bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

GigaScience, 2019, 1-16
()
GIgA) Manuscript in Preparation
- P
OXFORD (:IEN%2 N E aper

PAPER

Alessandro Petrinil, Marco Mesitil, Max Schubach2:3, Marco Frascal,
Daniel Danis%, Matteo Rel, Giuliano Grossi!, Luca Cappellettil, Tiziana
Castrignano3, Peter N. Robinson4 and Giorgio Valentini?

!AnacletoLab - Dipartimento di Informatica, Universita degli Studi di Milano, Italy and *Berlin Institute of
Health (BIH), Berlin, Germany and 3Charité - Universititsmedizin Berlin, Berlin, Germany and 4The
Jackson Laboratory for Genomic Medicine, Farmington CT, USA and >CINECA, SCAI SuperComputing
Applications and Innovation Department, Roma, Italy

Several prediction problems in Computational Biology and Genomic Medicine are characterized by both big data as well
as a high imbalance between examples to be learned, whereby positive examples can represent a tiny minority with
respect to negative examples. For instance, deleterious or pathogenic variants are overwhelmed by the sea of neutral
variants in the non-coding regions of the genome: as a consequence the prediction of deleterious variants is a very
challenging highly imbalanced classification problem, and classical prediction tools fail to detect the rare pathogenic
examples among the huge amount of neutral variants or undergo severe restrictions in managing big genomic data.

To overcome these limitations we propose parSMURF, a method that adopts a hyper-ensemble approach and
oversampling and undersampling techniques to deal with imbalanced data, and parallel computational techniques to
both manage big genomic data and significantly speed-up the computation. The synergy between Bayesian optimization
techniques and the parallel nature of parSMURF enables efficient and user-friendly automatic tuning of the
hyper-parameters of the algorithm, and allows specific learning problems in Genomic Medicine to be easily fit.
Moreover, by using MPI parallel and machine learning ensemble techniques, parSMURF can manage big data by
partitioning them across the nodes of a High Performance Computing cluster.

Results with synthetic data and with single nucleotide variants associated with Mendelian diseases and with GWAS hits
in the non-coding regions of the human genome, involving millions of examples, show that parSMURF achieves
state-of-the-art results and a speed-up of 80x with respect to the sequential version.

In conclusion parSMURF is a parallel machine learning tool that can be trained to learn different genomic problems, and
its multiple levels of parallelization and its high scalability allow us to efficiently fit problems characterized by big and
imbalanced genomic data.

Availability and Implementation: The C++ OpenMP multi-core version tailored to a single workstation and the C++
MPI/OpenMP hybrid multi-core and multi-node parSMURF version tailored to a High Performance Computing cluster are
both available from github: https://github.com/AnacletoLAB/parSMURF

Key words: High Performance Computing Tool for Genomic Medicine; Parallel Machine Learning Tool for Big Data; Parallel
Machine Learning Tool for Imbalanced Data; Ensemble Methods; Machine Learning for Genomic Medicine; Machine Learn-
ing for Imbalanced Genomic Data; Prediction of Deleterious Variants; Prediction of Pathogenic Variants; High Performance
Computing; Cluster of Computing Nodes; Mendelian Diseases; GWAS.

Compiled on: March 18, 2020.
Draft manuscript prepared by the author.

https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made ayailable under aCC-BY-NC-ND 4.0 International license.

High throughput bio-technologies, and the development of Ar-
tificial Intelligence methods and techniques has opened up new
research avenues in the context of the Genomic and Personal-
ized Medicine [1, 2]. In particular Machine Learning [3], whole-
genome sequencing (WGS) technologies (4, 5], and large pop-
ulation genome sequencing projects [6, 7] play a central role
for the detection of rare and common variants associated with
genetic diseases and cancer [8, 9].

In this context, while disease-associated variants falling in
the protein-coding regions of the genome have been largely
studied [10, 11, 12], this is not the case for disease-associated
variants located in the non-coding regions of the genome,
where our understanding of their impact on cis and trans-
regulation is largely incomplete. Nevertheless, several studies
ended up that most of the potential pathogenic variants lie in
the non-coding regions of the human genome [13].

Driven by the aforementioned motivations many efforts
have been devoted in recent years by the scientific community
to develop reliable tools for the identification and prioritization
of “relevant” non-coding genetic variants. CADD is one of the
first machine learning-based method applied for this purpose
on a genome-wide scale [14]. By combining different annota-
tions into a single measure for each variant using firstly an en-
semble of support vector machines and in the current version
a fast and efficient logistic regression classifier, CADD likely
represents the most used and well-known tool to predict dele-
terious variants [15].

Starting from this work other machine learning-based
methods for the detection of deleterious or pathogenic vari-
ants have been proposed, ranging from multiple kernel learn-
ing techniques [16], to deep neural networks [17, 18], multi-
ple kernel learning integrative approaches [16], unsupervised
learning techniques to deal with the scarcity of available an-
notations [19], and linear models for functional genomic data
combined with probabilistic models of molecular evolution [20].
Other approaches predicted the effect of regulatory variation
directly from sequence using gkm-SVM [21] or deep learning
techniques [22]. More details are covered in two recent reviews
on machine learning methods for the prediction of disease risk
in non-coding regions of the human genome (23, 24].

All these tools are faced with relevant challenges related to
the rarity of non-coding pathogenic mutations. Indeed neu-
tral variants largely outnumber the pathogenic ones. As a
consequence the resulting classification problem is largely un-
balanced toward the majority class and in this setting it is
well-known that imbalance-unaware machine learning meth-
ods fail to detect examples of the minority class (i.e pathogenic
variants) [25]. Recently several methods showed that by adopt-
ing imbalance-aware techniques we can significantly improve
predictions of pathogenic variants in non-coding regions. The
first one (GWAVA) applied a modified random forest [26],
where its decision trees are trained on artificially balanced data,
thus reducing the imbalance of the data [27]. A second one
(NCBoost) used gradient tree boosting learning machines with
partially balanced data, achieving very competitive results in
the prioritization of pathogenic Mendelian variants, even if
the comparison with the other state-of-the-art methods have
been performed without retraining them, but using only their
pre-computed scores [28]. The unbalancing issue has been
fully addressed by ReMM [29] and hyperSMURF [30], through
the application of subsampling techniques to the “negative”
neutral variants, and oversampling algorithms to the set of
“positive” pathogenic variants. Moreover a large coverage of
the training data and an improvement of the accuracy and the
diversity of the base learners is obtained through a partition of
the training set and a hyper-ensemble approach, i.e. an ensem-

ble of random forests which in turn are ensembles of decision
trees. hyperSMURF achieved excellent results in the detection
of pathogenic variants in the non-coding DNA, showing that
imbalance-aware techniques play a central role to improve pre-
dictions of machine learning methods in this challenging task.

Nevertheless these imbalance-aware methods have been
usually implemented with no or very limited use of parallel
computation techniques, thus making problematic their appli-
cation to the analysis of big genomic data. Furthermore, the
hyperSMURF method is computationally intensive and charac-
terized by a large number of learning parameters that need to
be tuned to ensure optimal performance, thus requiring pro-
hibitive computing costs, especially with big genomic data.

To address the aforementioned limitations, in this article
we propose parSMURF, a novel parallel approach based on hy-
perSMURF. While other methods suitable for the assessment of
the impact of variants located in protein-coding regions are
able to run in parallel environments [31], this is not true for the
assessment of non-coding variants. The main goal in the de-
sign and development of parSMURF is to make available to the
scientific community a general and flexible tool for genomic
prediction problems characterized by big and/or highly imbal-
anced data, while ensuring state-of-the-art prediction perfor-
mance. The high computational burden resulting by the proper
tuning and selection of the learning (hyper)-parameters is ad-
dressed through a scalable and parallel learning algorithm that
leverages different levels of parallelization, and a Bayesian op-
timizer for their automatic and efficient tuning.

In the remainder we present the parSMURF algorithm, its re-
lationships with its sequential version hyperSMURF, and its two
different implementations respectively for multi-core worksta-
tions and for a highly parallel High Performance Computing
cluster. In the Results section experiments with big synthetic
and actual genomic data show that parSMURF scales nicely
with big data and significantly improves the speed-up of the
computation. Finally experiments with Mendelian data and
GWAS hits at whole-genome level show that parSMURF sig-
nificantly improves over its sequential couterpart hyperSMURF,
by exploiting its multiple levels of parallelism and the auto-
matic tuning of its learning hyper-parameters through a grid
search or a Bayesian optimization method. parSMURF! multi-
thread and hybrid multi-thread and multi-process MPI C++
parSMURF" implementations are well-documented and freely
available for academic and research purposes.

Parallel SMote Undersampled Random Forest (parSMURF) is a fast,
parallel and highly scalable algorithm designed to detect dele-
terious and pathogenic variants in the human genome. The
method is able to automatically tune its learning parameters
even with large data sets, and to nicely scale with big data.
Starting from the presentation of the characteristics and
limitations of hyperSMURF [30], in this section we introduce
the parallel algorithm parSMURF and its two variants named
multi-core parSMURF (parSMURF!) and multi-node parSMURF
(parSMURF™). The first one is suitable for the execution on
a single workstation that features one or more multi-core
processors, while the second one is designed for a High Per-
formance Computing cluster, where the computation is dis-
tributed across several interconnected nodes. Although devel-
oped for different hardware architectures, they both share the
same core parallelization concepts and the same chain of oper-
ations performed on each parallel component of the algorithm.
Finally, we discuss the computational algorithms proposed to
automatically learn and tune the parSMURF hyper-parameters
in order to properly fit the model to the analyzed genomic data.

https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Test set
¥

PART 1 Oversampling N f
| m:%- ~D®

=g R R

Undersamplin training : model
PART 2 ! |
\ __,Consensus
Training set Combining prediction
PART N Oversampling
Hy——— Partitioning }\ l:l Assembling - D ‘@

Undersamplin

[

RF | RF
training \ model

Step 1

Step 2

Step 4

Figure 1. High-level scheme of hyperSMURF. Step (1): partitioning of the training set (the minority/positive class is represented in blue, while the majority/negative
class is in green). Step (2): application of oversampling and undersampling approaches, and assembling of the training set. Step (3): training of the RF models.

