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Abstract 

Background: Precision medicine approaches aim to tackle diseases on an individual 

level through molecular profiling. Despite the growing knowledge about diseases and 

the reported diversity of molecular phenotypes, the descriptions of human health on an 

individual level have been far less elaborate.  

Methods: To provide insights into the longitudinal protein signatures of well-being, we 

profiled blood plasma collected over one year from 101 clinically healthy individuals 

using multiplexed antibody assays. After applying an antibody validation scheme, we 

utilized > 700 protein profiles for in-depth analyses of the individuals’ short-term health 

trajectories. 

Findings: We found signatures of circulating proteomes to be highly individual-

specific. Considering technical and longitudinal variability, we observed both stable 

and fluctuating proteins in the circulation, as well as networks of proteins that covaried 

over time. For each participant, there were unique protein profiles and some of these 

could be explained by associations to genetic variants.  

Interpretation: This study demonstrates that there was noticeable diversity among 

clinically healthy subjects, and facets of individual-specific signatures emerged by 

monitoring the variability of the circulating proteomes over time. Longitudinal 

profiling of circulating proteomes has the potential to enable a more personal hence 

precise assessment of health states, and thereby provide a valuable component of 

precision medicine approaches. 

Funding: This work was supported by the Erling Persson Foundation for the KTH 

Centre for Precision Medicine and the Swedish Heart and Lung Foundation for the 

SCAPIS project. We also acknowledge the Knut and Alice Wallenberg Foundation for 

funding the Human Protein Atlas project, Science for Life Laboratory for Plasma 

Profiling Facility, and the Swedish Research Council (Grant no 2017-00641).  
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Introduction 

Human blood serves as a minimally-invasive source to gain insights about different 

physiological processes by studying the transcriptome, proteome, or metabolome. Just 

recently multi-omics studies have emerged to also determine longitudinal profiles of 

human health and disease [1-3]. Regular monitoring of molecular markers holds the 

promise to identify perturbations affecting an individual’s baseline levels and follow 

these changes as a healthy system transitions into a disease state [4]. However, 

longitudinal studies of clinically healthy subjects remain sparse and limited to certain 

technologies and analytes. 

The blood proteome, consisting of both cellular and soluble proteins, has received a 

revived interest due to advances in protein technologies. This includes mass cytometry 

[5] to study immune systems, as well as mass spectrometry [6] and affinity assays [7] 

for profiling serum or plasma. For the circulating plasma proteome, nearly 5,000 

proteins have this far been detected when combing discoveries from all assays and 

technologies [8]. Surprisingly, only 730 proteins are predicted to be actively secreted 

into the circulation [9], attributing many of the currently detected proteins to cellular 

leakage that may possibly occur during sample preparation [10]. Even though highly 

multiplexed assays have enabled large scale assessment of pre-symptomatic health 

states [3], additional investigations will complement our molecular description and 

understanding of the facets of health in healthy individuals.  

Here, we used an affinity-based proteomics approach [11] to explore the longitudinal 

profiles of circulating proteins from 101 clinically healthy individuals selected from the 

Swedish SCAPIS cohort [12], who donated blood four times during one year. The 

objective of this study was to capture the signatures and variability of personal plasma 

proteomes at baseline and follow these proteins over one year. 
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Research in context 
Evidence before this study 

Proteins circulate the human blood and their analysis can provide important information 

about health or disease states of an individual. Today, many studies focus on finding 

proteins related to diseases or specific conditions even though our knowledge about if 

and why proteins differ between individuals, which protein levels vary over time, and 

how protein profiles appear in clinically-healthy persons is still limited. 

Added value of this study 

Here, we used multiplexed immunoassays to study a large number proteins circulating 

in plasma of 101 clinically healthy and well characterized individuals over one year. 

