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ABSTRACT (201 words) 28 

Metastatic castration resistant prostate cancer (mCRPC) is primarily treated with 29 

therapies that prevent transcriptional activity of the androgen receptor (AR), cause DNA damage, 30 

or prevent cell division. Clinical resistance to these therapies, including second-generation 31 

androgen-targeting compounds such as enzalutamide and abiraterone, is nearly universal. Other 32 

treatment modalities, including immune checkpoint inhibitors, have provided minimal benefit 33 

except in rare subsets of patients1,2. Both tumour intrinsic and extrinsic cellular programs 34 

contributing to therapeutic resistance remain areas of active investigation. Here we use full-35 

length single-cell RNA-sequencing (scRNA-seq) to identify the transcriptional states of cancer 36 

and immune cells in the mCRPC microenvironment. Within cancer cells, we identified 37 

transcriptional patterns that mediate a significant proportion of inherited risk for prostate cancer, 38 

extensive heterogeneity in AR splicing within and between tumours, and vastly divergent 39 

regulatory programs between adenocarcinoma and small cell carcinoma. Moreover, upregulation 40 

of TGF-β signalling and epithelial-mesenchymal transition (EMT) were both associated with 41 

resistance to enzalutamide. We found that some lymph node metastases, but no bone metastases, 42 

were heavily infiltrated by dysfunctional CD8+ T cells, including cells undergoing dramatic 43 

clonal expansion during enzalutamide treatment. Our findings suggest avenues for rational 44 

therapeutic approaches targeting both tumour-intrinsic and immunological pathways to combat 45 

resistance to current treatment options. 46 

MAIN (2,745 words) 47 

Despite advances in targeting androgen receptor signalling and other drivers, mCRPC is 48 

typically lethal2. The identities and proportions of cells within human mCRPC niches is largely 49 

unknown. By defining treatment resistant states in human mCRPC, we may reveal biological 50 
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drivers that inform new treatment strategies. Thus, we collected fresh biopsies from mCRPC 51 

patients from representative metastatic sites for whole exome sequencing, bulk RNA-seq, and 52 

scRNA-seq using the Smart-seq2 protocol, which generates full-length transcript sequences3. At 53 

time of biopsy, patients had experienced varied treatment histories, with approximately even 54 

representation before and after treatment with enzalutamide. Smaller proportions of patients had 55 

experienced abiraterone, taxanes, and other therapies (Fig. 1a). In addition to adenocarcinomas, 56 

one biopsied tumour (09171135) had a small cell carcinoma histology. 57 

After quality control, our cohort consisted of 2,170 deeply sequenced cells from 14 58 

patients and 15 biopsies, including cells from both before and after enzalutamide treatment for 59 

one patient (01115655) (Methods; Supplementary Fig. 1a). Following clustering of the single-60 

cell transcriptomes, we manually labelled cell clusters for dominant cell type based on cluster-61 

specific expression of marker genes (Fig. 1b; Methods; Supplementary Table 2). Cancer cells, 62 

represented in multiple clusters marked by expression of the adenocarcinoma markers AR and 63 

KLK3 (which encodes prostate-specific antigen) or the neuroendocrine marker CHGA, were 64 

recovered from 12 biopsies, comprising over a third of the cells (n=836). The remainder included 65 

cells from the B cell lineage, natural killer (NK) and T cells, monocytes and macrophages, 66 

erythroid cells, and neutrophils. 67 

Prostate cancer is highly heritable, with an estimated 57% of variation in risk attributed to 68 

inherited variants4. Genome wide association studies (GWAS) have not only identified 69 

significant risk alleles but also generated results that allow the analysis of even non-significantly 70 

associated variants in aggregate to link risk to subsets of the genome. We sought to identify cell 71 

types relevant to prostate cancer development by integrating cell-type specific expression 72 

patterns from our scRNA-seq data with results from a recent large-scale GWAS of prostate 73 
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cancer risk5. Using LD score regression applied to specifically expressed genes (LDSC-SEG), 74 

we identified significant enrichment of germline heritability for prostate cancer in genomic 75 

intervals near genes that were specifically expressed in cancer cells (q = 0.031, Benjamini-76 

Hochberg) (Fig. 1c; Methods)6. No significant enrichment was observed for any other cell type, 77 

indicating that when assessed during advanced disease, inherited risk for prostate cancer is 78 

primarily mediated through tumour-intrinsic mechanisms. 79 

Complex androgen receptor splicing 80 

We therefore assessed transcriptional programs in cancer cells across metastatic niches 81 

and clinical contexts. As prostate adenocarcinomas are dependent on androgen signalling for 82 

survival, significant attention has been focused on the description and detection of a diverse set 83 

of AR splice variants. The AR protein contains a DNA-binding domain with transcriptional 84 

regulatory activity and a ligand-binding domain required for control of its activity by androgens. 85 

Splice variants that omit the ligand-binding domain, particularly AR-V7, have been hypothesized 86 

to constitutively activate downstream transcriptional programs independent of androgen binding, 87 

providing a resistance mechanism to second generation androgen-targeting therapies7,8. Taking 88 

advantage of our dataset’s even sequencing coverage along transcripts, we detected the presence 89 

of specific AR splice variants. First, we curated a transcriptome annotation of literature described 90 

isoforms (Methods). Then, we remapped all reads from individual cancer cells initially mapping 91 

to the AR locus, counting the number of reads that uniquely map to individual isoforms (Fig. 2a; 92 

