’s AMR database, and thus could not have been detected using the in-419 
house method (Table S2). The remaining gene (aadA24) was detected only with the web-based 420 
tools despite being present in both reference databases, but further analysis showed that this gene 421 
was detected as an aadA1 gene with the in-house method. 422 
 423 
Resistance profiles between and within species  424 
Different species (human / birds / dogs) and different samples showed different resistance profiles 425 
(Table 3). With the in-house method, HS23 showed the highest AMR diversity within the human 426 
samples, with 30 ARGs (or 19 at BD5M ≥ 1) belonging to six classes of antibiotics detected, 427 
followed by HS26 (28 ARGs or 15 at BD5M ≥ 1), and HS22 (28 ARGs or 12 at BD5M ≥ 1). HS24 428 
showed the highest abundances of individual ARGs, with 12 out of 20 ARGs detected at BD5M ≥ 429 
10. When accounting for the additional genes detected using the ResFinder and KmerResistance 430 
tools, the number of ARGs increased for most samples, HS22 becoming the sample with the 431 
highest AMR diversity (34 ARGs) (Table S2).  432 
Most of the adult samples were similar to each other in their resistance profile, except for HS24 433 
(Figure 2). The three infants showed higher abundances for fewer ARGs compared to the adults, 434 
e.g. three ARGs at BD5M ≥ 1 in infant ST4-3mo: two ARGs conferring resistance to b-lactams 435 
(BD5M = 47 and 54) and one to tetracycline (BD5M = 280) (Table 3).  436 
 437 
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The sample MAD (pool from 6 Pacific black ducks) had the lowest AMR diversity, with two ARGs 438 
at BD5M ≥ 1 (BD5M = 9 for aminoglycosides; 6.4 for MLSB), while the sample MUD (from a 439 
Muscovy duck) showed the presence of 16 ARGs at BD5M ≥ 1 (resistance to aminoglycoside, 440 
MLSB, b-lactams and tetracycline). ARGs in highest abundance in the sample MUD were tetA(P) 441 
and tetB(P) (tetracycline resistance; BD5M > 40), two genes also found in humans and dog DFS 442 
but at very low levels (Table 3). 443 
 444 
The pooled DFS showed one of the highest AMR diversity, with 29 ARGs detected (or 20 at BD5M 445 
≥ 1) belonging to six classes of antibiotics; this number increased to 32 ARGs when accounting for 446 
additional genes detected using the ResFinder and KmerResistance tools. The dog sample also 447 
contained 12 ARGs at high abundance (BD5M ≥ 10), including 6 MLSB genes. This is comparable 448 
to 5 MLSB genes at BD5M ≥ 10 found in HS24, but with only three ARGs in common, and those in 449 
the dog DFS typically at higher abundances than in the human HS24. 450 
 451 
Identification of bacteria carrying ARGs 452 
The metagenomics analysis of the gut microbiome for selected samples (n = 7) using the Torrent 453 
Suite Ion ReporterTM software is summarized in Table 4. Because adult human microbiotas are 454 
diverse and complex, we are detailing one example for which the ARGs carrying bacteria were 455 
likely identified (HS24). 456 
 457 
Table 4. Percentages of major bacterial Orders in the fecal microbiome of selected samples 458 
(n = 7). Bacterial orders likely carrying antimicrobial resistance genes (ARGs) identified in each 459 
sample are highlighted as a grey box. 460 
 461 

Phylum Order 
ST5-
1mo 

ST5-
18mo 

ST4-
3mo 

HS24 DFS 
ST1-
MAD 

ST3-
MUD 

Firmicutes Clostridiales < 1% 35%  41% 4% 9% 54% 
 Erysipelotrichales      4% 18% 
 Lactobacillales < 1%    42% 74%  
 Selenomonadales     12%   
 Veillonellales   2%    2% 
Bacteroidetes Bacteroidales 34% 51%  56% 30%   