Step (4): Testing and aggregation of predictions outcomes.

Parameters = Description
nParts Number of parts of the partition
hyperSMURF is a supervised machine learning algorithm specifi- tp Multiplicative factor for oversampling the mi-
. . . . nority class. For instance with fp = 2 two novel
cally designed to detect deleterious variants where variants as- : s
: . . . examples are synthesized for each positive ex-
sociated with diseases are several order of magnitude lesser - .
. . ample of the original data set, according to the
than the neutral genetic variations. hyperSMURF tackles the .
imbal f the dat. ine three 1. : trategies: SMOTE algorithm.
tmbalance ot the data using three learning strategles: ratio Ratio for the undersampling of the majority
i L. . . class. For instance, ratio = 2 sets the number of
+ balancing of the training data by oversampling the minority negatives as twice the total number of original
class and undersampling the majority class; and oversampled positive examples.
- improving data coverage through ensembling techniques; x Number of the nearest neighbors of the SMIOTE
- enhancing the diversity and accuracy of the base learners algorithm
through hyper-ensembling techniques. nTrees Number of trees included in each random forest
mtry Number of features to be randomly selected at

The high-level logical steps of the hyperSMURF algorithm
are summarized in Figure 1. At step (1) hyperSMURF creates
several sets of training data by using all the available exam-
ples of the minority (positive) class and partitioning the set of
the majority (negative) class: as a result each set includes all
the positive examples and a subset of the majority (negative)
class. From this point on, each training set is processed inde-
pendently. In step (2), examples of the minority class are over-
sampled through the SMOTE algorithm [32] while examples of
the majority class are undersampled according to an uniform
distribution. Each training set is is now formed by a compara-
ble number of positive and negative examples and it can be used
in step (3) to train the random forest. This process is applied
to all the parts of the partition of the original training set, thus
generating an ensemble of random forest models. At step (4)
all the predictions separately computed by each trained model
are finally combined to obtain the “consensus” prediction of
the hyper-ensemble.

The behavior of the algorithm strongly depends on the
learning hyper-parameters, reported in Table 1, which deeply
influence the hyperSMURF performance, as shown in [33], and
fine tuning of the learning parameters can dramatically im-
prove prediction performance. Since hyperSMURF is an ensem-
ble of random forests which in turn are ensembles of decision
trees, its sequential implementation undergoes a high execu-
tion time, especially on large datasets, thus limiting a broad
exploration of the hyper-parameter space. Moreover hyper-
SMURF cannot be easily applied to big data, due to its time and
space complexity issues.

each node of the decision trees included in the
random forest
Table 1. hyperSMURF learning hyper-parameters

Nevertheless, looking at Figure 1, we can observe that hy-
perSMURF is characterized by the following features:

i. the same operations (over- and under-sampling, data
merging, training and model generation and prediction eval-
uation) are performed over different data belonging to differ-
ent partitions;

ii. the operations performed over different data are indepen-
dent, i.e. there is no interaction between the computation of
two different partitions;

iii. the algorithm does not require any explicit synchroniza-
tion during the elaboration of two or more partitions.

Putting together these observations, we can redesign hy-
perSMURF leveraging its intrinsic parallel nature and using
state-of-the-art parallel computation techniques. The result-
ing newly proposed parSMURF algorithm is schematically sum-
marized in Algorithm 1. The parallelization is performed by
grouping parts of the partition in chunks (see also Figure 2).
The parSMURF parameter q (number of chunks) determines at
high level the parallelization of the algorithm, i.e. how many
chunks can be processed in parallel.

During training, the main activities of the parSMURF algo-
rithm are executed in parallel for each chunk (outer for loop

https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
mage, available under aCC-BY-NC-ND 4.0 International license.

Sequential version

THREAD 1 | PART 1 : ‘ﬁ‘ PART 2 ‘ﬁ—» PARTN !
é) — @ Consensus
~ prediction
Multi-threaded version

‘ PART1 ! ‘H‘ PART 2 ‘H‘ PART3 ! ‘
::Lt:::(o;[]»THREAD 1 { D @D @ Consensus
S . N~ N prediction

Shankc I]’THREAD q ‘ PARTN-2 | ‘H ‘ PART N-1 ‘ — ‘ PART N ‘

[]
® ®

Figure 2. Comparison between the sequential hyperSMURF (top) and multi-core parSMURF! (bottom) execution schemes.

Algorithm 1 parSMURF algorithm (training)

Input:

P: positive examples set

N: negative examples set

n, fp, ratio, k, nTrees, mtry: parameters described in Table 1
q: number of partition chunks

Output:

M = {m,,..,mp}: set of trained RF models

{M, .., Mn} « partitioning(w/, n)
{1, .., Cq} « chunkGroups({ny, .., Nnl, q)
idx « {1, ..,q}
je—o
M0
for all i € idx parallel do
for N/ € ¢; (parallel) do
jej+1
P’ « SMOTE(P, fp, k)
N« undersample(N”, ratio)
T—PuUuP uN"
m; RFy14in(T, nTrees, mtry)
M~ Mu m]
end for
end for
return M = {my, .., mp}

in Algorithm 1). A further level of parallelism can be realized
through the inner for loop where each part A’ of the chunk
¢; undergoes a parallel execution. Note however that “paral-
lel” in the inner for loop is in brackets to highlight that this
second level of parallelization can or cannot be implemented,
according to the complexity of the problem and the available
underlying computational architecture.

Algorithm 2 also shows that hyper-ensemble predictions
conducted during testing can be easily performed through par-
allel computation: each model can be tested independently over
the same test set and the consensus prediction is computed by
averaging the ensemble output.

Algorithm 2 parSMURF algorithm (testing)

Input:

M = {m,,..,mp}: set of trained RF models

T: test set

Output:

HS: prediction score for each example t in test set 7

idx « {1,..,n}
for all i € idx parallel do
forallt e 7 do
P;(t) « P(t is positive |m;)
end for
end for
forallt ¢ 7 do

1 n
HS(t) Zpi(t)
1=1

end for

The idea on which multi-core parSMURF builds upon is that
all operations performed on the different parts of the partition
can be assigned to multiple core/threads and processed in par-
allel. Namely, given q threads, the data parts Ny, ...,Nn are
equally distributed among threads so that thread i receives a
subset (chunk) C; of parts, and processes its assigned parts in
sequence. Since each partition chunk is assigned to its own
thread, chunk processing is performed in parallel with archi-
tectures featuring multiple processing cores.

In Figure 2 (top) a scheme of the execution of the sequential
hyperSMURF is shown: each partition is processed sequentially
and the output predictions are accumulated as the computation
goes on. On the contrary, with parSMURF! (Figure 2, bottom),
chunks of partitions are assigned to different execution threads
and are processed in parallel. To avoid data races, each thread
accumulates partial results, and then the master thread collects
them once the computation of each thread is ended. Moreover,
each thread keeps only a local copy of the subset of the data
which is strictly required for its computation; this minimizes
memory consumption and, at the same time, does not impose
any need for synchronization between concurrent threads.

https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

MPI MPI
Send Send
Test set f Thread | PART 1 [Par ‘ N
1 I ! T Worker
Test set % Foo 1 —— OO prediction
[|
} _J LThreadl PART N *| PARTN-1 ‘ " PARTN]
q 1
WORKER PROCESS 1 O
Consgnlsus
—» | WORKER PROCESS 2 prediction
} Test set fThread Ep— .[ParT2 " |
L : Worker
Training set % Foo A ——— 92200 prediction
LThread L PART ‘ ‘| PAF TN J
q]
WORKER PROCESS m S

MASTER PROCESS

Figure 3. High-level scheme of the multi-node parSMURF" implementation.

This scheme is expected to show a remarkable speedup with
the increase of processing cores and the available local mem-
ory of the system. Since parallelization occurs at “partition
chunk” level, instances of parSMURF! with a reduced partition
size benefits only partially of a multicore execution. On the
other side, partitions characterized by a very high number of
parts can theoretically scale well with the number of processing
cores but, unfortunately, current processors have constraints
in the number of available cores. Moreover, big data computa-
tion may exceed the storage capacity of a single workstation,
thus making the application of parSMURF! in this experimental
context problematic.

This version of parSMURF has been designed to process big data,
to both improve speed-up and make feasible computations that
exceed the storage capacity of a single workstation. Moreover
parSMURF" allows the fine tuning of the model parameters even
when big data should be analyzed.

Architecture

As for the multi-core version, parSMURF" exploits paralleliza-
tion at partition level, but also introduces a second level of par-
allelization: the higher level is performed through the comput-
ing nodes of a cluster, i.e. a set of computing machines inter-
connected by a very fast networking infrastructure; the lower
level is realized through multi-threading at single node level
by exploiting the multi-core architecture of each single node of
the cluster. In this novel scheme, each node receives a partition
chunk, which is processed in parallel with the other chunks
assigned to the remaining nodes. Chunks in turn are further
partitioned in sub-chunks, distributed among the computing
cores available at the local node. Finally an optional third level
of parallelization is available by assigning multiple threads to
the random forests which process the different parts of the par-
tition (recall that a random forest is in turn an ensemble of
decision trees).

The higher level of parallelization leverages the MPI pro-
gramming paradigm and standard [34] to transfer information
among nodes. This programming paradigm requires that sev-
eral instances of the same program are executed concurrently
as different processes (MPI processes) on different nodes in-
terconnected by a network. Being different instances of the

same program, each MPI process has its own memory space,
therefore intercommunication, i.e. data exchange between pro-
cesses, occurs explicitly by invoking the corresponding actions,
as required by the MPI standard.

parSMURF" adopts a master-slave setting, with a master
process coordinating a set of MPI slave processes, also called
worker processes, which in turn manage the partition computa-
tion. Master and worker roles are described below:

- the master process is responsible for processing the com-
mand line parameters, loading data in its memory space,
generating partition and chunks, sending the proper subset
of data to each worker process (including the test set and
the proper fraction of the training set) and finally collecting
and averaging their output predictions.