Methods). We detected isoform-informative reads indicating the presence of many previously 93 

described splice variants within our clinical biopsies, with AR-45, AR-V7, and AR-V12 being 94 

uniquely identified in the most cells. AR-45 was detected in every biopsy with any isoform-95 

specific reads. AR-V7 was present in biopsies from both before and after enzalutamide exposure. 96 
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Strikingly, we detected multiple AR splice variants within the same biopsy and even within the 97 

same cell, highlighting the complexity of AR splicing in mCRPC. 98 

Isoform-informative reads comprise only a small fraction of reads mapping to any gene, 99 

and AR splice variants described in literature may not represent a complete census of all isoforms 100 

expressed in vivo (Supplementary Fig. 2). Therefore, we defined two alternative summary 101 

measures of AR splicing that permitted characterization within more of the individual cancer 102 

cells. AR intron 3 contains many of the terminal cryptic/alternative exons included in truncated 103 

AR isoforms lacking the ligand-binding domain, including AR-V77. We quantified the proportion 104 

of total AR coverage that lies in intron 3 or in a larger interval that includes intron 3 and upstream 105 

exons, which encode the DNA-binding domain (Fig. 2b). Again, we detected significant 106 

variation between cancer cells within the same biopsy. Moreover, we detected a clear increase in 107 

both measures after enzalutamide treatment for patient 01115655, suggesting decreased 108 

transcription of full-length AR compared to truncating variants after treatment (Fig. 2c,d). 109 

Overall, AR splicing patterns in mCRPC cells were highly heterogeneous between and within 110 

tumours regardless of treatment resistance state. 111 

Enzalutamide resistance programs 112 

Resistance to second generation androgen-targeting therapies poses a major clinical 113 

challenge, and previous work based on bulk whole exome and transcriptome sequencing have 114 

identified alterations in RB1, TP53, and AR as associated with poor outcomes9. Taking advantage 115 

of the single-cell resolution of our data, we examined cancer cells in our cohort to identify 116 

changes in expression in cells naïve and exposed to enzalutamide, which functions as a 117 

competitive inhibitor of AR that prevents nuclear localization and downstream transcriptional 118 

regulatory activity within cancer cells10. We scored cancer cells for expression of the MSigDB 119 
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hallmark gene sets and select literature-derived gene sets, including several reported as 120 

mediating resistance mechanisms, such as genes regulated by the glucocorticoid receptor or AR-121 

V7 and genes associated with a neuroendocrine phenotype11–22 (Methods). Compared to 122 

enzalutamide-naïve cells, exposed cells upregulated several MSigDB hallmark gene sets, 123 

including for EMT and TGF-β signalling (Fig. 3a,b; Supplementary Table 1). We sought to 124 

corroborate these findings in a published cohort of bulk-sequenced mCRPC transcriptomes and 125 

found a similar effect for TGF-β signalling upregulation in enzalutamide-exposed lymph node 126 

biopsies, although the number of exposed biopsies was small, and the effect was not statistically 127 

significant (Fig. 3c)9. We could not analyse bone biopsies due to scarcity of post-enzalutamide 128 

samples, and EMT scores were confounded with tumour purity, limiting our ability to draw 129 

conclusions from bulk sequencing for this specific finding (Supplementary Fig. 3). 130 

 Small cell carcinoma regulatory programs 131 

One patient sample within our cohort derived from a small cell carcinoma, a rare 132 

aggressive form of prostate cancer that is not responsive to androgen-targeting therapies23. As 133 

expected, cancer cells from this biopsy differed drastically in their expression programs, with no 134 

detectable AR expression, strong downregulation of an AR regulated gene set, and marked 135 

upregulation of a gene set associated with neuroendocrine prostate cancer (Fig. 4a,b; Extended 136 

Data Fig. 1)12,14. 137 

To mitigate overestimating the importance of idiosyncratic gene expression patterns from 138 

a single biopsy, we inferred transcriptional regulatory factor regulons using all cancer cells from 139 

our cohort and compared the inferred regulon activities between small cell carcinoma and 140 

adenocarcinoma cells24. Additionally, we scored small cell carcinoma and adenocarcinoma bulk 141 

transcriptomes from a published cohort for expression of the gene lists inferred to comprise each 142 
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regulatory factor’s regulon9,22 (Methods). Comparing our data and the published cohort, we 143 

observed concordant patterns of differential regulon activity between adenocarcinoma and small 144 

cell carcinoma (Fig. 4c). Among the transcriptional regulators with decreased activity in small 145 

cell carcinoma are HOXB13, which mediates AR regulatory activity and response to androgens, 146 

and BHLHE40, previously reported to be regulated by AR25–27. Several ETS family transcription 147 

factors showed reduced activity in small cell carcinoma, including ETV1, which increases 148 

prostate adenocarcinoma invasiveness, EHF, whose loss confers stem-like features, and SPDEF, 149 

an AR-regulated transcription factor whose downregulation promotes EMT28–30. On the other 150 

hand, considering transcriptional regulators with increased regulon expression in small cell 151 

carcinoma, we noted the stemness-promoting factors NANOG and SOX2 and the epigenetic 152 

regulator EZH2, all of which have been reported to promote lineage plasticity and resistance to 153 

androgen-targeting therapies23,31–33. Among the transcriptional regulators with the most increased 154 

activity in small cell carcinoma cells are E2F1, which promotes cell cycle progression upon 155 

release from RB1 inhibition and is overexpressed in treatment-emergent small cell 156 

neuroendocrine prostate cancer and LHX2, previously reported in an expression signature of N-157 

myc driven neuroendocrine prostate cancer34–36. We also observed increased activity of three 158 

transcriptional regulators whose role in small cell carcinoma has not been previously reported: 159 

HOXB5 and HOXB6, two homeobox containing transcription factors, and NR1D2, a circadian 160 

rhythm regulator (Fig. 4c,d)37. Thus, even from a single small cell carcinoma case, we recover 161 

generalizable patterns of tumour-intrinsic expression differences, implicating both novel 162 

regulons and known transcription regulators mediating treatment resistance. 163 

Cytotoxic cell states and dynamics 164 
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To provide a therapeutic axis independent of AR signalling and complementing tumour-165 

intrinsic targeting modalities, clinical trials have tested immune checkpoint inhibitors in prostate 166 

cancer. While such therapies have yielded major improvements in a variety of solid tumours, 167 

responses in advanced prostate cancer have been muted1,2. To improve our understanding of the 168 

biology underlying this gap, we characterized infiltrating cytotoxic cells in the mCRPC 169 

microenvironment. We sub-clustered T and NK cells identified from initial clustering into 6 170 

clusters, including 2 CD4+ T cell populations, 3 largely CD8+ T cell populations, and a 171 

population of strongly CD16+ and largely CD3- cells dominated by NK cells (Fig. 5a; Extended 172 