Proteobacteria Burkholderiales  5%      
 Campylobacterales      2% 19% 
 Enterobacteriales 66%  46%     
 Gammaproteobacteria     5%   
 Kopriimonadales      1%  
 Legionellales       2% 
Verrucomicrobia Verrucomicrobiales  6%  2%    

Actinobacteria Bifidobacteriales  1% 51%     

Cyanobacteria Synechococcales      5%  

  Nostocales      3%  

Deinococcus-
Thermus Deinococcales      1%  

ST5-1mo: infant sample one month old; ST5-18mo: infant sample 18 months old; ST4-3mo: infant sample three months 462 
old; HS: human sample; DFS: dog fecal sample; MAD: pool from 6 Pacific black ducks; MUD: Muscovy duck. 463 
 464 
Human infants samples 465 
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The composition of the humans gut microbiota was age-related (Table 4). At the taxonomic level 466 
‘Order’, there were two overwhelmingly dominant bacterial populations in ST5-1mo: 467 
Enterobacteriales (66%) and Bacteroidales (34%). ARGs were identified in both populations: 468 
Order Enterobacteriales (possibly Species Escherichia coli) carrying the blaEC gene for 469 
cephalosporin-hydrolyzing class C b-lactamase; and Order Bacteroidales (possibly Species 470 
Bacteroides fragilis) carrying three ARGs, one to b-lactams, and two to MLSB antibiotics. 471 
In ST5-18mo (same child as ST5-1mo but older) Order Enterobacteriales was absent, but new 472 
Orders appeared: Bacteroidales (51%), Clostridiales (35%), Verrucomicrobiales (6%) and 473 
Burkholderiales (5%). ARGs to three b-lactams and two MLSB antibiotics were most likely carried 474 
by bacteria in the Order Bacteroidales, while ARGs to tetracyclines were most likely carried by 475 
bacteria in various taxa, predominantly Order Clostridiales and Order Bacteroidales. 476 
In ST4-3mo, we detected no or little bacteria in Order Bacteroidales, but many bacteria in 477 
Bifidobacteriales (51%) and Enterobacteriales (46%). ARGs were identified in bacteria belonging 478 
to Order Enterobacteriales only: two ARGs to b-lactams, one to fosfomycin, one to MLSB 479 
antibiotics and one to tetracycline. Of note, genes blaTEM and tet(A) were likely carried by a 480 
plasmid, as identified by a BLASTn query of the contigs carrying these genes. 481 
 482 
Human adult samples 483 
In sample HS24, the two main Orders were Bacteroidales (56%) and Clostridiales (41%). The 484 
most abundant ARGs appeared to be carried by bacteria in the Order Bacteroidales (resistance to 485 
aminoglycosides, MLSB and tetracyclines). Of note, gene erm(B) (conferring resistance to 486 
macrolides) was likely carried by a plasmid. 487 
 488 
Animal samples 489 
The gut microbiota and resistant bacterial species in the dog sample DFS were somewhat similar 490 
to the human samples, with bacteria in the Order Bacteroidales likely carrying one b-lactam-491 
resistance gene, while 6 MLSB-resistance genes were likely carried by bacteria in the Phylum 492 