- each worker process realizes the computation on the assigned
chunk of partitions, generates sub-chunks of its own chunk
and processes them through multi-threading - i.e. dis-
tributes the computation of the sub-chunks over the avail-
able computing threads - and sends the output predictions
back to the master process.

We point out that in principle parSMURF" can be executed
also on a single machine, where multiple copies of the same
program are processed by the available cores, but in this case
it undergoes the same limitations of parSMURF'. Figure 3 pro-
vides a high level scheme of the execution of parSMURF".

parSMURF" intercommunication
Figure 4 shows a schematic view of the intercommunication
between parSMURF MPI processes.

The computation in the worker processes is performed as
in the multi-core version of parSMURF, except for a slight dif-
ference in the subsampling of the majority class, since this op-
eration is no longer executed by the worker processes but by
the master instead. Indeed, by observing that subsampling re-
quires some examples to be discarded, there is no need of send-
ing to the worker processes an entire part of the partition, but
only the selected subset of examples. This design choice mini-
mizes the amount of data to be sent to a worker process, since
for each partition only the positive samples (that are going to
be oversampled in the worker process) and the already under-
sampled negative examples are sent to the worker processes.

In an ideal parallel application, computing nodes should
never interact, since every data exchange creates latencies that

https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made, available under aCC-BY-NC-ND 4.0 International license.

WORKER PROCESS

WORKER PROCESS

/ MASTER PROCESS \[
" BE=

WORKER PROCESS

—

N

WORKER PROCESS

—

Figure 4. High-level intercommunication scheme between MPI processes in
multi-node parSMURF". Blue arrows represent data flows from the master
process to worker processes (different chunks of partitions and the same test
set) and yellow arrows represent data flows from the worker processes to the
master (output predictions).

affect the overall occupancy - i.e. the ratio between the amount
of time a computing node is processing data and the total exe-
cution time. However, in real applications this rarely happens,
and data have to be exchanged between processes. As a general
rule, communication should be minimal in number and maxi-
mal in size, since the following equality holds:

ttot = tstart + d X tyrn

where t;,; is the total time for the data send, d is the amount
of data in bytes to be transferred, t;, is the time required to
transfer one byte of data and tgy,; is the time required by the
interconnecting networking system for beginning a communi-
cation between nodes. tq,, is constant, therefore transferring
data as a big chunk is generally faster than several smaller ones,
since tgqe Penalty is paid only once in the former case. How-
ever, in real world MPI parallel applications, the main objective
is to parallelize computation to speed-up execution, and max-
imum efficiency is achieved by overlapping data transmission
and computation. This is easier to obtain when data is streamed,
i.e. sent in small chunks which are consumed as soon as they
reach the receiver MPI process: in this way we can minimize
the inactivity time of a node, waiting for data to be received.

Maximizing parSMURE™ performance

For maximizing performances parSMURF" adopts the follow-
ing strategies to find the optimal balance between the size and
number of data transmissions:

+ maximize occupancy,
+ reduce the number of data send or broadcast,
+ minimize latency.

To maximize occupancy, the master process does not send the
entire chunk of partitions to each worker process in a big data
send; instead, parts are sent one by one. This choice is ideal in
the context of multithreading in worker processes: supposedly,
given a partition with n parts and a number x of computing
threads assigned to a working process, the master at first sends
to each worker process x parts of its assigned chunk. When a
worker thread finishes the computation of a part, another one
is sent by the master for processing. This process goes on until
the chunk is exhausted.

To reduce the number of data send or broadcast - i.e. one MPI
process sending the same data to all the other processes - for
each part, the master process assembles an array having all the
relevant data required for the computation, i.e. the positive
and negative examples (already subsampled, as stated earlier)
and the parameters needed for the computation. Hence with
just one MPI send operation, a part of the partition with its
parameters is transferred to the worker process. Also, partial
results of the predictions are locally accumulated inside each
worker and sent to the master once the jobs for the assigned
chunk are finished.

To minimize latency, the assembly of the data to be sent is
multithreaded in the master process. In instances character-
ized by relatively small datasets and a high number of parts in
the partition, it may happen that the master could not prepare
and send data fastly enough to keep all the worker processes
busy. For instance, a thread in a worker process may finish
the computation for a part before data for the next one arrive,
leaving the thread or the entire process inactive. This has been
solved by spawning a number of threads in the master process
equal to the number of worker processes the user has requested,
each one assigned for preparing and sending the data to the
corresponding worker. However, since memory usage in the
master process can be greatly affected, an option is provided
for disabling multithreading in the master. In this case, only
one thread takes care of this task and parts are sent in round
robin fashion to the working processes: this has been experi-
mentally proven to be effective for those instances that require
a particularly high memory usage.

As in most ML methods, the accuracy of the predictions of
the parSMURF models are directly related to the set S of hyper-
parameters that control its learning behaviour. Hence, to max-
imize the usefulness of the learning approach, the value of
each hyper-parameter of the set S must be chosen appropri-
ately. In parSMURF the hyper-parameter set is composed by
the 6-tuple of parameters reported in Table 1. Each parameter
is discretized and constrained between a maximum and mini-
mum value, hence the hyper-parameter space # is a discrete
six-dimensional hypercube. The validation procedure for the
evaluation of each h € # is the internal cross-validation pro-
cess, and the objective function (performance metrics) which
has to be maximized is the Area Under the Precision Recall
Curve (AUPRC).

parSMURF features two modes for automatically finding the
hyper-parameters combination hy € # that maximizes the
model accuracy (parameter auto-tuning). The first strategy is
a grid search over H, where each h € # is evaluated by internal
cross-validation. This strategy is generally capable of finding
values close to the best hyper-parameters combination, but it
is very computationally intensive and suffers from the curse
of dimensionality. The second strategy is based on a Bayesian
Optimizer (BO) which iteratively builds a probabilistic model of
the objective function f : # — R* (in parSMURF, the AUPRC) by
evaluating a promising hyper-parameter combination at each
iteration and stopping when a global maximum of f is obtained.
This procedure is less computationally intensive than the grid
search and may also outperform the latter in terms of predic-
tion effectiveness. The Bayesian optimizer is based on [35]
and its implementation "Spearmint-lite" [36] is included in
the parSMURF package.

The whole procedure is summarized in Algorithm 3.
Briefly, parSMURF provides the automatic tuning of the hyper-
parameters in a context of internal n-fold cross-validation,
and the Bayesian Optimizer (BO) is invoked in the while loop.

https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Algorithm 3 Automatic hyper-parameters
parSMURF featuring Bayesian Optimization.

tuning in

Input:

7: P UN (data for training and validation)

H: Hyper-parameter space

n: number of CV folds

maxIter: maximum number of iterations

: Bayesian Optimization (BO) error tolerance

Output:

H’: set of best combination (one of reach fold) of hyper-
parameters

{7, .., Tn} « foldSubdivision(7, n)
foric{1,.,n}do
TestSet « T;
TrainingSet « UT]
JA
{71/, .., Th_1} « foldSubdivision(TrainingSet, n - 1)
iter « 1
H«20
while (error > €) A (iter < maxiter) do
h « BO__generate(H)
for k € {1,..,n -1} do
ValidationSet « T},
TrainingSet’ — | J7/
17k
model’ «— parSMURF__train(TrainingSet’, h)
predictions;< « parSMURF__test(model’, ValidationSet)
end for
predictions’ — |_] predictions;,

k

eval «+ AUPRC(predictions’)

H « Hu (h,eval)

error — BO__errorEval(H)

iter « iter +1
end while
h; « argmaxy g {(h,eval)}
model « parSMURF_train(TrainingSet, h;)
predictions «+ parSMURF__test(model, TestSet)

end for

Hl — Uhk
k

At each iteration, a new hyper-parameter combination h € #
is generated by taking into account all the previously evalu-
ated h. A new model is then trained and tested in the inter-
nal cross-validation procedure by using the newly generated h.
The quality of the prediction is evaluated by means of AUPRC,
and the tuple (h,eval) is submitted back to the Bayesian Op-
timizer for the generation of the next h. The while loop ends
when the Bayesian Optimizer finds a probable global maximum
(no further improvement in the error evaluation) or when the
maximum number of iterations is reached. Grid search works
in a similar way, but all h € # are exhaustively tested in the
internal cross-validation phase.

We applied parSMURF to both synthetic and real genomic data
to show that the proposed method is able to:

- scale nicely with big data;

- auto-tune its learning parameters to optimally fit the pre-
diction problem under study;

improve hyperSMURF as well as other state-of-the-art
methods in the prediction of pathogenic variants in

Mendelian diseases and of regulatory GWAS hits in the
GWAS Catalog.

All the experiments have been performed on the Cineca Mar-
coni Supercomputing system [37], specifically using its Lenovo
NeXtScale architechture, with 720 nodes, each one having 128
GBytes of RAM and 2 x 18-cores Intel Xeon E5-2697 v4 (Broad-
well) CPUs at 2.30 GHz. The interconnecting infrastructure is
a Intel Omnipath featuring 100 Gb/s of networking speed and
a fat-tree 2 : 1 topology.

Genomic data are highly imbalanced toward the majority class,
since the SNVs annotated as pathogenic represent a tiny mi-
nority of the overall genetic variation. Synthetic data have also
been generated to obtain a high imbalance between positive
and negative examples, in order to simulate the imbalance that
characterizes several types of genomic data.

Synthetic data have been randomly generated using a
spheric gaussian distribution for each of the 30 features.
Among them only 4 are informative in the sense that the means
of positive and negative examples are different, while all the
other features share the same mean and standard deviation
with both positive and negative examples. Synthetic data, as
well as the R code for their generation are available from the
GITHUB repository [38].