Data Fig. 2a). One population of CD8+ T cells chiefly derived from bone biopsies was marked by 173 

expression of CXCR4, consistent with reports in mice that CXCR4 is necessary for localization of 174 

CD8+ T cells to the bone marrow and their subsequent survival38 (Fig. 5b; Extended Data Fig. 2a, 175 

3a). This cluster had minimal expression of the effector molecule GZMB, while all three other 176 

cytotoxic clusters exhibited GZMB expression, albeit to varying degrees (Fig. 5b; Extended Data 177 

Fig. 2b). Another CD8+ T cell population, largely derived from lymph node biopsies, was marked 178 

by expression of co-inhibitory receptors PDCD1, which encodes PD-1, and HAVCR2, which 179 

encodes TIM-3, along with elevated expression of TOX, TIGIT, ICOS, FASLG, and LAG3 and 180 

minimal TCF7 expression, suggestive of a dysfunctional effector phenotype (Fig. 5b; Extended 181 

Data Fig. 2b,e,f). This population exhibited elevated expression of both ENTPD1 (encoding 182 

CD39, a marker of terminally exhausted CD8+ T cells) and ITGAE (encoding CD103), whose co-183 

expression identifies infiltrating cytotoxic cells reactive to cancer cells in other human 184 

cancers39,40 (Extended Data Fig. 2c). Both the NK cell-dominant cluster and the remaining 185 

cytotoxic T cell cluster, which included CD8+ T cells and likely γδ T cells, were marked by 186 

expression of GNLY and substantial fractions of cells expressing CX3CR1 (Fig. 5b; Extended 187 
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Data Fig. 2d). Cells expressing CX3CR1 also highly expressed GZMB and PRF1, consistent with 188 

previous reports that CX3CR1 marks a CD8+ T cell population with superior cytolytic function 189 

corresponding to a more differentiated effector phenotype that has been observed in models of 190 

chronic infection and other cancers41–43. We did not observe a distinct cluster of TCF7 and 191 

SLAMF6 dual-expressing progenitor cells previously reported to mediate response to anti-PD-1 192 

therapy in melanoma (Extended Data Fig. 2e,f)44. Broadly, these findings demonstrate that 193 

prostate cancer metastases are infiltrated by cytotoxic cells with distinct phenotypes, including 194 

dysfunctional and effector states relevant to therapy, that may vary based on metastatic site. 195 

Next, we reconstructed T cell receptor (TCR) complementarity-determining region 3 196 

(CDR3) sequences in our scRNA-seq and corresponding bulk RNA-seq data to better understand 197 

the clonal dynamics of infiltrating T cells that expand in response to antigen stimulation. Groups 198 

of T cells forming part of an expanded clonotype group, indicated by a shared productive CDR3 199 

sequence, were detected in 6 patients. Clonotype groups detected in lymph node metastases were 200 

largely comprised of cells from the CD8+ T cell cluster with elevated co-inhibitory receptor 201 

expression, while clonotype groups detected in bone metastases were largely comprised of cells 202 

from the CXCR4-expressing CD8+ T cell cluster with low GZMB expression (Fig. 5d). In one 203 

bone biopsy (09171144), a large clonotype group was detected that included both cells from the 204 

CXCR4-expressing cluster and cells with high CX3CR1 expression, indicating that cells derived 205 

from the same progenitor could take on both phenotypes. 206 

From patient 01115655, we collected cells from biopsies taken both before and after 207 

treatment with enzalutamide and noted marked changes in the infiltrating T cell populations (Fig. 208 

5c,e). Before treatment, cytotoxic cells formed a minority of infiltrating T cells, which were 209 

dominated by a SELL-expressing CD4+ T cell population and cells from a CD4+ T regulatory 210 
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cell-enriched cluster with elevated FOXP3 and CTLA4 expression (Fig. 5c; Extended Data Fig. 211 

2a). Following treatment, the majority of infiltrating T cells were dysfunctional PDCD1-212 

expressing CD8+ T cells (Fig. 5c,e). Of note, for the clonotype group with the most cells 213 

recovered from this patient, we detected both the corresponding TCRα and TCRβ CDR3 214 

sequences in bulk RNA-seq of biopsies from both timepoints. As inferred from the bulk 215 

sequencing data, the clonal fraction increased sharply from ~5% before treatment to ~25% after 216 

treatment, making it the largest detected clone (Fig. 5f). All cells of this clonotype group detected 217 

in scRNA-seq were part of the PDCD1-expressing dysfunctional cluster. Collectively, these 218 

observations suggest that CD8+ T cells can mount an aggressive response against cancer cells 219 

during enzalutamide treatment but also that they take on a dysfunctional phenotype that may 220 

limit sustained efficacy. 221 

Discussion 222 

To overcome limitations in bulk genomic characterization in uncovering cell-type 223 

specific contributions to therapeutic resistance in mCRPC, we describe the transcriptomes of 224 

individual cells collected from 15 biopsies covering diverse treatment histories, metastatic sites, 225 

and histological types. We find that only cancer cell expression significantly explains the 226 

sizeable inherited component of prostate cancer risk. Within small cell carcinoma, in addition to 227 

recapitulating expression programs promoting lineage plasticity, we identify novel regulators 228 

such as HOXB5, HOBX6, and NR1D2, which show dramatically increased activity both in our 229 

study and in an external cohort9,32,33. For adenocarcinomas, where resistance to second-230 

generation androgen targeting therapies poses a major clinical challenge, significant attention is 231 

devoted to AR splice variants encoding constitutively active truncated proteins that promote 232 

resistance7,8. We find that AR splicing varies widely across cells within a single biopsy, with 233 
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multiple isoforms detectable in individual cells, including those naïve to second-generation 234 

androgen targeting therapies. These findings suggest that focused mechanistic understanding of 235 

individual isoforms may be insufficient and that additional studies on the overlapping regulatory 236 

activity of co-expressed AR splice variants are necessary to fully understand their role in 237 

therapeutic resistance. More broadly, we identify upregulation of expression programs associated 238 

with TGF-β signalling and EMT following exposure to enzalutamide. This is consistent with 239 

evidence from pre-clinical models that inhibition of TGF-β signalling promotes reversion of 240 