We found a substantial individuality in the protein profiles between the participants, 

which for some of the proteins could be explained by genetic variants. Our analysis 

also showed that protein profiles varied among the participants over time, which 

indicated that a variety of short-term as well as continuous changes can occur even in 

healthy people. 

Implications of all the available evidence.  

Our findings add to the understanding of molecular signatures of human health and 

provide important information for studies aiming at finding common protein 

biomarkers for diseases. Together with evidence from other studies, it appears 

necessary to consider the diversity, individuality, and variability over time as critical 

aspects of molecular signatures that aid to advance precision medicine. 
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Materials and methods 

Wellness samples 

The Swedish SciLifeLab SCAPIS Wellness Profiling (S3WP) program consists of 101 

individuals recruited from the Swedish CArdioPulmonary bioImage Study (SCAPIS), 

an ongoing prospective observational study [12]. SCAPIS includes 30,154 individuals 

between 50-65 years that have been randomly selected from the general Swedish 

population and invited to join the study. All individuals are extensively phenotyped 

prior to entering the S3WP program. The S3WP study is non-interventional and 

observational with the aim of collecting longitudinal clinical traits and molecular omics 

data for all 101 participants. Primary exclusion criteria in SW3P are; 1) previously 

received health care for myocardial infarction, stroke, peripheral artery disease or 

diabetes, 2) presence of any clinically significant disease that may interfere with the 

results or the subject´s ability to participate in the study, 3) any major surgical 

procedure or trauma within four weeks of the first study visit, or 4) medication for 

hypertension or hyperlipidemia. During 2015-2016, the 101 subjects in SW3P visited 

the clinic every three months, four times in total. In 2016-2018, 97 subjects continued 

to visit the clinic two additional times with a gap of six months between appointments. 

Each visit included the measurement of body weight, waist and hip circumference, body 

fat using bioimpedance (Tanita MC-780MA), and blood pressure. Changes in health 

and life-style was recorded at each visit with a questionnaire covering factors such as 

diseases, infections, medication, exercise level, and personal perception of health. All 

101 subjects were instructed to fast overnight (at least 8 hours) before the collection of 

blood, urine and feces. Human EDTA plasma samples were transferred on dry ice to 

SciLifeLab and stored at -80°C upon arrival. Clinical and demographic characteristics 

are presented in Table S5 and Table S6. Genome analysis is described in the 

Supplementary. The study was performed in accordance with the declaration of 

Helsinki and the study protocol was approved by the Ethical Review Board of 

Göteborg, Sweden (Regionala etikprövnignsnämnden, Gothenburg, Dnr 407-15, 2015-

06-25).  
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TwinGene samples  

In the present study, serum samples from a set of 3,000 individuals from the TwinGene 

study [13] were used for validation purposes. The details about the study, the sample 

selection criteria and randomization, the plasma protein profiling and genome analysis 

of the samples are described in the Supplementary as well as by Hong et al [14]. The 

TwinGene study was approved by the Ethical Review Board (Regionala 

Etikprövningsnämnden, Stockholm, Dnr 2007/644-31). 

Sample preparation 

Crude EDTA plasma was stored at -80°C. Prior to aliquotation, samples were 

transferred to -20° overnight, thawed at 4°C and then vortexed and centrifuged (3,000 

rpm for 2 minutes). Using a liquid handling robot (EVO150, TECAN), samples were 

randomized across 96-well microtiter plates. Protein labeling was performed with 

biotin, as previously described by Drobin et al [11]. Briefly, EDTA plasma was diluted 

~1:10 in PBS and biotinylated with NHS-PEG4-Biotin (Pierce) dissolved in DMSO. 

Following 2 h incubation at 4°C, the reaction was quenched with Tris-HCl 0.5 M, pH 

8.0. Prior to analysis, a small version of a protein profiling test was performed to 

confirm successful biotinylation. Labeled plasma was stored at -20°C until analysis. 