Firmicutes (Order unidentified). Bacteria carrying ARGs to tetracycline and aminoglycosides could 493 
not be definitively identified. The aph(3’)-Ia gene (conferring resistance to aminoglycosides) was 494 
likely sitting on a plasmid also carrying a transposase, and the aadS gene (aminoglycosides) was 495 
likely sitting on a transposon.  496 
The birds’ microbiotas were different from the mammals (Table 3). Bacteria from the Order 497 
Lactobacillales (possibly Species Enterococcus faecalis) were likely carrying gene lsa(A) 498 
(conferring multidrug resistance) detected in the wild pacific black ducks (MAD). Bacteria from the 499 
Order Clostridia (possibly Species Clostridium perfringens) was likely carrying genes erm(Q) 500 
(resistance to MLSB) and tetA(P) and tetB(P) (resistance to tetracycline) detected in the Muscovy 501 
duck (MUD), with other less abundant MLSB-resistance genes likely carried by unidentified 502 
bacteria (Phylum Firmicutes). 503 
 504 
Comparison of the SMS method and the targeted sequencing methods to detect ARGs 505 
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Four human samples were analysed using all three methods. For the SMS method, we focused on 506 
the in-house analysis and ARGs at BD5M ≥ 1. The results are summarized in Table 5 (see Table 507 
S3 for detailed information per sample and per gene). 508 
Combining all methods, we detected ARGs conferring resistance to 13 different classes of 509 
antibiotics, with two additional classes not detected with the SMS-based in-house analysis: 510 
Mupirocin and Quaternary Ammonium Compounds (QAC). The number of ARGs identified from 511 
the four individuals was 29 to 54 using the Ion AmpliSeqTM AMR panel, 14 to 30 using the Ion 512 
AmpliSeqTM Pan-Bacterial panel, and 9 to 28 using the SMS-based in-house analysis (Table 5). 513 
Two to seven ARGs were found with all three methods, while four to 16 ARGs were found with 514 
both the SMS-based in-house analysis and the AMR panel (Table S3). The AMR panel was the 515 
most sensitive, identifying 21 to 38 ARGs not found with any other method, representing 50-66.7% 516 
of the overall identified genes. Only two to three ARGs were identified with the Pan-Bacterial panel 517 
alone (4.4-7.1% of all genes) while 5 to 11 genes were identified with the SMS-based in-house 518 
analysis alone (11.9-16.2% of all the genes).  519 
 520 
Table 5. Number of antimicrobial resistance genes (ARGs) identified with three sequencing 521 
methods from human samples (n = 4). Reads obtained from the shotgun metagenomics 522 
sequencing (SMS) were queried against the NCBI’s AMR reference gene database BioProject 523 
PRJNA313047. Other methods were targeted sequencing using the Ion AmpliSeqTM AMR 524 
Research panel or the Ion AmpliSeqTM Pan-Bacterial panel. 525 
 526 