EMT and may sensitize cancer cells to enzalutamide45,46. Recent work focused on human 241 

mCRPC bone metastases identify tumour associated macrophages as a source of TGFB1 242 

expression, providing a target cell population for further study and possible therapeutic targeting 243 

(Baryawno, N. et al. manuscript submitted). Further studies of mCRPC shortly after initiation of 244 

enzalutamide may elucidate earlier cellular responses that ultimately precipitate EMT. 245 

Within infiltrating CD8+ T cells, a subset expressed dysfunction markers such as PDCD1, 246 

and this population included cells that underwent a dramatic clonal expansion within a patient 247 

after enzalutamide treatment, suggestive of tumour reactivity. The presence of this cell 248 

population may explain why some patients with advanced prostate cancer respond to immune 249 

checkpoint inhibition in combination with androgen-targeting therapies47. ENTPD1 (CD39) 250 

expression in this population suggests that targeting immunosuppressive adenosine signalling 251 

may provide benefit in addition to targeting the PD-1 axis48. This population was uncommon in 252 

bone biopsies, which instead contained clonally expanded CD8+ T cells with high effector 253 

molecule, low exhaustion marker, and CX3CR1 expression. This cell state has previously been 254 

linked in model systems and other cancers to high cytolytic activity but poor proliferative 255 

potential and a requirement for CD4 help41–43. Similar cells have been reported as being 256 
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unresponsive to PD-L1 blockade, potentially explaining the poor performance of immune 257 

checkpoint inhibition in mCRPC bone metastases1,49. These results highlight the need for 258 

additional immunological dissection of mCRPC, where immune checkpoint inhibition has only 259 

been indicated for patients with tumour microsatellite instability1,2. Importantly, additional 260 

investigation should focus on systematic comparisons of bone and lymph node metastases to 261 

confirm whether the observed differences in cytotoxic cell infiltration are generalizable. 262 

Intriguingly, TGF-β blockade was recently shown to promote response to immune checkpoint 263 

inhibition in prostate bone metastases in mice, potentially enabling rational therapeutic 264 

combinations to simultaneously act along both androgen and immune axes50. Taken together, we 265 

report multiple tumour and immune mechanisms across diverse mCRPC metastatic niches that 266 

contribute to treatment resistance and provide therapeutic opportunities for this lethal disease.267 
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 377 

Figure 1. Cellular atlas of mCRPC, identifying heritability for prostate cancer enriched near 378 

genes specifically expressed in prostate cancer cells. 379 

a)  Summary of clinical and select genomics features of patients and biopsies forming the study 380 

cohort. Each column represents a single biopsy. Where available, multiple biopsies from the 381 

same patient are displayed in adjacent columns. Patients are identified by numerical prefix, while 382 

suffixes after a dash, when present, identify biopsies from the same patient. Boxes with diagonal 383 

slashes indicate missing data, e.g. for genes not included in OncoPanel.  384 

b) Projection of single-cell expression onto the first two dimensions of UMAP space. Each dot 385 

represents a single cell, and colours correspond to clusters identified by the Louvain algorithm. 386 

Clusters are manually labelled with dominant cell type(s) inferred from cluster-specific 387 

expression of marker genes. 388 
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c) Enrichment of heritability for prostate cancer near genes specifically expressed in each cell 389 

type (compared to cell types in other cell type groups). *: Benjamini-Hochberg FDR < 0.05390 
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 391 

Figure 2. AR splicing varies widely across cells within the same tumour and across treatment 392 

resistance states. 393 

a) Heatmap displaying number of isoform-informative reads mapping to AR variants from single 394 

cells. Each column represents AR variants detected in a single cell, with only cells that had at 395 

least one isoform-informative read shown. 396 

b) Schematic representation of AR locus. Rectangles indicate exons. Exons corresponding to the 397 

full-length AR transcript are numbered, with exons comprising different functional domains 398 

coloured. Select alternative exons included in AR splice variants are indicated. 399 
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c) Fraction of total AR coverage upstream of exon 4 (including the DNA-binding domain but 400 

excluding the ligand-binding domain) in single cells. 401 

d) Fraction of total AR coverage in intron 3 (including multiple cryptic/alternative exons 402 

included in truncated splice variants) in single cells. 403 

e) Total AR expression in single cells. 404 

c, d, e) P value compares cells before (n = 112) and after (n = 83) enzalutamide treatment for 405 

patient 01115655 (two-sided Mann-Whitney U test). 406 
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 407 

Figure 3. Enzalutamide-exposed adenocarcinoma cells upregulate expression programs 408 

associated with epithelial-mesenchymal transition and TGF-β signalling. 409 

a, b) Hallmark epithelial-mesenchymal transition and TGF-β signalling gene set expression 410 

scores for individual cells collected before and after enzalutamide treatment. Each dot represents 411 

a single cell and is coloured corresponding to biopsy. P values from two-sided Mann-Whitney U 412 

test. 413 

c) Hallmark TGF-β signalling gene set expression scores for bulk RNA-seq of prostate 414 

adenocarcinoma lymph node biopsies9 collected before and after enzalutamide treatment. Each 415 

dot represents a single tumour. P value from one-sided Mann-Whitney U test. 416 

Boxplots: centre line: median; box limits: upper and lower quartiles; whiskers extend at most 417 

