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Abstract 

 
Monoclonal antibodies (mAbs) are essential tools in the contemporary therapeutic armoury. 
Understanding how these recognize their antigen is a fundamental step in their rational design and 
engineering. The rising amount of publicly available data is catalysing the development of 
computational approaches able to offer valuable, faster and cheaper alternatives to classical 
experimental methodologies used for the study of antibody-antigen complexes. 
Here we present proABC-2, an update of the original random-forest antibody paratope predictor, 
based on a convolutional neural network algorithm. We also demonstrate how the predictions can be 
fruitfully used to drive the docking in HADDOCK.  
The proABC-2 server is freely available at: https://bianca.science.uu.nl/proabc2/. 
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1. Introduction  

Monoclonal antibodies (mAbs) are now well established in the contemporary therapeutic repertoire. 
Indeed, in 2018, 12 antibodies were granted first approval by either the European Medicines Agency 
(EMA) or by the Food and Drug Administration (FDA) while about 570 are undergoing clinical 
development at various stages (Kaplon and Reichert, 2019). The reasons behind the increasingly 
consolidated use of mAbs as therapeutics should be sought in their high affinity and specificity toward 
their cognate antigen and their modular architecture which facilitates their engineering (Chames et 
al., 2009). Understanding the fundamentals of antibody-antigen interactions is a critical step for the 
rational design and engineering of immunoglobulins. Since classical experimental approaches used 
to characterize antibodies (e.g. NMR, x-ray, mass spectrometry) are often expensive and time 
consuming, computational tools offer valuable and complementary approaches which can provide 
information at different levels (sequence and/or structural) (Norman et al., 2019).  
To this end, we previously reported a method named proABC (Olimpieri et al., 2013) that can predict 
antibody residues forming intermolecular contacts with the cognate antigen, as well as the nature of 
their contacts, distinguishing between hydrogen bonds and hydrophobic interactions. proABC is 
based on a random forest algorithm, using the antibody heavy and light chain sequences, the 
hypervariable loop canonical structures and lengths (Chothia and Lesk, 1987) and the germline family 
as features (Schatz and Swanson, 2011). Its performance has been validated by us (Olimpieri et al., 
2013) and others (Peng et al., 2014) demonstrating good accuracy and reliability.  
Here we present proABC-2, an update of the original algorithm, using the same set of features, but 
based on a deep learning framework shown to be successful in achieving similar goals (Liberis et al., 
2018; Deac et al., 2019). Furthermore, we show how the proABC-2 predictions can be used to drive 
the modelling of antibody-antigen complexes using the information-driven docking approach 
HADDOCK (Van Zundert et al., 2016), which was recently demonstrated to be the best option of the 
compared methods for antibody-antigen modelling (Ambrosetti et al., 2020). proABC-2 is integrated 
in a freely available web server that predicts paratope residues forming general contacts as well as 
those involved in hydrogen bonds and hydrophobic interactions.  
 
2. Methods 

2.1. Dataset 

The full protein data bank (PDB) was scanned using in-house Hidden Markov Models (HMM) in 
order to identify all the antibody structures deposited. Immunoglobulins having only one chain 
(nanobodies), a resolution higher than 3Å or not solved with an antigen were excluded. Finally, using 
cd-hit (Fu et al., 2012) all the antibodies sharing a sequence identity higher than 95% with any other 
immunoglobulin of the dataset were removed.  
We ended up with a dataset of 769 complexes (CNN-dataset) which was used to train the model.  
For the docking studies a dataset of 16 complexes, all with available unbound structures, 
corresponding to the new antibody-antigen entries of the protein-protein benchmark version 5.0 was 
used (Vreven et al., 2015).  
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Moreover, for a fair comparison with Parapred, the same structures used to train it (Parapred-set) 
have been used to train proABC-2.  

2.2. Interaction calculation 

For all the complexes of the CNN-dataset, the non-covalent interactions including intermolecular 
hydrogen bonds and hydrophobic interactions were calculated. Non-covalent interactions were 
determined using a distance cut-off of 3.9Å. Hydrogen bonds were calculated by defining donors (D) 
as any N/O/F/S connected to a hydrogen atom and acceptors (A) as any N/O/F/S within a distance 
threshold (2.5Å) of that hydrogen and by filtering the matches for D-H-A triplets with a minimum 
angle of 120 degrees (Baker and Hubbard, 1984). Finally, hydrophobic interactions were computed 
using a distance cut-off of 4.4Å between any heavy atom of two hydrophobic residues (Bissantz et 
al., 2010).   
General contacts were calculated using an in-house R script while H-bond and hydrophobic 
interactions were determined using interfacea (Rodrigues et al., 2019). 