 Method ST5-1mo HS21 HS24 HS26 
Number of 
ARGs identified 
with each 
method 

AMR Research panel * 29 (14) 39 (33) 34 (28) 54 (44) 
Pan-Bacterial panel  14 26 23 30 
SMS + in-house ** 9 (7) 17 (10) 20 (16) 28 (15) 

Number of ARGs identified with any method 34 45 39 64 
Number of 
ARGs identified 
exclusively with 
one method 

AMR Research panel only 24 (66.7%) 27 (55.1%) 21 (50.0%) 38 (55.9%) 
Pan-Bacterial panel only 2 (5.6%) 3 (6.1%) 3 (7.1%) 3 (4.4%) 
SMS + in-house only 5 (13.9%) 6 (12.2%) 5 (11.9%) 11 (16.2%) 

* The number of genes with a depth >1 is given in brackets. ** The number of genes with a mean base depth per 5 527 
million reads (BD5M) >1 is given in brackets. 528 

 529 
General performances of two methods (the SMS-based in-house analysis and the AMR panel) 530 
were compared in Figure 4.  531 
 532 
Figure 4. Performance summary of the in-house analysis from the shotgun metagenomics 533 
sequencing (SMS), compared to one targeted sequencing method using the Ion AmpliSeqTM AMR 534 
panel (Life Technologies). Results obtained with the AMR panel were analyzed with the One 535 
Codex online platform (available at: https://app.onecodex.com/); depth is defined as the average 536 
number of reads piled up across the entire gene. 537 
 538 
Discussion 539 
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 540 
Although only including a relatively low number of samples (n = 13), we identified a high number of 541 
ARGs (34 to 64) predicted to confer resistance to 13 classes of antibiotics. All sequencing 542 
methods were able to detect the most abundant genes, showing that ARGs were common in the 543 
gut microbiota of humans and dogs in Australia. Australian birds also carried ARGs in their gut, at 544 
a very low level in six wild Pacific black ducks from a non-urban environment, and at higher 545 
abundances in a Muscovy duck from an environment close to humans (semi-urban).  546 
 547 
ARGs conferring resistance to tetracycline, b-lactams and MLSB are widespread 548 
The most abundant ARGs present in the samples conferred resistance to tetracycline, b-lactams 549 
and MLSB antibiotics. Interestingly, antibiotics within these classes are used frequently in human 550 
and veterinary medicine in Australia. Between 2015 and 2017, in human medicine, the most 551 
commonly dispensed antibiotics in community-based outpatient practice were b-lactams (57.3%), 552 
tetracycline (8.0%) and macrolides (5.1%), similar to those prescribed in hospitals (63.3% b-553 
lactams; 8.2% tetracycline; 4.0% macrolides)40. Antimicrobial use in veterinary medicine in 554 
Australia is not as well documented, however the same three classes of antibiotics made up the 555 
majority (50.5 to 65.4%) of antimicrobials sold for animal use between 2005 and 2010 but ranked 556 
differently: macrolides and streptogramins (18.8 to 27.1%), followed by tetracyclines (16.3 to 557 
28.6%) and b-lactams (9.2 to 14.6%)41. Studies have reported that subjects from countries with 558 
tighter policies on antibiotic usage in humans and animals have considerably less ARG levels14. In 559 
line with this, we would argue that the common usage of specific classes of antibiotics as noted 560 
above is likely driving the high abundance of matching ARGs in the gut microbiota of people and 561 
animals in Australia.  562 
 563 
A large proportion of ARGs in our human samples were likely carried by bacteria within the Order 564 
Bacteroidales that is common in the human lower gut42. ARGs conferring resistance to tetracycline 565 
are one of the most commonly found in human gut microbiota15 and their prevalence has steadily 566 
increased in Bacteroidales since the 1970’s43. A study suggested that once acquired, ARGs to 567 
tetracycline can persist in Bacteroidales in the absence of antibiotic selection43. This could explain 568 
why ARGs to tetracycline were the most abundant in our data (detected in 12 samples out of 13, 569 
with up to 11 tetracycline ARGs in a single sample), despite tetracycline only being the third most 570 
common class of antibiotics prescribed in the Australian community behind several b-lactams40. 571 
 572 
Mosaic tetracycline resistance genes, presumably arising by recombination between wild-type 573 
genes, have been discovered recently, and studies have shown that mosaic genes comprising 574 
tet(O), tet(W), and tet(32) sequences were abundant in DNA extracted from pig and human fecal 575 
samples44. In our data, mosaic genes tet (O/W), tet(O/32/O) and tet(W/32/O) were identified using 576 
the ResFinder tool. There is probably more undetected, as reads mapping against tet genes 577 
sometimes showed incomplete coverage with clear truncations. Targeted sequencing techniques 578 
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might be required in order to properly assess tetracycline resistance that might otherwise be 579 