1.5x interquartile range past upper and lower quartiles.418 
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 419 

Figure 4. Cancer cells from small cell carcinoma are dominated by distinct regulons compared to 420 

adenocarcinoma cells. 421 

a, b) Gene set expression scores in single cells using an expression signature of neuroendocrine 422 

prostate cancer14 and of a set of genes under regulation by AR12. Boxplots: centre line: median; 423 
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box limits: upper and lower quartiles; whiskers extend at most 1.5x interquartile range past upper 424 

and lower quartiles. 425 

c) Inferred activity of regulons of different transcriptional regulators. x-axis: q-values from 426 

comparison of inferred regulon activity in cancer cells from small cell carcinoma (n = 76) vs 427 

cancer cells from adenocarcinomas (n = 188, sampled as described in Methods) (negative values 428 

indicate regulon is less active in small cell carcinoma; two-sided Mann-Whitney U test, median 429 

outcome of sampling iterations (Methods) with Bonferroni FWER correction). y-axis: P values 430 

(two-sided Mann-Whitney U test, signed as previous) from comparison of expression scores of 431 

scRNA-inferred regulons in bulk RNA-seq of small cell carcinomas (n = 8) vs adenocarcinomas 432 

(n = 18) from a published cohort9. 433 

d) Regulon activity in single cells for select transcriptional regulators.434 
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435 

Figure 5. Clonally expanded cytotoxic lymphocytes have different effector phenotypes in 436 

distinct metastatic niches. 437 

a) Sub-clustering of NK and T cells. Each dot represents a single cell projected onto UMAP 438 

space coloured corresponding to clustering via the Louvain algorithm. Clusters are manually 439 

labelled with dominant phenotype/cell type from patterns of marker gene expression. Cluster 440 

colours are used throughout subpanels. 441 

b) Expression of select marker, effector, and co-inhibitory receptor genes within cytotoxic 442 

clusters, CD16+ NK (n = 30), CD8+ GNLY+ (n = 84), CD8+ CXCR4+ (n = 157), and CD8+ 443 

PDCD1+ (n = 106). P values from two-sided Mann Whitney U test. 444 

c) Proportions of cellular phenotypes from each biopsy, grouped by metastatic site, for all 445 

biopsies from which high-quality T and NK cells were recovered. 446 
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d) T cell clonotypes from TCR reconstruction. Each bar represents cells sharing a reconstructed 447 

productive TCR CDR3 sequence and are grouped by patient. Colours indicate phenotype/cell 448 

type. 449 

e) Proportions of cytotoxic cell phenotypes in patient 01115655 before and after enzalutamide 450 

treatment. 451 

f) Changes in clonal fractions of cytotoxic T cell clonotypes in patient 01115655 following 452 

enzalutamide treatment. Each subplot corresponds to a single clonotype with TCRα and β CDR3 453 

amino acid sequences inferred from single-cell RNA-seq. Clonal fractions for the same CDR3 454 

sequences (matching at both nucleotide and amino acid level) inferred from TCR reconstruction 455 

in bulk RNA-seq are plotted. All detected single cells of the displayed clonotypes come from the 456 

PDCD1-expressing CD8+ T cell cluster. 457 
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METHODS (2,578 words) 458 

Reference versions 459 

 We used human genome reference b37 and the GENCODE51 release 30 gene annotation 460 

lifted over to GRCh37. 461 

Statistical software 462 

 Statistical tests were conducted with SciPy52 v1.3.2 running on Python 3.7. R packages 463 

were run on R v3.5.1. 464 

Whole exome analyses 465 

For biopsies with paired tumour and normal samples available, we performed whole 466 

exome sequencing with a customized version of a previously described protocol53. After DNA 467 

shearing, hybridization and exome capture were performed using Illumina’s Rapid Capture 468 

Exome Kit (with the exception of the normal sample for 01115149 and the tumour sample for 469 

biopsy 01115149-TA, which used the Agilent SureSelect Human All Exon 44Mb v2.0 bait set54). 470 

Libraries were sequenced with 76 bp paired-end reads on an Illumina instrument. 471 

Reads were aligned using BWA55 v0.5.9 and somatic mutations called using a customized 472 

version of the Getz Lab CGA WES Characterization pipeline 473 

(https://portal.firecloud.org/#methods/getzlab/CGA_WES_Characterization_Pipeline_v0.1_Dec2474 

018/) developed at the Broad Institute. Briefly, we used ContEst56 to estimate contamination, 475 

MuTect57 and Strelka58 to call SNVs and indels, DeTiN59 to estimate tumour-in-normal 476 

contamination, and Orientation Bias Filter60 and MAFPoNFilter61 to filter sequencing artefacts. 477 

Variants were annotated using VEP62, Oncotator63, and vcf2maf v1.6.17 478 

(https://github.com/mskcc/vcf2maf). Copy number alterations, purity, ploidy, and whole genome 479 
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doubling status were called using FACETS64 v0.5.14. Copy number alterations were evaluated 480 

with respect to whole genome doubling status. 481 

OncoPanel 482 

For biopsies where whole exome sequencing failed, somatic mutation calls, copy number 483 

alterations, and ETS fusion status were taken from OncoPanel, a clinical panel sequencing test 484 

available at DFCI65. 485 

Sample collection and dissociation for single-cell RNA-seq 486 

Tumour samples were collected and transported in Dulbecco's Modified Eagle Medium, 487 

high glucose, pyruvate ("DMEM", ThermoFisher Scientific, #11995073) on ice. Single-cell 488 

suspensions for single-cell RNA-seq were obtained from tumour core needle biopsies through 489 

mechanical and enzymatic dissociation. Samples were first cut into pieces smaller than 1 mm3 490 

using a scalpel. For bone biopsies, soft tissue was also scraped from the hard bone surface using 491 

a scalpel blade. Samples were then dissociated using one of two protocols, chiefly to optimize 492 

for yield of viable cells from different metastatic sites. Cells obtained from the two protocols 493 

were comparable, and findings were consistent in sub-analyses of cells processed with the same 494 

protocol (Supplementary Fig. 4). 495 

For biopsies, 01115655-TC, 01115666-TA, 01115680, 01115681, 09171111, 09171135, 496 