2.3. Neural network features  

In order to train the CNN a specific set of features was used:  

1. Light and heavy chain sequences aligned using HMM profiles. In particular for the H3 
alignment insertions were positioned in the middle between the two conserved residues Cys92 
and Gly104 according to the previously described method (Morea et al., 1998). Each sequence 
position was considered as a variable. To allow the textual information of a sequence to be 
processed by an algorithm, each residue was converted into numerical values using one-hot 
encoding, the representation of categorical variables (i.e. a residue) as binary vectors. Here, a 
20x1 vector has been used consisting of all zeros except at the index of the given residue, 
which was marked with a 1. Concurrent, a 20x1 vector of only zeros represented a gap. The 
heavy and light chains were represented by a 297x20 array. 

2. Hypervariable loops canonical structures calculated according to the key residues found 
within and outside the loops (Chothia and Lesk, 1987; Vargas-Madrazo and Paz-García, 2002; 
Morea et al., 1998). One-hot encoding was used.  

3. Length of the hypervariable loops defined according to the Chothia numbering scheme. 

4. Germline family and source organism determined using igblastp (Ye et al., 2013). One-hot 

encoding was used. 
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2.4. Convolutional Neural Network (CNN) 

The neural network used by proABC-2 consists of three convolutional modules (Conv11, Conv12 
and Conv2), a fully connected feed-forward module (Ff1) and an output layer (Figure S1). Conv11 
and Conv12 are identical and consist of three parts; a 1D convolutional layer with 32 filters of size 
3x1 and a stride of 1, followed by a 1D max pooling layer of size 10x1 and a stride of 3 and finally a 
dropout layer with a dropout rate of 0.15. Conv2 also consists of three parts; a 1D convolutional layer 
with 64 filters of size 3x1 and a stride of 1, followed by a 1D average pooling layer of size 6x1 and a 
stride of 3 and finally a dropout layer with a dropout rate of 0.15. Ff1 consists of a fully connected 
layer with 512 nodes followed by a dropout layer with a dropout rate of 0.10. The final output layer 
has for each of the 297 residues 3 nodes, predicting the general interactions, H-bonds and 
hydrophobic interactions, amounting to 891 nodes. The model was constructed using the python 
package Tensorflow (Abadi et al., 2016). 
These modules are combined in the following way. The one-hot encoded heavy and light chains are 
connected to Conv11 and Conv12 respectively. The extracted features of the heavy and light chains 
are then concatenated and enter Conv2 for a deeper feature extraction. The final extracted features 
from Conv2 are then flattened (reduced to one dimension) and concatenated with the additional 
features (germline, loop lengths and canonical structures) before entering Ff1 and finally into the 
output nodes. The purpose of Ff1 is to learn each individual residue’s role in the paratope based on 
the extracted features and the additional ones. The architecture is shown in Figure S1. The network 
was optimized with a focal loss (Lin et al., 2017) and a stochastic gradient descent (SGD) optimizer. 
The learning rate followed a one-cycle learning rate policy (Smith and Topin, 2017) with a max 
learning rate of 0.5, a minimum learning rate of 0.1% of the max one and maximum momentum of 
0.9. Exponential Linear Units (ELU) were used as activation functions for Conv11, Conv12, Conv2 
and Ff1, and sigmoid on the final output. Dropout (Srivastava et al., 2014) and early stopping 
(Prechelt, 1998) were used throughout training as regularization techniques. All hyperparameters (i.e. 
nodes, filter sizes, dropout rate etc.) mentioned above were found empirically. 
 

 
 

Figure 1: The CNN architecture implemented in the proABC-2 method 
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2.5. Model evaluation 

The evaluation of the model has been performed using 10-fold nested cross validation on the full 
CNN-set (769 complexes).  The performance was measured taking into account three different 
metrics: area under the Receiver Operating Characteristic curve (AUC), Matthew Correlation 
Coefficient (MCC) and F-score. MCC and F-score were calculated using a threshold of 0.40, 0.30 
and 0.30, respectively for Pt, Hy and Hb.  
These cut-offs were selected by averaging the thresholds that for each fold of the cross validation 
gave the best MCC.  