underestimated. 580 
 581 
Detected ARGs in humans and animals are diverse 582 
The diversity of ARGs detected in humans was generally higher in adults compared to infants. 583 
This might be correlated with higher diversity of the gut microbiota in adults (the range of 584 
microorganisms found in the intestine changes dramatically between birth and the age of 3 585 
years45) and/or a growing antibiotic selection pressure with age. Although the ARGs in infants 586 
were less diverse, they were at very high relative abundances, having the 2nd, 3rd and 4th highest 587 
mean coverage of ARGs (BD5M) of all the human samples. In Australia, antibiotic usage in 588 
children aged 0 to 9 years is almost equivalent to one antibiotic prescription per child and per 589 
year46, which is relatively high when compared to similar countries47. Although, the youngest infant 590 
still had ARGs evident when it had never been exposed to antibiotics. 591 
 592 
The ARGs detected in the dog sample were somewhat similar to the ones detected in adult 593 
humans. This might reflect similarities in the diversity and composition of the dog and human fecal 594 
microbiota, with microbial exchange facilitated by direct contact45 as well as a similarity in the 595 
antibiotics used (as previously mentioned). Very few ARGs were detected in the Pacific black duck 596 
MAD (a pool of faeces from wild ducks collected in rural areas) compared to the Muscovy duck 597 
MUD (common duck collected in a semi-urban area). This is consistent with previous studies 598 
demonstrating that proximity to human activity increases the number of the antibiotic-resistant 599 
bacteria that are associated with wild birds. For example, gulls and geese nesting near waste or 600 
agricultural water harbor more antibiotic-resistant E. coli than do birds associated with unpolluted 601 
water48,49. Interestingly, ARGs to macrolide and tetracycline were the most abundant in the 602 
Muscovy duck MUD sample, overlapping with the antimicrobials used for therapeutic purposes in 603 
farm animals in Australia41. Most of the macrolides and tetracyclines are administered in food or 604 
water to pigs and poultry in Australian farms 41, and environmental contamination near farms with 605 
both antibiotics and ARGs has been demonstrated, as well as the higher abundance of ARGs in 606 
wild animals residing in the vicinity of farms50. 607 
 608 
The different sequencing methods have advantages and limitations 609 
We tested three sequencing techniques and analysed the SMS-based data with three methods. 610 
The SMS-based in-house method and the AMR panel detected the greatest range of ARGs, with 611 
the highest diversity of ARGs obtained with a combination of the two methods. However, each 612 
method had advantages and disadvantages. The SMS-based in-house analysis and the AMR 613 
panel both detected abundant ARGs, while discordant results occurred for ARGs at low 614 
abundances, because of different detection sensitivities of the methods.  615 
Discordant results between methods also occurred from the use of different AMR reference 616 
databases. Of the ARGs identified with the SMS-based in-house analysis only, many were absent 617 
from the AMR panel, and therefore could not have been detected by this method. Similarly, many 618 
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of the ARGs identified with the AMR panel only were absent from the NCBI’s AMR database, 619 
therefore could not have been detected using the in-house analysis (Figure 4).  620 
 621 
The two targeted sequencing methods relying on AmpliSeqTM panels were very sensitive 622 
because of the pre-amplification step by PCR. The AMR panel identified the highest number of 623 
ARGs and captured >50% more genes not identified by the other methods. This included genes 624 
present in the NCBI’s AMR database but nonetheless undetected with the in-house method, e.g. 625 
erm(G), sat4, tet(M), lnu(C). Despite amplification, those genes were found with the AMR panel at 626 
a depth below 6,000 i.e. ≤ 1% of the total amplified reads per sample (see Table S3 for details). As 627 
a comparison, in sample HS24, all ARGs represented 0.2% of total SMS reads. With a non-628 
targeted method, sensitivity can only be increased by increasing the number of reads.  629 
 630 
On the contrary and less intuitively, four genes were detected at relatively high abundances with 631 
the SMS-based in-house method but at a low depth with the AMR panel: mef(A), aadE, aadS, tetQ 632 
(Figure 4). This might indicate poor efficiency of some primers. In sample HS24, the “One Codex” 633 
online platform reported a mean depth of 328 for tet(M) gene when in reality two sets of primers 634 
were amplified and detected at different depths (38 and 608). Other sets of primers may be 635 