09171136, and 09171139, the resulting tissue fragments were incubated in 3 mL Accumax 497 

(Innovative Cell Technologies, #AM105) for 10 min at room temperature on a rocking shaker 498 

("ACC" protocol). Cell suspensions were then filtered with a 100 μm cell strainer (ThermoFisher 499 

Scientific #08-771-19) and spun at 580 g for 5 min at 4°C. In cases where cell pellets appeared 500 

bloody, red blood cells were lysed with ACK Lysing Buffer (ThermoFisher Scientific, 501 

#A1049201) on ice for 1 min, followed by quenching with PBS and an additional centrifugation. 502 
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The final cell pellet was resuspended in PBS (Fisher Scientific, #MT21040CV) with 2% FBS 503 

(Gemini Bio-Products, #100-106). 504 

For biopsies 01115655-TA, 01115665, 01115149-TC, 01115578-TA, 09171123, 505 

09171144, and 09171146, tissue fragments were incubated in 2-3 mL Medium 199, Earle's Salts 506 

("M199", ThermoFisher Scientific, #11150059) with 1 mg/mL Collagenase 4 (Fisher Scientific, 507 

#NC9836075), and 10-20 μg/mL DNAse I (StemCell Technologies, #7900) for 5-10 min in a 508 

37°C water bath with intermittent mixing, followed by additional mixing and pipetting ("CD" 509 

protocol). Cell suspensions were then filtered with a 100 μm cell strainer, spun at 580 g for 5 min 510 

at 4°C, and the resulting pellet resuspended in PBS with 2% FBS. The blood clot from biopsy 511 

09171144 was processed in a similar manner, with the exception that red blood cells were lysed 512 

with ACK Lysing Buffer on ice at 5-minute increments for a total of 15 min. For the bone 513 

marrow aspirate from biopsy 09171144, mechanical and enzymatic dissociation were not 514 

performed, and red blood cells were lysed with ACK Lysing Buffer on ice at 5-minute 515 

increments for a total of 10 min. 516 

Single-cell sorting 517 

Single cell suspensions in PBS with 2% FBS were stained by incubating for 15 minutes 518 

at room temperature protected from light with anti-human PTPRC (CD45) monoclonal antibody 519 

conjugated to FITC (1:200 dilution, VWR #ABNOMAB12230), anti-human EPCAM antibody 520 

conjugated to PE (1:50 dilution, Miltenyi Biotec #130-091-253), and either Calcein-AM (1:200 521 

dilution, ThermoFisher Scientific #C3100MP; biopsies 01115655-TA and 01115665), 7-522 

Aminoactinomycin D (7-AAD) (1:200 dilution, ThermoFisher Scientific #A1310; all other 523 

biopsies except sample 01115149-TC), or both (sample 01115149-TC). We first sorted cells with 524 

biological dimensions (high FSC-A and high SSC-A), selected single cells, and excluded 525 
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doublets or triplets (low FSC-W). Next, we sorted live cells (low 7AAD/ high Calcein-AM) that 526 

were CD45+ (high FITC, enriching for immune cells), EPCAM+ (high PE, enriching for cancer 527 

cells), or double negative (low FITC/low PE, only in biopsy 09171144) (see Supplementary Fig. 528 

5 for example gating). Cell sorting was performed using a BD Biosciences FACSAria cell sorter 529 

(IIu or UV) with FACSDiva software. Individual cells were sorted into the wells of 96-well 530 

plates with 10 μL TCL buffer (Qiagen, #1070498) with 1% beta-mercaptoethanol (Sigma 63689) 531 

per well. Plates were then sealed, vortexed for 10 s, spun at 3,700 rpm for 2 min at 4°C, and 532 

frozen on dry ice. 533 

Transcriptome sequencing, alignment, and quantification 534 

Library preparation for bulk RNA-seq was performed using the Illumina TruSeq Stranded 535 

mRNA Sample Preparation Kit (except for biopsy 01115149-TA, which was prepared using the 536 

unstranded Illumina TruSeq RNA Sample Preparation protocol (Revision A, 2010)). Libraries 537 

were sequenced with 101 bp paired-end reads (except biopsy 01115149-TA, which was 538 

sequenced with 76bp paired-end reads) on an Illumina instrument. 539 

For scRNA-seq, RNA was captured from single-cell lysates with 2.2x RNAClean SPRI 540 

beads (Beckman Coulter Genomics) without the final elution67. After air drying and secondary 541 

structure denaturation at 72˚C for three minutes, library construction was performed using a 542 

slightly customized Smart-seq2 protocol66 with 21 cycles of PCR for preamplification. cDNA 543 

was purified with 0.8x Ampure SPRI beads (Beckman Coulter Genomics) and eluted in 21 μL 544 

TE buffer. During tagmentation and PCR amplification, we used 0.2ng of cDNA per cell and 545 

one-eighth of the Illumina NexteraXT (Illumina FC-131-1096) reaction volume. Individual cells 546 

were sequenced to a mean depth of ~1.5 million 38 bp paired-end reads on an Illumina NextSeq 547 