As an example of application of parSMURF to real genomic
data, we used the dataset constructed in [29] to detect Sin-
gle Nucleotide Variants (SNVs) in regulatory non-coding re-
gions of the human genome associated with Mendelian dis-
eases. The 406 positive examples are manually curated and
include mutations located in genomic regulatory regions such
as promoters, enhancers and 5’ and 3’ UTR. Neutral (negative)
examples include more than 14 millions of SNVs in the non-
coding regions of the reference human genome differing, ac-
cording to high confidence alignment regions, from the ances-
tral primate genome sequence inferred on the basis of the En-
sembl Enredo-Pechan-Ortheus whole-genome alignments of
six primate species [39], and not including variants present in
the most recent 1000 Genomes data [6] with frequency higher
than 5% to remove variants that had not been exposed for
sufficiently long time to natural selection. The imbalance be-
tween positive (mutations responsible for a Mendelian disease)
and negative SNVs amounts to about 1:36,000. The 26 fea-
tures associated to each SNV are genomic attributes ranging
from G/C content, population-based features, to conservation
scores, transcription and regulation annotations (for more de-
tails, see [29]).

We finally analyzed GWAS (Genome Wide Association Stud-
ies) data to detect 2115 regulatory GWAS hits downloaded
from the National Human Genome Research Institute (NHGRI)
GWAS catalog [40], and a set of negatives obtained by ran-
domly sampling 1/10 of the negative examples of the Mendelian
data set, according to the same experimental set-up described
in [30], thus resulting in an imbalance between negative and
positive examples of about 1 : 700. We predicted chromatin
effect features directly from the DNA sequence using DeepSEA
convolutional networks [18]: in this way we obtained 1842 fea-
tures for each SNV, as described in [30], and we used that fea-
tures to train parSMURF.

Table 2 summarizes the main characteristics of both the
synthetic and genomic data used in our experiments.

https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made, available under aCC-BY-NC-ND 4.0 International license.

Table 2. Summary of the datasets used in the experiments. Datasets are highly imbalanced towards the negative class.

Name N. of samples | N. of features
synth_1 106 30
synth_ 2 107 30
synth_3 5 x 107 30

Mendelian 14.755.605 26

GWAS 1.477.630 1842

Experiments reported in this section follow the classic exper-
imental setup for the evaluation of the performances of par-
allel algorithms [41]. In particular, since our executions em-
ploy multiple computer processors (CPU) concurrently, we use
speedup and efficiency to analyze the algorithm performances
by measuring both the sequential and parallel execution times.

By denoting with Ts the run-time of the sequential algo-
rithm and with T the run-time of the parallel algorithm exe-
cuted on P processors, the speedup and efficiency are defined
respectively as:

_Ts
Tp

- I
E_TPXP'

S and

Speed-up and efficiency analysis with synthetic data

Experimental set-up. For every synthetic dataset, we run
parSMURF! and parSMURF" several times by varying the number
of threads (for both the multi-core and multi-node versions)
and the number of MPI worker processes assigned to the task
(for the multi-node version only). More precisely the num-
ber of threads n.thr varied in n.thr ¢ {1,2, 4} for synth_1 and
synth_ 2 datasets, while for synth_ 3 n.thr € {1, 2, 4, 8,16, 20}.
Moreover we considered a number of MPI processes n.proc in
the range n.proc ¢ {1,2,4,8} for synth_1 and synth_2, and
n.proc € 11,2, 4, 6, 8,10} for synth_ 3.

For each run we collected the execution time and evaluated
the speed-up and efficiency: the Ts sequential time of formu-
las (1) and (2) has been obtained by running parSMURF! with 1
thread, hence obtaining a pure sequential run.

All experiments were executed using a 10-fold cross valida-
tion setting. The learning hyper-parameters employed in each
experiment are the following:

- synth_1: nParts = 128, fp = 1, ratio = 1, k = 5, nTrees = 128,
mTry = 5;

- synth_2: nParts = 64, fp = 1, ratio = 1, k = 5, nTrees
mTry = 5;

- synth_3: nParts = 128, fp = 1, ratio = 5, k = 5, nTrees = 10,
mTry =5

32,

For each synthetic data set we run experiments considering
all the different numbers of threads n.thr for parSMURF?, while
for parSMURF" we run different hyper-ensembles considering
all the possible combinations of n.thr and n.proc.

Results and discussion. Figure 5 reports the results for the batch
of executions with the synth_1 and synth_ 2 datasets. Results
are grouped by the number of MPI working processes (each
line represents three runs obtained by keeping the number of
MPI processes fixed and by varying the number of threads per
process).

Both graphs show that the multi-core and the multi-node
implementation of parSMURF introduce a substantial speed-
up with respect to the sequential version (the point in the

N. of positive samples | Imbalance ratio

400 1:2500
400 1: 25000
1000 1: 50000
406 1:36300
2115 1:700

black line with 1 thread in the abscissa). Note that in Fig-
ure 5 the black line represents parSMURF!, while the orange
line parSMURF": their execution time is very similar since both
use the same overall number of threads, with a small overhead
for the MPI version due to the time needed to setup the MPI
environment. Table 3 shows that the speed-up achieved by
parSMURF" is quasi-linear with respect to the overall number
of “aggregated threads” (i.e. the product n.thr x n.proc) in-
volved in the computation, at least up to 16 threads. By en-
larging the number of “aggregated threads” we have a larger
speed-up, but a lower efficiency, due to the lower number of
parts of the partition assigned to each thread, and to the larger
time consumed by the MPI data intercommunication.

Results with the synthetic dataset synth_ 3, that includes
50 million examples, confirm that parSMURF scales nicely also
when the size of the data is significantly enlarged. Indeed Fig-
ure 6 (left) shows that by increasing the number of processes
and threads we can obtain a significant reduction of the execu-
tion time. These results are confirmed by grouping the execu-
tion time with respect to the “aggregated” number of threads,
i.e. the product n.thr x n.proc (Figure 6 (right)).

Figure 7 shows the speed-up (left) and efficiency (right) ob-
tained with this dataset; results are again grouped by the “ag-
gregated” number of threads. Note that with this large dataset
we can obtain a larger speed-up, even if, as expected, at the
expenses of the overall efficiency.

Different research works showed contradictory results
about the comparison of the performance of pure multipro-
cess MPI, pure multithread OpenMP or hybrid MPI-OpenMP
implementations of the same algorithm, showing that several
factors, such as algorithms, data structures, data size, hard-
ware resources, MPI and OpenMP library implementations, in-
fluence their performances [42, 43, 44, 45, 46, 47, 48, 49].

Regarding our experiments, from Figure 6 and 8, we
can notice how, in some cases, a pure MPI implementation
may outperform an heterogeneous MPI-multithread or a pure
OpenMP-multithread implementation. However, more in gen-
eral, parSMURF" allows a higher degree of parallelism, thus re-
sulting in a larger speed-up and efficiency with respect to the
pure multithread parSMURF! (Figure 7 and 9).

Speed-up and efficiency analysis with genomic data

To show how parSMURF performs in term of speed-up and effi-
ciency on a real genomic dataset, we carried out the same batch
of experiments as in the previous section using this time the
Mendelian dataset.

Figure 8 shows the execution time of parSMURF! and
parSMURF" as a function of the “aggregated number of
threads”, i.e. the product of the number of MPI processes and
the number of threads per process. As expected, results show
a substantial decrement in execution time with respect to the
number of the aggregated threads.

Figure 9 shows the speed-up and efficiency of parSMURF:
on x axis of both graphs, threads are counted as “aggregated”,
that is the total number of threads is computed by multiplying
the number of processes by the number of threads assigned to

https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

4000 12000
3500
10000
3000
8000
2500
2000 6000
1500
4000
1000 o
2000
500
0 0
1 2 4 1 2 4
T\ 1 2 4 g e 11 C 1 2 4 8

Figure 5. Execution time of parSMURF! and parSMURF" on the synthetic datasets synth_1 (left) and synth_2 (right). On x axis, the number of threads for each
MPI process; on y axis, execution time in seconds; experiments are grouped by the number of MPI processes. Black line is the multi-thread version, while orange,
gray, yellow and light blue are the MPI version with 1, 2, 4, and 8 MPI processes.

Table 3. Execution time and speed-up of parSMURF" with synth_1and synth_ 2 datasets. Threads are counted as “aggregated” in the sense
that they are the product of the number of MPI processes with the number of threads for each process. All executions have been performed
with a 10-fold cross-validation setting.

Aggregated threads synth_1time (s) | synth_1 speed-up synth_ 2 time (s) = synth_ 2 speed-up
1 3768.59 - 9981.82 -
2 1910.19 1.97 5020.18 1.99
4 571.56 3.88 2539.10 3.93
8 542.35 6.95 1329.74 7.51
16 288.82 13.05 788.31 12.66
32 248.84 15.18 686.41 14.54

each process. For the evaluation of speed-up and efficiency,
parSMURF! with only one computing thread has been used as
reference for obtaining the computation time of the sequential
version.

The maximum speed-up of parSMURF! is about 17x, with
the execution time decreasing from 97287 seconds of the se-
quential version to 5695 seconds of the multi-threaded version
using 24 cores. The speed-up of parSMURF" is even better, with
a maximum speed-up of 80 x (1181 seconds execution time) ob-
tained using 10 MPI processes with 20 computing threads each.
The graph shows that both parSMURF! and parSMURF" follow
the same trend in the increment of the speed-up, but the multi-
thread version is limited to 24 threads (each one assigned to a
different core), while parSMURF" continues this trend up to 288
threads, reaching a speed-up saturation level of 80x. As just
observed with synthetic data (Figure 7), the efficiency tends to
decrease with the number of aggregated threads.

Summarizing both experiments with synthetic and genomic
data show that parSMURF scales nicely with large data and
achieves a significant speed-up that allows its application to
big data analysis and to the fine tuning of learning parameters.