working poorly, leading to false negative results or underestimated depths. Also, genes used to 636 
design the primers might also have been being quite different from the one present in our samples. 637 
This seemed to be the case for gene aadE detected in sample HS24, with the best match using 638 
the SMS-based in-house method (NG_047378.1 Pediococcus acidilactici aadE gene for 639 
aminoglycoside 6-adenylyltransferase) being only 69% similar to the aadE gene reference 640 
AF516335 used to design the AMR panel.  641 
 642 
Targeted methods are limited by their inability to identify novel AMR determinants, whereas a 643 
functional SMS approach might provide more detail52. Using an in-solution probe-and-capture 644 
strategy53, researchers suggested that designed probes should target sequences with up to 15% 645 
nucleotide sequence divergence from a reference sequence, which would widen their applicability 646 
and target capacity toward newly characterized members of AMR gene families, which often differ 647 
from other members by only a few nucleotides28. 648 
 649 
Because the depth analysis follows an amplification step, targeted methods are not fully 650 
quantitative compared to SMS. Nevertheless, it can be considered semi-quantitative as the depth 651 
generally gives a good idea of the initial quantity of the ARGs present.  652 
 653 
The SMS-based in-house analysis was not as sensitive as the targeted methods, being that the 654 
sequencing is random with no amplification step. However, (i) it is quantitative and (ii) it potentially 655 
allows identification of the bacteria carrying ARGs. Limitations of the SMS-based in-house analysis 656 
include reliance on manual checking of the ARGs detected. In the NCBI database used for the 657 
current study, references were constructed to include the ARG but also flanking regions of 658 
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approximately 100 bp each side (if such regions were available in the original sequence report). 659 
This could trigger identification of false-positives for the presence of ARGs. That was the case for 660 
nimJ gene in HS24 that was originally identified at a BD5M = 0.3, but after manual checking, all 661 
reads mapped against the first 100 bp only of reference NG_048017 (Bacteroides fragilis nimJ 662 
gene for nitroimidazole resistance), i.e. the bacterial host genome. 663 
 664 
Manual checking was also essential to avoid overestimation of a gene’s abundance. Gene tet(C) 665 
was identified in ST4-3mo at a BD5M = 13, but all reads mapped against a limited region of the 666 
gene and the consensus sequence was only 80.8% similar to the best reference in the NCBI’s 667 
AMR database NG_048174 (Francisella tularensis tet(C) gene for tetracycline efflux MFS 668 
transporter). The best match overall using BLASTN was gene tet(A) (98.9% similarity; reference 669 
MG904997). A tet(A) gene (reference NG_048158) was actually identified in ST4-3mo at a BD5M 670 
= 279.8, confirming that the reads mapped to NG_048174 / tet(C) were in fact not the best match. 671 
 672 
Library post-amplification (done when the initial library quantity was too low) triggered unexpected 673 
problems and should be avoided when possible. Reference NG_047324 (Escherichia coli aadA1 674 
gene for ant(3”)-Ia family aminoglycoside nucleotidyltransferase) was identified in MAD at a BD5M 675 
= 9 but the mapping result showed that all reads matched the same 200 bp region in the middle of 676 
the gene, so that the aadA1 gene coverage was only 22.7%. This specific sample (as well as ST4-677 
3mo, MUD and DFS) was post-amplified, meaning that there might have only been a small amount 678 
of aadA1 gene in the initial DNA extract, and one fragment only was post-amplified and 679 
sequenced, leading to overestimating the depth of this gene in MAD. 680 
 681 
In contrast, the depth may have been underestimated for some genes. In HS24, reference 682 
NG_047625 (Bacteroides fragilis cepA gene for beta-lactamase) was identified at a BD5M = 0.9 683 
using a Q-value = 20, with NG_047625 being only 80.9% similar to the consensus sequence. This 684 
could be verified at a Q-value = 0, with good mapped reads, only quite different from the reference 685 
used for mapping; BD5M increased to 4.5, which is probably more accurate. One way to overcome 686 
this issue and obtain the real depth is to use the consensus sequence as the reference for re-687 
mapping the reads. Identification from reads or contigs relies heavily on the reference databases, 688 
and this example shows that the closest match with a non-perfect reference can still allow the 689 
detection of a hypothetical ARG. But because only distantly related to the original curated ARG, 690 
further explorations are required to assess if the gene is actually a functional resistance gene.  691 