500 instrument with 75 cycle high output kits (Illumina TG-160-2005). 548 
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After adapter trimming with cutadapt68 v2.2, reads were aligned using STAR aligner69 549 

v2.7.2b with parameters: --outFilterMultimapNmax 20 --outFilterMismatchNmax 999 --550 

outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20 --alignMatesGapMax 1250000 --551 

alignIntronMax 1250000 --chimSegmentMin 12 --chimJunctionOverhangMin 12 --552 

alignSJstitchMismatchNmax 5 -1 5 5 --chimMultimapScoreRange 3 --553 

chimScoreJunctionNonGTAG -4 --chimMultimapNmax 20 --chimNonchimScoreDropMin 10 --554 

peOverlapNbasesMin 12 --peOverlapMMp 0.1 --chimOutJunctionFormat 1. sjdbOverhang was 555 

set to 1 less than the untrimmed read length. We used multi-sample 2-pass mapping for all 556 

samples from each patient, first mapping all samples (bulk and single-cell transcriptomes), 557 

merging the SJ.out.tab files, then running the second pass with the jointly called splice junctions. 558 

STAR BAMs were passed into Salmon70 v0.14.1 to generate gene-level transcript per million 559 

(TPM) quantifications with parameters: --incompatPrior 0.0 --seqBias --gcBias --560 

reduceGCMemory --posBias. STAR chimeric junctions were supplied to STAR-Fusion71 v1.7.0 in 561 

kickstart mode to call ETS family fusions. 562 

Single-cell quality control and clustering 563 

 After removing low quality cells (fewer than 500 or more than 10,000 detected genes, 564 

fewer than 50,000 reads, or more than 25% expression from mitochondrial genes), we used 565 

Seurat72 v3.1.0 to perform first-pass clustering using the TPM matrix rescaled to exclude 566 

mitochondrial genes. We manually identified and removed a small number of cells with 567 

anomalous expression patterns (chiefly co-expression of high levels of haemoglobin with marker 568 

genes for non-erythroid cells). Additionally, some cells that did not cluster with erythroid cells 569 

(easily identified with dominant haemoglobin expression) nonetheless had low levels of 570 

haemoglobin detected, suggestive of contamination from ambient RNA released from lysed 571 

erythroid cells. To account for this, we identified genes whose expression was correlated 572 
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(Pearson correlation > 0.2) with total haemoglobin expression levels in non-erythroid cells with 573 

detectable haemoglobin. This consisted of a small set of genes with known function in erythroid 574 

cell development and function: AHSP, GATA1, CA1, EPB42, KLF1, SLC4A1, CA2, GYPA, TFR2, 575 

RHAG, FAXDC2, RHD, ALAS2, SPTA1, and BLVRB. To mitigate batch effects driven by 576 

different degrees of contaminating ambient erythroid transcripts, we removed these genes, along 577 

with the genes encoding haemoglobin subunits, from the expression matrix for all non-erythroid 578 

cells. 579 

We repeated the clustering and conducted all downstream analyses with the filtered 580 

expression matrix. After joint clustering of all cells (Fig. 1b), we performed sub-clustering on 3 581 

cell subsets: 1) NK and T cells 2) B-lineage cells 3) myeloid cells. We manually labelled clusters 582 

by dominant cell identity, as assessed by marker gene expression patterns (Supplementary Table 583 

2). Briefly, cancer cell clusters were identified by expression of AR, KLK3, or CHGA; T cell 584 

populations by CD3D and CD3G; Tregs by CD4, FOXP3, and CTLA4; NK cells by absence of 585 

CD3D and CD3G and expression of FCGR3A, FCGR3B, and GZMB; erythroid cells by HBA and 586 

HBB; neutrophils by ELANE, CEACAM8, AZU1, and DEFA1; macrophages by APOE, C1QA, 587 

and C1QB; monocytes by ITGAX, CD14, FCGR3A, and FCGR3B; B cells by CD19 and MS4A1; 588 

plasmablasts by CD19 and absence of MS4A1; and plasma cells by SDC1 and high expression of 589 

immunoglobulin genes. Additionally, we confirmed the identity of cancer cell clusters by 590 

matching transcriptome-inferred copy number alteration profiles generated from inferCNV 591 

v0.99.7 (https://github.com/broadinstitute/inferCNV) with those obtained from corresponding 592 

bulk whole exome sequencing. 593 

Cluster specifically expressed genes and LDSC-SEG 594 
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 We grouped cell clusters into ‘superclusters’ of related cell types (Supplementary Table 2) 595 

and performed differential expression to identify markers for each cell cluster, omitting cells in 596 

the same supercluster. To mitigate uneven representation of cell types, when comparing against 597 

any cluster, we subsampled the same number of cells from each other supercluster and used as 598 

even representation as possible of the contained clusters. In determining cancer cell markers, we 599 

used as even representation as possible of cells from each biopsy while sampling 200 cancer 600 

cells total per iteration. For each cluster, we repeated the sampling 500 times. In each sampling, 601 

we performed a one-sided Mann Whitney U test for differential expression on all genes with at 602 

least 1 TPM expression in at least 10% of the cluster’s cells. We then selected the top 10% most 603 

upregulated genes (lowest median P value across samplings) as cluster specifically expressed 604 

genes. We used a 100kb interval around genes for heritability partitioning with LDSC-SEG 605 

v1.0.1, additionally including an annotation corresponding to all genes and the baseline v1.1 606 

model6. 607 

AR isoform-informative reads 608 

 To identify reads that uniquely map to an AR splice variant, we generated a FASTA 609 

transcriptome annotation of spliced sequences from isoforms described in literature7,73–79. We 610 

extracted all reads initially mapped by STAR to the AR genomic interval X:66753830-67011796 611 

and then remapped them to our AR isoform transcriptome, disallowing clipping, multimapping, 612 

or chimeric reads, and requiring end-to-end mapping (STAR parameters: --613 

outFilterMultimapNmax 1 --alignEndsType EndToEnd --alignSoftClipAtReferenceEnds No --614 

outFilterMismatchNmax 999 --outFilterMismatchNoverReadLmax 0.04 --peOverlapNbasesMin 615 