2.6. Docking scenarios and settings 

To assess the impact of the proABC-2 predictions on HADDOCK’s docking performance the 
following docking scenarios were evaluated:  

1. Pred Para – Surf: No previous information about the epitope is provided to HADDOCK. The 
docking was performed by using the residues predicted to be in contact by proABC-2, defined 
as active, and the antigen residues having a relative accessible surface areas (RSA) ≥ 40% 
calculated with NACCESS (Hubbard SJ, 1993), provided as passive. Default docking settings 
were used except for the sampling that was increased to 10000, 400, 400 for it0, it1 and water 
respectively.    

2. Pred Para – Epi 9: In this case we use a loose definition of the epitope region by selecting all 
the antigen residues within a 9Å distance from the antibody in the reference structure. We 
provide to HADDOCK the residues predicted by proABC-2 as active and the defined antigen 
residues as passive. Default docking settings were used except for the sampling that was 
increased to 5000, 400, 400 for it0, it1 and water respectively.   

The antibody structures were renumbered with an in-house R script using a consecutive numbering 
as HADDOCK is not able to deal with the insertion format of the Chothia scheme.  

2.7. Docking evaluation criteria 

Docking performance was evaluated by classifying the models into 3 classes: high (***), medium 
(**) of low (*) quality defined according to the CAPRI criteria (Janin et al., 2003; Méndez et al., 
2003) (see Table S2). We calculated the interface root mean square deviation (i-RMSD), the ligand 
root mean square deviation (L-RMSD) and the fraction of native contacts (Fnat) as already reported 
(Méndez et al., 2003). Briefly, the i-RMSD is calculated on the interface residues backbone atoms 
defined on the native structure using a 10Å cut-off, the L-RMSD is calculated by superimposing on 
the antibody backbone atoms and calculating the RMSD on the antigen ones. Finally, Fnat is calculated 
as the number of native contacts in a docking model divided by the total number of contacts in the 
reference structure.  These are defined using a 5Å cut-off. 
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Fnat  has been calculated using in-house scripts while fitting and RMSD calculations were performed 
using the McLachlan algorithm (McLachlan, 1982) as implemented in the program ProFit 
(http://www.bioinf.org.uk/software/profit/) from the SBGrid distribution (Morin et al., 2013). 
 

Table 1: Classification of docking models in the classes: ***, **, * 
according to Fnat, and either L-RMSD or i-RMSD measures. 

Class Fnat L-RMSD[Å] i-RMSD[Å] 

High (***) � 0.5 ≤ 1.0 or ≤ 1.0 

Medium (**) � 0.3 ≤ 5.0 or ≤ 2.0 

Acceptable (*) � 0.1 ≤ 10.0 or ≤ 4.0 

 
3. Results 

3.1. proABC-2 performance 

The prediction performance of proABC-2 was measured, after a 10-fold nested cross-validation, in 
terms of AUC, MCC and F-score values for all the general interactions of the paratope (Pt), 
hydrophobic interactions (Hy) and for hydrogen bonds (Hb). The highest performance is obtained for 
Pt (0.96, 0.57 and 0.59 respectively for AUC, MCC and F-score) and decreases for Hy (0.95, 0.44 
and 0.41) and Hb (0.94, 0.33 and 0.27). This is due to the smaller number of Hb and Hy interactions 
in the training set compared to the general (Pt) ones.  
 

3.2. Comparison with Parapred 

For a fair comparison proABC-2 was trained on the Parapred-set and the AUC, MCC and F-score 
were calculated on the same residues used by Parapred to make the predictions (CDRs defined 
according to the Chothia numbering scheme plus two extra residues at both ends) after a 10-fold 
nested cross validation. For proABC-2 the MCC and F-score were calculated using a threshold of 
0.37 (determined as explained in paragraph 2.5 of the Method section), while the values from the 
work of  Liberis et al. (Liberis et al., 2018) are reported for Parapred. The results in Table 1 show 
that proABC-2 outperforms Parapred in terms of AUC and MCC but has a lower performance in 
terms of F-score.  
 