 692 
Genes for which there is no good match in the reference database or in the NCBI general 693 
nucleotide database might be totally missed. When conducting read mapping coverage analyses 694 
at a Q-value = 0 instead of 20, we detected in some samples mixed populations of reads, i.e. one 695 
population matching the reference quite well, and the second population being more dissimilar.  A 696 
coverage analysis at a Q-value = 20, showed the real depth of population 1, but discarded 697 
population 2 for which no better reference was available. 698 
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 699 
The ResFinder tool, especially when combined with the KmerResistance tool, had a sensitivity 700 
similar to the SMS-based in-house analysis, albeit with the ARGs detected being slightly different. 701 
Even though the ResFinder and KmerResistance tools relied on the same database, results did 702 
not fully overlap, probably because they used different input data, i.e. contigs versus reads 703 
respectively. Compared to the in-house analysis, the online tools are more user-friendly and 704 
provide quick and relatively accurate results. Provided that the reference database is regularly 705 
updated to include missing genes (in our case the obvious ones being aminoglycoside/aadS, 706 
lincosamide/lnu(AN2), macrolide/mef(En2) and b-lactam/blaEC) these are valuable tools for 707 
scientists and diagnosticians requiring fast results. However, they don’t allow manually rechecking 708 
the mapping quality, and do not provide information on whether the genes are chromosomal or on 709 
plasmids, nor the taxa of the host bacteria. Even though the ResFinder tool provides an accession 710 
number corresponding to a good match for the host bacteria (from the contig sequence), it does 711 
provide a single match even though several other (potentially very different) species might show 712 
the same percentage of identity with the contig. Also, because we used the ResFinder tool with the 713 
contigs only, abundance is not provided, while the KmerResistance tool provides a depth result for 714 
the ARGs identified. The SMS-based in-house analysis provided the best accuracy regarding the 715 
abundance of ARGs, our calculated “BD5M” coverage taking into account the size of the gene as 716 
well as the depth of coverage. 717 
 718 
All the methods tested shared some common limitations. First, they rely on reference databases 719 
that are non-exhaustive, precluding the detection of ARGs very different to those included in the 720 
database, and impacting the abundance estimations of distantly related genes or when multiple 721 
similar genes are present. ARGs that show many different alleles were challenging to detect (e.g. 722 
cfxA / cfxA6 in sample DFS or aadA1 / aadA24 in sample MUD). For targeted methods, new 723 
(larger) panels are constantly being released, e.g. 37,826 probes targeting over 2,000 nucleotide 724 
sequences associated with AMR using a probe-and-capture strategy28, or 78,600 non-redundant 725 
genes (including 47,806 putative ARGs) using targeted metagenomics51.  726 
Second, genotypic resistance does not necessarily reflect a phenotypic resistance. More studies 727 
comparing molecular data with phenotypic resistance are needed to assess how much of the 728 
detected resistome is linked to a functional resistant gene. It will also be important in the future to 729 
assess if those genes persist over time in an individual, and how much ARGs in the gut microbiota 730 
can be horizontally transferred to other bacteria species, potentially pathogenic ones. 731 
 732 
This study is the first to describe the bacterial resistome in humans and animals from Australia, 733 
comparing and assessing various methods. A high diversity of ARGs was identified, as well as a 734 
high variability between samples, even with a limited number of samples analysed. We show that 735 
resistomes from (human) adults and infants are dissimilar, and that resistomes from adults, dogs 736 
and urban birds are more similar than that from rural birds. Ongoing surveillance of ARGs 737 
abundance in people and animals (including livestock and wild animals) in Australia using the 738 
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techniques described here could help inform policy makers and health care professionals on the 739 
most prudent use of these important drugs to ensure we have access to effective treatments of 740 
bacterial infections well into the future.  741 
 742 
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samples was deemed negligible or low risk by the Barwon Health Human Research Ethics 746 
Committee and therefore exempt from full committee review (HREC approval 17/119). Bird sample 747 
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