The speed-up introduced by parSMURF allows the automatic
fine tuning of its learning parameters to improve predictions
on real genomic data. Indeed, as preliminarily shown in [33],
fine tuning of hyperSMURF learning parameters can boost the
performance on real data.

To this end we run parSMURF" on the Cineca Marconi cluster
using auto-tuning strategies to find the best learning param-

eters for both the prediction of pathogenic non-coding SNVs
in Mendelian diseases and for the prediction of GWAS hits that
overlap with a known regulatory element.

We compared the auto-tuned results only with those ob-
tained with the default learning parameters of hyperSMURF,
since our previous studies showed that hyperSMURF outper-
formed other methods, such as CADD [14], GWAVA [27],
Eigen [19] and DeepSea [18] with both Mendelian diseases and
GWAS hits data [30], and, above all, since we are more in-
terested in showing a proof-of-concept of the fact that auto-
tuning of learning parameters may lead to better performances
in a real genomic problem.

Experimental set-up

Generalization performances have been evaluated through an
external 10-fold “cytogenetic band-aware” cross-validation
(CV) setting. This CV technique assures that variants occurring
nearby in a chromosome (i.e. in the same cytogenetic band) do
not occur jointly in the training and test sets and thereby bias-
ing results, since nearby variants may share similar genomic
features [30]. Learning parameters were selected through a
grid search realized through a 9-fold internal CV, that is for
each of the 10 training sets of the external cross-validation,
their 9 ‘cytogenetic band-aware” folds have been used to select
the best learning parameters and to avoid putting contiguous
variants located in the same cytoband both in training and in
the validation set.

This experimental set-up is computationally demanding,
but by exploiting the different levels of parallelism available
for parSMURF" we can obtain a sufficient speed-up to experi-
ment with different hyper-ensembles having different sets of
learning parameters.

https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

120000 120000

100000 100000
80000 80000
60000 60000
40000

40000

20000 20000

1 2 4 8 12 16 20 1 2 4 6 8 10 12 16 20 24 32 40 48 64 72 80 96 120 128 160 200

4 i) s §, s 1)

Figure 6. Execution time of parSMURF! and parSMURF" on the synthetic dataset synth_3. Left: on x axis, the number of threads for each MPI process; on y axis,
execution time in seconds. Experiments are grouped by the number of MPI processes. Black line is the multi-thread version, while orange, gray, yellow, light
blue, green and blue are the MPI version with 1, 2, 4, 6, 8 and 10 MPI processes. Right: results are grouped by total number of threads (n.thr x n.proc). When a
combination is obtainable in more than one way only the best time is considered.

80 100
70 30
20

60
70

50
60
40 50
a0

30
30

20
20

10
10
0 0

1 2 4 6 8 10 12 16 20 24 32 40 48 64 72 80 96 120 128 160 200 1 2 4 6 g2 10 12 16 20 24 32 40 48 64 72 80 86 120 128 160 200

parSMURF1 ==@==parSMURFn ParSMURF1 === parSMURFN

Figure 7. Left: Speed-up of parSMURF' and parSMURF" on the synthetic dataset synth_3. On x axis, the “aggregated” number of threads; on y axis, speed-up.
Right: efficiency of parSMURF with the synthetic dataset synth_3. On x axis, the “aggregated” number of threads; on y axis, efficiency in percentage. Blue line
refers to parSMURF", orange line to parSMURF.

Performances of the prediction are evaluated via the Area Hg Hp
Under the Receiver Operator Characteristic Curve (AUROC) and nParts | {10, 50,100,300} | [10,300]
the Area Under the Precision-Recall Curve (AUPRC). Since data fp 11,2,5,10} (1,10]
are highly unbalanced, we outline that it is well-known that in ratio 11,2,5,10} (1,10]
this context AUPRC provides more informative results [50, 51]. k {5} i5}

nTrees {10, 20,100} [10,100]
mtry {2,5,10} [2,10]

Improving predictions of pathogenic Mendelian variants Table 4. Hyper-parameter spaces for grid search (#,4) and Bayesian

We at first executed hyperSMURF with default parameters optimizer () used for the auto-tuning on the Mendelian dataset.
(specifically: nParts = 100, fp = 2, ratio = 3, k = 5, nTrees = 10
and mTry = 5) in a context of 10-fold cytogentic-band aware

CV, as this experiment is used as reference for the next steps. parSMURE™, one for each fold of the external CV, each one hav-

We tested the auto-tuning feature by performing a grid ing 10 worker processes, with 6 dedicated threads for process-

search over the hyper-parameter space #4 defined in Table 4,
central column. Such hyperspace provides 576 possible hyper-
parameter combinations h € #4. Then, we applied the auto-
tuning strategy based on the Bayesian optimizer, by defining
the hyper-parameter space #;, as in Table 4, right column.

To fully exploit the scalability of parSMURF, we launched the
grid search with the following configuration: 10 instances of

ing the different parts of the partition plus further 4 threads for
each random forest training and testing. Hence, for the grid-
search, we used a total of 2400 CPU cores. Since the Bayesian
auto-tuning procedure is less computationally intensive, we
chose a more conservative approach on resource utilization
for this experimental set-up: we launched one instance of
parSMURF" having 24 worker processes with 16 threads for the

https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

120000 120000

100000 100000
80000 80000
60000 60000
40000

40000

20000 20000

1 2 4 -3 12 16 20 24 1 2 4 6 8 10 12 16 20 24 32 40 48 64 72 80 96 120128 144 160 192 200 240 288

T\ 1 2 4 6 § emmm]() s=Gmm]2

Figure 8. Execution time of parSMURF! and parSMURF" on the Mendelian data set. Left: on x axis, the number of threads for each MPI process; on y axis, execution
time in seconds. Experiments are grouped by number of MPI processes. Black line is the multi-thread version, while orange, gray, yellow, light blue, green, blue
and brown are the MPI version with 1, 2, 4, 6, 8, 10 and 12 MPI processes. Right: results are grouped by total number of threads (n.thr x n.proc).

partitions and one for the random forest training and testing.
Folds of the external CV are processed sequentially. Therefore,
for the Bayesian optimization set-up we used 384 CPU cores.

At the end of this phase, for each optimization strategy,
parSMURF returns the best hyper-parameter combination for
each fold. We then executed 10 repetitions of the external
CV using the default parameters, 10 using the best hyper-
parameters found by the grid search and 10 using the best
hyper-parameters found by the Bayesian optimizer. Perfor-
mances in terms of AUROC and AUPRC were measured for each
repetition and then averaged.

Performance improvements relative to the above parame-
ter tuning experiments and their execution times are summa-
rized in Table 7. Results in columns 4 and 5 show a signifi-
cant improvement in the prediction performances in terms of
AUPRC using both optimization strategies (Wilcoxon rank sum
test, « = 10~%). On the other hand, AUROC is very high in all
the experiments, confirming that this metric is not sufficient
for the evaluation of prediction performances in the context of
highly unbalanced datasets. Supplementary figures S1 and S2
show the computer ROC and precision-recall curves of both hy-
perSMURF and parSMURF. Also, the Bayesian optimizer proves
to be effective in both improving the prediction performances
and reducing the computational time: although slightly lower,
predictions are comparable to the grid search, but they are ob-
tained at a fraction of the computational power required by the
latter. As a matter of fact, the CPU time required by the entire
grid search counted more than 120k hours, compared to 16k
hours used by the Bayesian optimization strategy.

Table 7 reports average AUROC and AUPRC measured on
the training sets: results show that the ratio between training
and test AUROC or AUPRC is quite similar between hyperSMURF
and parSMURF, and even if, as expected, results on the training
sets are better, they are comparable with those obtained on the
test data. These results show that performance improvement
is not due to overfitting, but to a proper choice of the hyper-
parameters well-fitted to the characteristics of the problem.

To assess whether the difference in performance between
hyperSMURF and parSMURF can be related to their different ca-
pacity of selecting the most informative features, we measured
Spearman correlation between both hyperSMURF and parSMURF
scores with each of the 26 features used to train the hyper-

ensembles for all the examples of the dataset. Table S3 in Sup-
plementary Information reports the correlation between the
true labels of the examples and the predictions obtained by hy-
perSMURF using the default set of hyper-parameters, parSMURF
with the default, grid optimized and Bayesian optimized set of
hyper-parameters. We found that hyperSMURF and parSMURF
achieved very similar Spearman correlation on each feature
(the Pearson correlation between the vectors of Spearman cor-
relations of hyperSMURF and parSMURF is about 0.98). Both
hyperSMURF and parSMURF obtained the largest Spearman cor-
relation coefficients for features related to the evolutionary
conservation of the site (e.g. vertebrate, mammalian and pri-
mate PhyloP scores) and for some epigenomic features (histone
acetylation, methylation and DNAse hypersensitivity). Again,
these results show that it is unlikely that the improved perfor-
mance of parSMURF can be explained through its better capac-
ity of selecting the most informative features, but instead by
its capacity of auto-tuning its learning hyper-parameters and
its capacity to find a model that better fits the data.

In addition, in Table 6 some examples of pathogenic vari-
ants which have been ranked remarkably better by parSMURF
than hyperSMURF are reported. Further details about these vari-
ants are shown in Table S6 of Supplementary Information.