Antibody suspension bead array assays  

We used a total of 1,450 antibodies raised against 896 unique protein targets, including 

1,285 antibodies from the Human Protein Atlas (HPA) project [15], 72 mouse 

monoclonal antibodies (BioSystems International Kft) and 93 antibodies from other 

commercial vendor (Supplementary Data file S1). Each Suspension bead array (SBA) 

was assembled by covalently coupling antibodies to magnetic and color-coded 

MagPlex beads (Luminex Corp.) and mixing these beads to create the arrays. The 

procedures for antibody coupling and bead mixing can be found in Supplementary 

Methods and together with the following protocol for plasma profiling have been 

described by Drobin et al [11]. Briefly, 5 µl of the beads from one SBA was aliquoted 

into each of the wells of 384-well microtiter plates. Biotinylated plasma was diluted 

1:50 in PVXC buffer, supplemented with 0.5 mg/ml purified rabbit IgG (Bethyl 

laboratories) and then heated at 56°C for 30 minutes. Forty-five microliters plasma was 

transferred to the bead plate and incubated with the beads overnight, during which time 
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the antibodies bind their corresponding antigen in the sample. Low-affinity complexes 

and unbound proteins were removed in consecutive washing steps with PBS-T 0.05% 

(EL406 washer, BioTek). Beads were incubated for 10 minutes with 0.4% 

paraformaldehyde, washed, and then incubated for 20 minutes with R-phycoerythrin-

labeled streptavidin 1:750 (Invitrogen). Lastly, the beads were washed and fluorescent 

signal from binding events were detected with a FlexMap 3D instrument (Luminex 

Corp.). Signal intensities reported as Median Fluorescent Intensity (MFI) were 

exported from the software xPONENT (Luminex Corp.) and at least 32 events per bead 

ID were used for data processing. As described in the Supplementary, a subset of 

antibodies was selected for statistical analyses based on performance in the SBA assay 

and orthogonal proteomics approaches including sandwich assays, mass spectrometry 

and proximity extension assays (Table S7 and Supplementary Data file S3).  

Statistical analysis 

Data analysis and visualizations were performed using the statistical software R version 

3.6.0 [16] as described below, with details provided in the Supplementary. All statistical 

and technical evaluations were performed using log-transformed MFI unless otherwise 

stated. To account for plate and batch effects, AbsPQN with Multi-MA normalization 

was applied by 96-well microtiter plate (Fig. S11). Spearman's rho statistic was used 

for estimating the correlation between variables, unless otherwise specified. Manhattan 

plots were drawn by using qqman package (v 0.1.4). For the seasonal association 

analysis, a model for regular cyclic movements across time was fitted to each protein 

profile. UMAP analysis was performed on centered and scaled SBA data using the R 

package umap. As UMAP has several hyperparameters that can influence the resulting 

embedding, we compared if results were conserved with Euclidian distance while 

varying the set seed, n_neighbors and min_dist parameters, as exemplified in Fig. 4 

with n_neighbors = 10 and min_dist = 0.25. Inter-class correlations were calculated 

with the R function ICC() from the psych package using ICC(3, 1) levels as output. 

Association between protein profiles and clinical traits was tested by linear-mixed 

models using the R package lmerTest [17] and visualized with the circlize package [18]. 

Protein profiles were standardized to z-scores and applying a linear model, three 

variables; intercept, slope and sum of residuals (absolute value) were calculated over 

time for each individual and protein. Protein modules were defined using the WGCNA 

v. 1.66 [19, 20] as described in further detail in the Supplementary.   
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Results 

Study overview 

We delineated the longitudinal characteristics of proteome profiles in a Wellness 

profiling cohort (denoted S3WP) of 101 individuals who donated plasma samples at 

four visits during one year (Fig. 1). With our antibody bead array data, we performed a 

series of data analyses on clinical, longitudinal, network and genetic aspects in order to 

capture the inter-individual diversity and longitudinal variability in the circulating 

proteomes. Further details about the experimental design can be found as 

Supplementary Information. 