Table 2: Performance comparison between Parapred and proABC-2 

Method AUC MCC F-score 

proABC-2 0.91 0.56 0.62 

Parapred 0.88 0.55 0.69 
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3.3. Prediction-driven docking accuracy 

We investigated whether the predictions obtained from proABC-2 can be used to drive antibody-
antigen docking using the HADDOCK 2.2 webserver (Van Zundert et al., 2016). For unbiased 
predictions, the model was trained excluding all sequences sharing ≥95% sequence identity with any 
structure used for docking. Only residues predicted as Pt were used for docking (using a 0.40 cutoff). 
The results were compared to a previous study performed using the hypervariable loops (Ambrosetti 
et al., 2020)(see Figures 2 and 3).  The performance was evaluated in terms of success rate defined 
as the number of complexes for which at least one acceptable, medium or high-quality complex was 
found in the top 1, 5, 10, 20, 50 and 100 ranked models. Figure 2 shows the results of the docking 
obtained by providing to the algorithm all solvent accessible residues of the antigen and either the 
antibody hypervariable loops (HV-Surf) or the proABC-2 predictions (Pt) (Pred-Surf). The HV-Surf 
docking led to slightly better results for the top 1,5 and 10 with 25.0%, 31.2% and 31.2% success 
rates respectively, compared to 18.7%, 25.0% and 25.0% for Pred-Surf. The proABC-2 predictions 
give better results for the top 50 and 100 (50% and 62.5% success rates, respectively). Thus, even if 
HADDOCK is able to generate correct models, the scoring is not able to rank them in the top. As for 
the quality of the docking models, using the HV loop leads to better quality models overall. 
Figure 3 shows the results of the docking obtained by providing to the algorithm a loose definition of 
the epitope following the definition given in (Ambrosetti et al., 2020). In this scenario, the proABC-
2 predictions led to a remarkable improvement of the Top1 success rate from 43.8% (using HV) to 
62.5%. In general, the use of the proABC-2 predictions resulted in an improvement of the quality of 
the generated models, mainly reflected in the number of medium quality ones.   
 

 
Figure 2: HADDOCK success rate as a function of the top 1, 5, 10, 20, 50 and 100 ranked models. The top row (HV - 
Surf) shows the success rate using the antibody HV loops and the entire antigen surface as restraints. The second 
represents the success rate achieved by driving the docking with the proABC-2 predictions and the full surface of the 
antigen. The colour coding indicates the quality of the models according to CAPRI criteria. 
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Figure 3: HADDOCK success rate as a function of the top 1, 5, 10, 20, 50 and 100 ranked models. The top row (HV – 
Epi 9) shows the success rate using the antibody HV loops and a loose definition of the epitope using a 9Å cut-off. The 
second represents the success rate achieved by driving the docking with the proABC-2 predictions and the same definition 
for the epitope on the antigen. The colour coding indicates the quality of the models according to CAPRI criteria. 

3.4. Web server 

proABC-2 is freely available as a web server at https://bianca.science.uu.nl/proabc2. It only requires 
the sequences of the heavy and light chains. The input is processed to calculate all of the sequence-
derived features (germline, canonical structures and length of the HV loops) and these are passed to 
the CNN to make the predictions. The computation only takes a few seconds. The results page reports 
in a bar plot the residue probabilities of making a general, H-bond and hydrophobic interactions (see 
Figure 4). Two files (for the heavy and light chains) are provided as output, containing for each 
residue the different probabilities. 
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Figure 4: Output page of the proABC-2 web server (https://wenmr.science.uu.nl/proabc2/). It shows the interaction 

probability of the antibody residues belonging to the heavy and light chain. 

4. Conclusions   

proABC-2 is based on a deep learning framework and shows a high performance with an AUC of 
0.96 and an MCC of 0.57. Its predictions should be useful for antibody design such as in silico affinity 
maturation or humanization. We also demonstrated how these predictions can guide molecular 
docking, showing in particular that if a loose definition of the epitope region is provided, the proABC-
2 predictions leads to improvements of both success rate and quality of the docked models. This 
suggests that different strategies might be followed depending on the available information about the 
epitope. To our knowledge proABC-2 is the only available method, specifically designed for 
antibodies, able to predict the paratope residues along with the type of interaction. The method is 
freely available as a web server and provides a straightforward user-friendly interface.  
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