Prediction performances of parSMURF with an independent
Mendelian test set

We collected novel Mendelian pathogenic variants by adding
64 newly positive (pathogenic) non-coding variants manually
annotated according to a comprehensive literature review. We
included only those variations and publications judged to pro-
vide plausible evidence of pathogenicity (Supplementary Table
7). As negatives we used common variants downloaded from
NCBI [52], i.e. variants of germline origin and having a minor
allele frequency (MAF) > 0.01 in at least one major popula-
tion, with at least two unrelated individuals having the minor
allele, where major populations are those included in the 1K
genome project [53]. We selected only those variants that lie
in non-coding regions using Jannovar [54]. The final number
of negatives (about 3 millions of examples) has been randomly
sampled in such a way that the ratio positives/negative in the
original and in the new Mendelian data set used for validation
is approximately the same. Both the positive and negative ex-

https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

S0

a0

70

50

40

30

20

1 2 4 6 8 10 12 16 20 24 32 40 48 64 72 80 96 120128 144 160 152 200 240 288

ParSMURFL e parSMURFN

90

80

70

50

40

30

20

10

1 2 6 8 10 12 16 20 24 32 40 48 64 72 80 96 120 128 144 160 152 200 240 288

ParSMURFL e parSMURFN

Figure 9. Left: Speed-up of of parSMURF' and parSMURF" with the Mendelian dataset. On x axis, the “aggregated” number of threads; on y axis, speed-up.
Right: efficiency of parSMURF with the Mendelian dataset. On x axis, the “aggregated” number of threads; on y axis, efficiency in percentage. Blue line refers to

parSMURF", orange line to parSMURF®.

amples have been annotated with the same 26 genomic and
epi-genomic features used for the original Mendelian data set.
We trained hyperSMURF and parSMURF on the overall original
Mendelian data set and then we tested the resulting models on
the unseen separated new Mendelian data set used for valida-
tion. Since the new positive set also contains small insertions
and deletions, similarly to [29], to predict the pathogenicity of
the deletions, we used the maximum score of any nucleotide
included in the deleted sequence, while for insertions we used
the maximum score computed for the two nucleotides that sur-
round the insertion. Results with the independent Mendelian
test set show that the models are able to obtain relatively high
AUPRC results, especially when parSMURF is applied, showing
that our models can nicely generalize. Also with this new in-
dependent data set parSMUREF significantly outperforms hyper-
SMURF (Table 5).

Table 5. hyperSMURF and parSMURF (with Grid Search and
Bayesian optimization) prediction performances obtained over a
fully independent Mendelian test set composed by newly annotated
pathogenic variants (positive examples) and common neutral vari-
ants (negative examples).

Model AUROC AUPRC
hyperSMURF 0.945216 | 0.098153
parSMURF- Grid Search 0.941026 = 0.409067
parSMURF- Bayesian optimizaion 0.928158 = 0.192568

Improving predictions of GWAS hits

A similar experimental setup has been employed for improving
the predictions of GWAS hits. At first we executed parSMURF
with the default parameters as reference for the next batches
of experiments. Then, we tested the auto-tuning feature by
performing a grid search over the hyper-parameter space g4
defined in Table 8, central column. Such hyperspace provides
256 possible hyper-parameter combinations h € #4. Next, we
tested the Bayesian optimizer by defining the hyper-parameter
space %, as in Table 8, right column.

Results are shown in Table 9. As for the Mendelian dataset,
AUROC is very high in all experiments. On the other hand, test
results show a significant increase of AUPRC with both auto-

Table 6. Examples of pathogenic Mendelian variants better ranked
by parSMURF with respect to hyperSMURF. The first two columns
report the chromosomal coordinates, while the last two the differ-
ence in ranking between respectively parSMURF with grid search
(H4) and with Bayesian optimizer (%) with respect to hyperSMURF.
The larger the absolute difference, the higher the improvement (see
also Table S6 in Supplementary for more information).

chr pos hS rank -#4 rank | hS rank -H, rank
1 100661453 2308597 169786
3 12421189 663054 421027
X 138612889 194290 111499
13 100638902 70175 69069
6 118869423 63078 55789
16 31202818 50539 103623
12 121416444, 21848 65773

tuning strategy, with the grid search leading a better outcome
than the Bayesian optimizer. Supplementary figures S3 and S4
show the ROC and precision-recall curves of hyperSMURF and
parSMURE.

These results further show that fine tuning of learning pa-
rameters is fundamental to significantly improve prediction
performances, showing also that parSMUREF is a useful tool to
automatically find “near-optimal” learning parameters for the
prediction task under study.

Assessment of the effect on prediction performance of the variants
imbalance across regulatory regions.

As recently pointed out in [28], pathogenic scores predicted
by several state-of-the-art methods are biased towards some
specific regulatory region types. Indeed also with Mendelian
and GWAS data the positive set of variants is located in differ-
ent functional non-coding regions (like 5’UTR, 3’UTR or Pro-
moter) and is not evenly distributed over them. This is also
the case for the negative set (see Supplementary Table S4 and
S5). Because of this imbalance, performances of different cat-
egories are different as already mentioned by Smedley et al.
for the ReMM score on the Mendelian data [29]. It is possi-
ble that our parSMURF parameter optimization will favor dif-
ferent categories because of the number of available positives
and the different imbalance between positives and negatives
across different genomic regions. To show that the optimiza-

https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Table 7. Summary of performance improvements obtained by parSMURF by tuning the learning parameters on the Mendelian dataset.
Results are averaged across 10 repetitions of the 10-fold cytoband-aware cross-validation. "AUROC avrg" and "AUPRC avrg'" are averaged
across the 10 folds; standard deviation in brackets. Columns 2 and 3 report AUROC and AUPRC metrics on the training set, columns 4 and

5 report the same metrics evaluated on the test set. Default parameters: nParts 100, fp 2, ratio 3, nTrees 10, mTry 5.

training AUROC mean (std)

0.99958 (0.00005)
0.99986 (0.00009)
0.99989 (0.00011)

Default parameters
Grid search
Bayesian optimizer

Table 8. Hyper-parameter space for Grid search and Bayesian Op-
timization used for auto-tuning parSMURF on the GWAS data set.

Grid-search Bayesian-opt.

nParts {10, 20, 30, 40} [10, 40]
fp {1,2,5,10} [1,10]
ratio {1,2, 5,10} [1,10]
k {5} {5}
nTrees | 110,20,50,100} [10,100]
mtry {30} {30}

tion is robust to this characteristic of the data we compared per-
formances on each genomic category before and after parame-
ter optimization. Variant categories have been defined through
Jannovar [54] using the RefSeq database.

Then we retrained and re-optimized the parameters on a
training set using cytoband-aware cross-validation, where all
categories have the same imbalance by subsampling negatives
to the smallest imbalance of the categories. More in detail, we
used the following strategy: (1) sub-sample the negatives to
the same imbalance in all categories. Mark the variant if it
is in this new subset; (2) partition the whole dataset into 10
folds as done previously; (3) for each training step select only
the previously marked variants of the 9 training folds; (4) sub-
sample the test set using the same categorization and ratios as
in (1). To take into account the variability between runs, we
repeated this process 10 times for the Mendelian dataset and
5 times for the GWAS dataset. Using this strategy both train-
ing and test sets are equally “per region balanced”, so that
category unbalance is kept under control and we can correctly
evaluate whether our approach may unnaturally inflate predic-
tions towards a specific region due to the original per-region
imbalance of both datasets.

Results are shown in Supplementary Figures S5 and S6: for
all variant categories we see a performance gain or similar per-
formance in parSMURF with respect to hyperSMURF for both the
Mendelian and GWAS data set, suggesting that parSMURF is
robust to the categorical composition of the variants. More-
over in the “per region balanced” setting AUPRC results are
systematically better with the Mendelian data set (Supplemen-
tary Figures S5) and quite always better or comparable with
the GWAS data (Figure S6). These experimental results show
that both hyperSMURF and parSMURF can properly handle dif-
ferent imbalances of variant categories, by using "smart" bal-
ancing techniques on the training set able to both balancing
and at the same time maintaining a large coverage of the avail-
able training data. The increase of performance of parSMURF
with respect to hyperSMURF is not driven by the under- or over-
representation of variants belonging to a particular region type,
but by its capacity of automatically fine-tuning the set of its
hyper-parameters, according to the given task at hand.

Analysis of the hyper-parameters

Since we adopted cross-validation techniques to estimate the
generalization performance of the models, we averaged the
best parameters values separately estimated for each fold, in
order to obtain a single set of optimal parameters. Tables S1
and S2 of the Supplementary Information show the sets of best

training AUPRC mean (std)

0.53143 (0.02714)
0.60023 (0.15977)
0.65388 (0.22123)

test AUROC mean (std)
0.99281 (0.00032)
0.98968 (0.00140)
0.99264 (0.00043)

test AUPRC mean (std)

0.42332 (0.00391)
0.47025 (0.00585)
0.46153 (0.00302)

hyper-parameters found by both the optimization techniques
with the Mendelian and GWAS datasets.

Of the 6 hyper-parameters, we noticed that nParts, fp and
ratio are the main factors that drive the performance improve-
ment. Fp and ratio hyper-parameters provide the rebalancing
of the classes. A larger fp value translates into a larger number
of positive examples generated through the SMOTE algorithm
(see Section Methods), thus reducing the imbalance between
positive and negative examples in the training set: Tables S1
and S2 of the Supplementary show that enlarging the ratio of
novel positive examples parSMURF improves results over hyper-
SMURF, and confirm that fine-tuned balancing techniques can
improve the results. The ratio hyper-parameter controls the ra-
tio between negative and positive examples of the training set.
Results in Tables S1 and S2 show that values larger than the de-
fault ones improve performance, since in this way we can both
reduce the imbalance between negatives and positives (for the
Mendelian data sets we move from 36000 : 1 to 10 : 1, and for
GWAS from 700 : 1to0 10 : 1), and at the same time we maintain
a relatively large coverage of the negative data (in each parti-
tion negative examples are sampled in such a way to obtain ten
negatives for each positive of the training set).

The results also show that a larger coverage of nega-
tive examples is obtained by incrementing the nParts hyper-
parameter, since by increasing the number of partitions, less
negatives are discarded. Moreover more random forests are
trained thus improving the generalization capabilities of the
hyper-ensemble. Finally, for the GWAS dataset, the mtry
hyper-parameter plays a fundamental role in the increment of
the performance, due to the high number of features of the
dataset. Overall, the analysis of the hyper-parameters con-
firms that their fine tuning is fundamental to improve the per-
formances of the hyper-ensemble.