Annotation of antibody-derived protein profiles 

First, we selected the most reliable antibodies from the initial set of 1,450 antibodies 

targeting nearly 900 unique proteins (Supplementary Data file S1, Fig. S1). As 

described in the Supplementary in further detail, applying a combination of validation 

criteria led to the selection of 734 protein profiles (Table S1, Table S2, and Table S3). 

This assessment included the use of genome wide association studies (GWASs) to 

identify single nucleotide polymorphisms (SNPs) in the protein-encoding regions of the 

target genes (Table 1 and Table S4). In summary, we annotated the 1,450 antibodies 

included in the assays and selected 734 unique protein features for further 

investigations. 

Clinical associations of circulating proteins  

First, we referenced the 734 protein profiles to the clinical traits measured with 

standardized clinical tests, BMI and smoking habits. Applying linear-mixed effect 

models, we identified statistically significant protein-trait associations (FDR P ≤ 

0·001). As shown in Fig. 2 and Fig. S2, these associations were enriched for traits like 

triglycerides (TG) (n = 42), CRP (n = 32), apolipoprotein B (ApoB) (n = 21), total 

cholesterol (Chol) (n = 19), low-density lipoprotein (LDL) (n = 28), and the ratio of 

ApoB/apolipoprotein A1 (ApoB/ApoA1) (n = 13). As expected, strong associations 

were seen between clinical and proteomic CRP (FDR P = 3·47 × 10-160) and ApoB 

(FDR P = 3·90 × 10-25). We discovered other strong associations that included 

TNFRSF1B and DAPK1 with TG (FDR P = 3·01 × 10-55 and P = 5·21 × 10-48). Other 
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top associations for the clinical traits (FDR P < 1 × 10-3) were for BLVRB to hematocrit 

(Hct); THBS1 to platelet count (Plt); S100A9 to the count of white blood cells (WBC) 

and neutrophils (Neut); SAA and FGL1 to CRP; LEP to BMI; ANGPTL3 to ApoA1; 

RARRES2 to cystatin C (CystC); CCL16 to of gamma-glutamyl transferase (GGT); 

and IGFBP2 to levels of N-terminal pro B-type natriuretic peptide (NTproBNP). This 

showed that a variety of expected associations were replicated in our proteomics 

approach, many related to secreted proteins, and that associations to the traits related to 

inflammation and lipid metabolism were most prominent.  

Assessment of longitudinal protein profiles 

To capture longitudinal changes across the four consecutive visits, we investigated the 

reproducibility of protein measurements across repeated assays (Fig. 1). We performed 

inter-assay correlations of the protein levels (“technical variability”) and compared 

these to inter-visit correlations (“longitudinal variability”). Intraclass correlations (ICC) 

were computed for both measures and allowed us to consider the technical variability 

when judging the longitudinal variability. Protein profiles with ICC ≥ 0.8 were defined 

as technically consistent and/or longitudinally stable. Out of all protein targets, 61% 

(447/734) revealed a high technical stability and 58% (428/734) were stable 

longitudinally. A total of 49% (359/734) of all proteins could be measured with a high 

precision when including both the inter-visit and inter-assay ICC ≥ 0.8. Reassuringly, 

the distribution of ICCs obtained from the proteomics approach was similar to the 

values obtained from the clinical tests (Fig. S4A, Table S5, Table S6).  