10). As our AR isoform transcriptome corresponded to transcript sequences after splicing, we 616 

further excluded reads that mapped with gaps corresponding to additional inferred splice events. 617 

We reported all reads that mapped uniquely to an isoform with at most 1 mismatch in Figure 2a. 618 
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Gene set scoring, regulon activity 619 

 For both bulk samples and single cells, we scored the activity of gene sets with VISION22 620 

v2.0.0. From single cancer cells, we inferred regulons and transcriptional regulatory factor 621 

activity with SCENIC24 v1.1.2.2. In Figure 4, for single cells, we used SCENIC AUC directly as 622 

a measure of regulon activity. For Figure 4c, to infer regulon activity in bulk samples, we 623 

extracted the gene sets corresponding to regulons from SCENIC and scored bulk samples for 624 

activity of the genes sets using VISION. 625 

 When comparing VISION scores in cells from biopsies exposed and naïve to treatment 626 

with enzalutamide, we included only cells inferred to be in G1 by Seurat to reduce discovery of 627 

signals introduced by different proportions of cycling cells between tumours72. We restricted our 628 

initial analyses to biopsies with at least 10 G1 cancer cells. As we were interested in 629 

generalizable patterns of expression change related to enzalutamide exposure, we attempted to 630 

filter out signals driven primarily by expression patterns in any single biopsy by undertaking a 631 

subsampling procedure. By considering subsets of the data more balanced for representation 632 

from different biopsies, we traded reduced power for more robustness. From either class 633 

(enzalutamide naïve vs exposed), we sampled up to 20 cells per biopsy to prevent results from 634 

being dominated by tumours with many recovered cells. Additionally, across repeated sampling 635 

iterations, we omitted each biopsy in turn, instead sampling cells from other biopsies within its 636 

class, keeping the total number of cells the same. We performed 501 iterations of sampling for 637 

each biopsy being excluded. For each gene set being scored with VISION, we used the sampling 638 

with the median effect size as the summary of all iterations. When measuring effect size, we 639 

consistently compared one class vs the other (i.e. always exposed relative to naïve) to ensure 640 
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consistency in comparisons of direction of effect. We used the corresponding two-sided Mann 641 

Whitney U test P value as the nominal P value for the given gene set. 642 

We additionally took the following steps to filter results that appeared to be driven by a 643 

single biopsy: for any given biopsy, we compared samplings when cells from the biopsy were 644 

held out vs when cells from the biopsy were included. If the proportion of nominally significant 645 

results (P < 0.05, same direction of effect as the overall median outcome for the given signature) 646 

when the biopsy was excluded was less than 80% of the proportion of nominally significant 647 

results when the biopsy was included, we considered any overall finding of differential gene set 648 

expression as non-robust and did not report it. We reported signatures with FDR <0.05 in 649 

Supplementary Table 180. Note that P values shown in Figures 3a, 3b, 4a, and 4b are based on all 650 

G1 cells and confirmed the findings from this sampling approach. 651 

 For comparisons of regulon activity in small cell carcinoma and adenocarcinoma, we 652 

took a similar approach, except that in comparing SCENIC AUC scores, we did not restrict to 653 

only G1 cells, as the regulons had been inferred with all cancer cells together. As there was one 654 

small cell carcinoma biopsy, cells from that biopsy were never selected for omission across 655 

samplings. 656 

Bulk RNA-seq analyses of Abida cohort 657 

 In Figures 3c and 4c, we compared our findings to bulk RNA-seq data from a published 658 

cohort9. Clinical annotations and expression quantifications were obtained from the published 659 

supplementary materials and from the authors directly. We converted gene expression values 660 

from FKPM to TPM for consistency with the rest of our study. As this cohort included samples 661 

sequenced at different centres and from different metastatic sites, we further restricted our 662 

analyses to avoid batch effects. For Figure 3c, we analysed only samples sequenced via 663 
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transcriptome capture at the University of Michigan, as this was the largest identifiably 664 

uniformly sequenced subset. For Figure 4c, as the largest number of small cell carcinoma 665 

samples were sequenced at Cornell, we included only small cell carcinoma and adenocarcinoma 666 

cases from Cornell in our analyses. 667 

TCR reconstruction 668 

 We performed TCR reconstruction and clonotype inference from single-cell RNA-seq 669 

with TraCeR81 v0.6.0. We performed TCR reconstruction and estimation of clonal fraction from 670 

bulk RNA-seq using MiXCR82 v3.0.12. TCRs were inferred as detected in both bulk and single-671 

cell RNA-seq if the CDR3 nucleic acid (and therefore amino acid) sequence matched.672 
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 784 

Extended Data Figure 1. Adenocarcinoma and small cell carcinoma cells are clearly 785 

distinguished by marker genes. 786 

AR and KLK3 (which encodes PSA) expression marks adenocarcinoma cells (n = 760), while 787 

CHGA marks small cell carcinoma cells (n = 76).788 
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 789 

Extended Data Figure 2. Marker gene expression in NK and T cells. 790 

Darker colours indicate higher expression of a) cell type markers, b) dysfunction and activation 791 

markers, c) markers of tumour-reactive cytotoxic cells, d) genes expressed in a GNLY-positive 792 
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cytotoxic subset, and e) genes reported to mark a progenitor population necessary for response 793 

after anti-PD-1 therapy in melanoma44. Cells are projected onto UMAP space as in Fig. 5a. 794 

f) Scatterplots showing pairwise co-expression of HAVCR2, SLAMF6, and TCF7 in CD8+ T 795 

cells. Expression values are in TPM. Points are coloured according to cluster membership as in 796 

Fig. 5a.  797 
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 798 

Extended Data Figure 3. Different cytotoxic subsets are represented in different proportions 799 

across metastatic sites. 800 

NK and T cells are projected onto UMAP space as in Fig. 5a. 801 

a) Cells are labelled by site of biopsy. 802 

Cells infiltrating b) bone and c) lymph node metastases are labelled by originating biopsy. 803 
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