In this paper we presented parSMURF, a High Performance Com-
puting tool for the prediction of pathogenic variants, designed
to deal with the issues related to the inference of accurate pre-
dictions with highly unbalanced datasets. We showed that hy-
perSMURF, despite its encouraging results with different ge-
nomic data sets, suffers from two major drawbacks: a very de-
manding computing time and the need of a proper fine tuning
of the learning parameters. The proposed parSMURF method
provides a solution for both problems, through two efficient
parallel implementations - parSMURF! and parSMURF" - that
scale well with respectively multi-core machines and multi-
node HPC cluster environments.

Results with synthetic datasets show that parSMURF scales
nicely with large data sets, introducing a sensible speed-up
with respect to the pure sequential version. Especially for large
data sets, as expected, we should prefer the hybrid MPI-multi-
thread version parSMURF", while for relatively smaller datasets
we can obtain a reasonable speed-up also with the pure multi-
thread version parSMURF! that can run also with a off-the-
shelf laptop or desktop computer, by exploiting the multi-core
architecture of modern computers.

https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Table 9. Summary of the performance improvements obtained by parSMURF by tuning its learning parameters with the GWAS Catalog
dataset. Results are averaged across 10 repetitions of the 10-fold cytoband-aware cross-validation. "AUROC avrg" and "AUPRC avrg" are
averaged across the 10 folds. Default par: nParts 100, fp 2, ratio 3, nTrees 10, mTry 5.

AUROC average

Default parameters 0.99426
Grid search 0.99459
Bayesian optimizer 0.99346

parSMURF features two different and both effective strate-
gies for the auto-tuning of the learning parameters: the first
is based on an exhaustive grid search which proves to be ef-
fective in finding the best combination of hyper-parameters
in terms of maximizing the AUPRC rating, but turns out to
be very computing intensive. The other strategy is Bayesian
optimization based and aims to find a near-optimal hyper-
parameter combination in a fraction of time compared to the
grid search strategy. Experimental results with Mendelian dis-
eases and GWAS hits in non-coding regulatory regions show
that parSMURF can enhance hyperSMURF performance, confirm-
ing that fine-tuning of learning hyper-parameters may lead to
significant improvements of the results.

The high level of parallelism of parSMURF, its autotuning
hyper-parameters capabilities and its easy-to-use software in-
terface allow the user to apply this tool to ranking and classi-
fication problems characterized by highly imbalanced big data.
This situation commonly rises up in Genomic Medicine prob-
lems, since only a small set of “positive” examples is usu-
ally available to train the learning machines. For this reason
parSMURF can be a useful tool not only for the prediction of
pathogenic variants, but also for any imbalanced ranking and
classification problem in Genomic Medicine, provided that suit-
able big data are available for the problem at hand.

Project name: ParSMURF

Project home page: https://github.com/AnacletoLAB/parSMURF
GitHub repository: https://github.com/AnacletoLAB/parSMURF
SciCrunch RRID: SCR_017560

Operating system(s): Linux

Programming language: C++, Python 2.7

Requirements for parSMURF!: Multi-core x86-64 processor,
512 MB RAM, C++ compiler supporting OpenMP standard.
Requirements for parSMURF": Multi-core x86-64 processor,
1024 MB RAM, implementation of MPI library (i.e. OpenMPI
or IntelMPI) installed on each node of the cluster, a reasonably
fast interconnecting infrastructure.

License: GNU General Public License v3

Datasets used for the assessment of scalability and prediction
quality are available at the following page of the Open Science
Foundation project: [55]. Supplementary Information with de-
tailed experimental results are downloadable from the Giga-
Science website.

AUPRC: Area Under the Precision-Recall Curve

AUROC: Area Under the Receiver-Operating-Characteristic
Curve

CADD: Combined Annotation-Dependant Depletion

AUROC stdev

AUPRC average | AUPRC stdev

0.00169 0.48058 0.07138
0.00174 0.72533 0.03616
0.00193 0.71945 0.03675

CV: Cross-Validation

FATHMM-MKL: Functional Analysis through Hidden Markov
Models and Multiple Kernel Learning

G/C content: Guanine-Cytosine content

gkm-SVM: Gapped k-mer Support Vector Machine
GWAS: Genome-Wide Association Study

GWAVA: Genome Wide Annotation of Variants

ML: Machine Learning

MPI: Message Passing Interface

NGS: Next Generation Sequencing

OpenMP: Open Multi-Processing

RF: Random Forest

SLURM: Simple Linux Utility for Resource Management
SMOTE: Synthetic Minority Over-Sample technique
SNV: Single Nucleotide Variants

UTR: Untraslated Region

The authors declare of having no competing interests.

G.V. thanks CINECA and Regione Lombardia for supporting the
projects “HyperGeV : Detection of Deleterious Genetic Variation
through Hyper-ensemble Methods” and "HPC-SoMuC: Devel-
opment of Innovative HPC Methods for the Detection of So-
matic Mutations in Cancer”. P.N.R. received support from the
National Institutes of Health (NIH), Monarch Initiative [OD
#5R240D011883]. G.G., M.M., M.R, and G.V. received sup-
port from the Universita degli Studi di Milano, project num-
ber 15983, titled “Discovering Patterns in Multi-Dimensional
Data". G.V., A.P., M.S. and M.R. received support form the
MIUR-DAAD Joint Mobility Program - “Developing machine
learning methods for the prioritization of regulatory variants
in human disease”, Prog. n. 33122.

All the authors contributed to this paper. Conceptualization
and methodology: A.P., G.V. Formal analysis: A.P., G.V., G.G,
M.F. Data Curation and Investigation: M.S., M.R., D.D. Soft-
ware: A.P., G.G. M.F. and L.C. Supervision: G.V., P.R. Valida-
tion: A.P., T.C. Funding acquisition: G.G., M.M., G.V. Writing -
Original Draft Preparation: G.V., A.P., M.M. Writing - Review
& Editing: all the authors.

1. Ashley EA. Towards precision medicine. Nature Reviews
Genetics 2016;17:507-522.

2. Fogel A, Kvedar JC. Artificial intelligence powers digital
medicine. Nature Digital Medicine 2018;1(1).

3. Leung MKK, Delong A, Alipanahi B, Frey BJ. Machine
Learning in Genomic Medicine: A Review of Computa-

https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

tional Problems and Data Sets. Proceedings of the IEEE
2016;104:176-197.

. Ward LD, Kellis M. Interpreting noncoding genetic varia-

tion in complex traits and human disease. Nature biotech-
nology 2012;30(11):1095.

. Veltman JA, Lupski JR, From genes to genomes in the clinic.

BioMed Central; 2015.

. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin

RM, Handsaker RE, et al. An integrated map of ge-
netic variation from 1,092 human genomes. Nature
2012 Nov;491(7422):56-65. http://dx.doi.org/10.1038/
naturel1632.

. Turnbull C, Scott RH, Thomas E, Jones L, Murugaesu N,

Pretty FB, et al. The 100 000 Genomes Project: bring-
ing whole genome sequencing to the NHS. BMJ 2018;361.
https://www.bmj.com/content/361/bmj.k1687.

. Nakagawa H, Fujita M. Whole genome sequencing anal-

ysis for cancer genomics and precision medicine. Cancer
Science 2018;109(3):513-522.

. Adams DR, Eng CM. Next-Generation Sequencing to

Diagnose Suspected Genetic Disorders.
2018;379:1353-62.

Kumar P, Henikoff S, Ng P. Predicting the effects of coding
non-synonymous variants on protein function using the
SIFT algorithm. Nat Protoc 2009;4(7):1073-81.

Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional
effect of human missense mutations using PolyPhen-2.
Current protocols in human genetics 2013;76(1):7-20.
Bendl J, Musil M, Stourac J, Zendulka J, Damborsky J, Bre-
zovsky J. PredictSNP2: A unified platform for accurately
evaluating SNP effects by exploiting the different char-
acteristics of variants in distinct genomic regions. PLOS
Computational Biology 2016;€100496.

Edwards SL, Beesley J, French JD, Dunning AM. Beyond
GWASs: illuminating the dark road from association to
function. American Journal of Human Genetics 2013;93
5:779-97.

Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shen-
dure J. A general framework for estimating the relative
pathogenicity of human genetic variants. Nat Genet 2014
Mar;46(3):310-315.

Rentzsch P, Witten D, Cooper G, Shendure J, Kircher
M. CADD: predicting the deleteriousness of variants
throughout the human genome. Nucleic Acids Res
2019;47(D1):D886-D89/.

Shihab HA, Rogers MF, Gough J, Mort M, Cooper DN, Day
IN, et al. An integrative approach to predicting the func-
tional effects of non-coding and coding sequence variation.
Bioinformatics 2015;31(10):1536-1543.

Quang D, Xie X, Chen Y. DANN: a deep learning approach
for annotating the pathogenicity of genetic variants. Bioin-
formatics 2014 10;31(5):761-763. https://dx.doi.org/10.
1093/bioinformatics/btu703.

Zhou J, Troyanskaya OG. Predicting effects of noncoding
variants with deep learning-based sequence model. Nature
Methods 2015 Aug;12(10):931-934. http://dx.doi.org/10.
1038/nmeth.3547.

Ionita-Laza I, McCallum K, Xu B, Buxbaum JD. A spec-
tral approach integrating functional genomic annotations
for coding and noncoding variants. Nat Genet 2016
Feb;48(2):214-20.

Huang YF, Gulko B, Siepel A. Fast, scalable prediction of
deleterious noncoding variants from functional and popu-
lation genomic data. Nature Genetics 2017;49:618-624.
Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL, McCallion
AS, et al. A method to predict the impact of regulatory vari-
ants from DNA sequence. Nature genetics 2015;47(8):955.
Zhou], Theesfeld CL, Yao K, Chen KM, Wong AK, Troy-

N Engl] Med

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

anskaya OG. Deep learning sequence-based ab initio pre-
diction of variant effects on expression and disease risk.
Nature Genetics 2018;50:1171-1179.

Rojano E, Seoane P, Ranea JAG, Perkins JR. Regulatory
variants: from detection to predicting impact. Briefings
in Bioinformatics 2018 06;(bby039).

Telenti A, Lippert C, Chang PC, DePristo M. Deep learning
of genomic variation and regulatory network data. Human
molecular genetics 2018;27(R1):R63-R71.

He H, Garcia E, et al. Learning from imbalanced data.
Knowledge and Data Engineering, IEEE Transactions on
2009;21(9):1263-1284.

Breiman L. Random forests.
2001;45(1):5-32.

Ritchie GRS, Dunham I, Zeggini E, Flicek P. Functional
annotation of noncoding sequence variants. Nat Meth-
ods 2014 Mar;11(3):294-296. http://dx.doi.org/10.1038/
nmeth.2832.

Caron B, Luo Y, Rausell A. NCBoost classifies pathogenic
non-coding variants in Mendelian diseases through super-
vised learning on purifying selection signals in humans.
Genome Biology 2019 Feb;20(1):32. https://doi.org/10.
1186/513059-019-1634-2.

Smedley D, Schubach M, Jacobsen JOB, Kohler S, Zemo-
jtel T, Spielmann M, et al. A Whole-Genome Analysis
Framework for Effective Identification of Pathogenic Regu-
latory Variants in Mendelian Disease. The American Jour-
nal of Human Genetics 2016 sep;99(3):595-606. http://
linkinghub.elsevier.com/retrieve/pii/S0002929716302786.
Schubach M, Re M, Robinson PN, Valentini G. Imbalance-
Aware Machine Learning for Predicting Rare and Common
Disease-Associated Non-Coding Variants. Scientific Re-
ports 2017;7(1):2959.

Dudley J, Shameer K, Kalari K, Tripathi L, Sowdhamini R.
Interpreting functional effects of coding variants: chal-
lenges in proteome-scale prediction, annotation and as-
sessment. Briefings in Bioinformatics 2015 10;17(5):841-
862.

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE:
Synthetic Minority Over-sampling Technique. J Artif Int
Res 2002 Jun;16(1):321-357.

Petrini A, Schubach M, Re M, Frasca, Mesiti M, Grossi G,
et al. Parameters tuning boosts hyperSMURF predictions
of rare deleterious non-coding genetic variants. Peer]
Preprints 2017;5(e3185v1).

Forum MP. MPI: A Message-Passing Interface Standard.
Knoxville, TN, USA; 1994.

Snoek J, Larochelle H, Adams RP. Practical Bayesian Opti-
mization of Machine Learning Algorithms. In: Proceedings
of the 25th International Conference on Neural Informa-
tion Processing Systems - Volume 2 NIPS’12, USA: Curran
Associates Inc.; 2012. p. 2951-2959.

Spearmint-lite Bayesian optimizer code repository; 2012.
accessed

Machine Learning

https://github.com/JasperSnoek/spearmint,
04/07/2019.

Marconi: the new Tier-o0 system at CINECA; 2018. https:
//www.cineca.it/en/content/marconi, accessed 04/07/2019.
parSMURF GitLab code repository; 2018. https://github.
com/AnacletoLAB/parSMURF, accessed 04/07/2019.

Paten B, Herrero J, Beal K, Fitzgerald S, Birney E.
Enredo and Pecan: genome-wide mammalian consistency-
based multiple alignment with paralogs. Genome Res
2008 Nov;18(11):1814-1828. http://dx.doi.org/10.1101/gr.
076554.108.

Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta
JP, Collins FS, et al. Potential etiologic and functional im-
plications of genome-wide association loci for human dis-
eases and traits. Proceedings of the National Academy of

http://dx.doi.org/10.1038/nature11632
http://dx.doi.org/10.1038/nature11632
https://www.bmj.com/content/361/bmj.k1687
https://dx.doi.org/10.1093/bioinformatics/btu703
https://dx.doi.org/10.1093/bioinformatics/btu703
http://dx.doi.org/10.1038/nmeth.3547
http://dx.doi.org/10.1038/nmeth.3547
http://dx.doi.org/10.1038/nmeth.2832
http://dx.doi.org/10.1038/nmeth.2832
https://doi.org/10.1186/s13059-019-1634-2
https://doi.org/10.1186/s13059-019-1634-2
http://linkinghub.elsevier.com/retrieve/pii/S0002929716302786
http://linkinghub.elsevier.com/retrieve/pii/S0002929716302786
https://github.com/JasperSnoek/spearmint
https://www.cineca.it/en/content/marconi
https://www.cineca.it/en/content/marconi
https://github.com/AnacletoLAB/parSMURF
https://github.com/AnacletoLAB/parSMURF
http://dx.doi.org/10.1101/gr.076554.108
http://dx.doi.org/10.1101/gr.076554.108
https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.18.994079; this version posted March 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Sciences 2009;106(23):9362-9367. http://www.pnas.org/
content/106/23/9362.

41. Grama A, Karypis G, Kumar V, Gupta A. Introduction to
Parallel Computing (2nd Edition). 2 ed. Addison Wesley;
2003.

42. Kang SJ, Lee SY, Lee KM. Performance comparison of
OpenMP, MPI, and MapReduce in practical problems. Ad-
vances in Multimedia 2015;2015:7.

43. Radenski A. Shared memory, message passing, and hybrid
merge sorts for standalone and clustered SMPs 2011;.

44. Aljabri M, Trinder PW. Performance comparison of
OpenMP and MPI for a concordance benchmark. In: Pro-
ceedings of the Saudi Scientific International Conference
2012, London, UK, 11-14 Oct 2012 London, UK: Saudi Scien-
tific International Conference; 2012.p. 22. http://eprints.
gla.ac.uk/78934/, accessed 07/15/2018.

45. Mallon DA, Taboada GL, Teijeiro C, Tourifio], Fraguela BB,
Goémez A, et al. Performance Evaluation of MPI, UPC and
OpenMP on Multicore Architectures. In: Ropo M, West-
erholm J, Dongarra J, editors. Recent Advances in Parallel
Virtual Machine and Message Passing Interface Springer
Berlin Heidelberg; 2009. p. 174-184.

46. Dorta I, Ledn C, Rodriguez C. A comparison between MPI
and OpenMP Branch-and-Bound Skeletons. In: High-
Level Parallel Programming Models andSupportive Envi-
ronments, 2003. Proceedings. Eighth International Work-
shop on IEEE; 2003. p. 66-73.

47. Jost G, Jin HQ, anMey D, Hatay FF. Comparing the OpenMP,
MPI, and hybrid programming paradigm on an SMP cluster
2003;.

48. Krawezik G. Performance comparison of MPI and three
OpenMP programming styles on shared memory multi-
processors. In: Proceedings of the fifteenth annual ACM
symposium on Parallel algorithms and architectures ACM;
2003. p. 118-127.

49. Luecke G, Weiss O, Kraeva M, Coyle J, Hoekstra J. Per-
formance Analysis of Pure MPI versus MPI+ OpenMP for
Jacobi Iteration and a 3D FFT on the Cray XT5. In: Cray
User Group 2010 Proceedings Citeseer; 2010. .

50. Davis J, Goadrich M. The Relationship Between Precision-
Recall and ROC Curves. In: Proceedings of the 23rd Inter-
national Conference on Machine Learning ICML ’06, New
York, NY, USA: ACM; 2006. p. 233-240.

51. Saito T, Rehmsmeier M. The precision-recall plot is
more informative than the ROC plot when evaluating
binary classifiers on imbalanced datasets. PLoS ONE
2015;10:€0118432.

52. for Biotechnology Information NC, Archive of com-
mon human variants in VCF format; 2018. ftp:
//ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/common _
all_20180418.vcf.gz, accessed 10/02/2019.

53. The 1000 Genomes Project Consortium. A global reference
for human genetic variation. Nature 2015;526:68-74.

54. Jager M, Wang K, Bauer S, Smedley D, Krawitz P, Robinson
PN. Jannovar: a java library for exome annotation. Human
mutation 2014;35 5:548-55.

55. Petrini A, Mesiti M, Schubach M, Frasca M, Danis D, Re
M, et al., Datasets used for the assessment of prediction
quality and scalability, hosted at the Open Science Founda-
tion project page; 2019. https://osf.io/m8e6z/?view_only=
e746468£88654f0c954bdbabee2f7c4d, accessed 04/10/2019.

http://www.pnas.org/content/106/23/9362
http://www.pnas.org/content/106/23/9362
http://eprints.gla.ac.uk/78934/
http://eprints.gla.ac.uk/78934/
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/common_all_20180418.vcf.gz
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/common_all_20180418.vcf.gz
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/common_all_20180418.vcf.gz
https://osf.io/m8e6z/?view_only=e746468f88654f0c954b4b4bee2f7c4d
https://osf.io/m8e6z/?view_only=e746468f88654f0c954b4b4bee2f7c4d
https://doi.org/10.1101/2020.03.18.994079
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Background
	Methods
	From hyperSMURF to parSMURF
	Multi-core parSMURF1
	Multi-node parSMURFn
	Architecture
	parSMURFn intercommunication
	Maximizing parSMURFn performance

	Hyper-parameters tuning

	Results and Discussion
	Datasets
	parSMURF scales nicely with synthetic & genomic data
	Speed-up and efficiency analysis with synthetic data
	Speed-up and efficiency analysis with genomic data

	Auto-tuning of learning parameters improves prediction of pathogenic non-coding variants
	Experimental set-up
	Improving predictions of pathogenic Mendelian variants
	Prediction performances of parSMURF with an independent Mendelian test set
	Improving predictions of GWAS hits
	Assessment of the effect on prediction performance of the variants imbalance across regulatory regions.
	Analysis of the hyper-parameters

	Conclusion
	Availability of source code and requirements
	Availability of supporting data and materials
	Declarations
	List of abbreviations
	Competing Interests
	Funding
	Author's Contributions