The most consistently measured and longitudinally least variable protein was CD5 

molecule like (CD5L, inter-visit ICC = 0.97) as exemplified by its technical and 

longitudinal profiles shown in Fig. 3A and Fig. S4B. On the other end, Caldesmon 1 

(CALD1) was one of the proteins with high technical precision (inter-assay ICC = 0.88) 

but also a high variation between consecutively collected samples (inter-visit ICC = 

0.32), as shown in Fig. 3B and Fig. S4C. This aligns with our previous findings of 

CALD1 being susceptible to conditions related to plasma preparation [21]. In summary, 

we found that ~50% of the proteins were measured with high precision and low 

longitudinal variability in blood plasma throughout one year. An additional analysis of 

seasonal effects on the plasma proteome, see Fig. S5A-C and Supplementary for details, 

only found levels of FLNA and BLVRB to fluctuate with season (FDR P < 0·01). 
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Global analysis of protein profiles 

Next, we investigated if the combination of protein profiles contributed to personal 

plasma proteomes signatures. We used Uniform Manifold Approximation and 

Projection (UMAP) [22] to compress the data from all 101 samples and 734 proteins 

into two dimensions (Fig. 4). Each subject clustered predominantly with itself across 

all four visits. This implied that the plasma proteome signatures were diverse and 

composed of unique combinations of protein profiles for each individual participant. 

Computing the individual longitudinal variability per participants revealed ICCs = 0.99 

± 0.005 (mean ± SD). This highlights the existence of a stable and person-specific 

proteome signature, but also suggests that there is a considerable diversity in the 

circulating proteomes between clinically healthy subjects.  

Longitudinal co-regulation of plasma proteins  

In addition to investigating each protein individually, we explored if there were 

longitudinal networks of co-varying protein profiles. We used weighted gene co-

expression network analysis (WGCNA) to define, annotate and analyze modules of co-

regulated and interconnected protein profiles (see Supplementary material for details).  

Computed for each visit, WGCNA resulted in eight mega modules (Fig. S6) and each 

mega module contained 11-242 proteins. We then tracked the mega module 

membership across all visits to create a map of the longitudinally patterns of conserved 

“core modules” (Fig. S7). From the eight mega modules per visit, we created core 

modules by matching all possible combinations of sequential overlaps between the 

mega modules across the visit (Fig. S8). A protein was ultimately assigned to one of 

the core modules if it was part of a particular pattern across all visits. Eight out of nine 

core modules contained at least one protein, and 59% (434/734) of the proteins could 

be assigned to one of these eight core modules (Fig. 5).  

The eight core modules were then annotated for their biological functions and their 

relation to clinical traits, as it is expected that proteins within the same core module 

could share biological functions and interactions, or can be controlled by common 

mechanisms (Fig. 5, Supplementary Data file S2). This revealed associated pathways 

and annotations related to biological functions like complement system, vesicle 

transportation, platelets and metabolic processes. Next, we explored links between 

groups of co-varying proteins with the available clinical traits. We identified a number 
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of statistically significant associations (FDR P < 0·01) for the blue and black WGCNA 

core modules that correlated with lipid related traits, but in opposite directions. The 

blue pattern was negatively correlated with the levels of triglycerides and the fraction 

of ApoB and ApoA1, and conversely the black pattern was positively correlated with 

these traits as well as levels of ApoB and LDL. Additionally, the blue pattern was 

negatively correlated with CRP. Thus, these two different sets of co-regulated proteins 

likely have opposite functions within lipid metabolism by being linked to LDL and 

HDL respectively. This is consistent with the fact that the LDL associated protein ApoB 

follows the black core pattern and the HDL associated proteins ApoA1 and ApoA4 

follow the blue pattern. None of the other core modules had significant associations to 

the available clinical traits, even though the effects were mostly consistent across visits. 

None of the core modules had significant associations to sex or age.  

In summary, we found longitudinally conserved modules of protein co-expression 

networks with associations to biological functions and clinical traits.  

Genetic effects on the plasma proteome 

As introduced above, we used genetic data and found 15 cis-protein quantitative trait 

loci (pQTLs) for 14 protein profiles (P < 1·35×10-8, Bonferroni P < 0·05) from the 

association tests with non-redundant ~3.7M SNPs (see Table 1, Table S4 and Fig. S3). 

All 14 unique proteins were annotated to be secreted into blood and primarily expressed 

by the liver [9] and the longitudinal profiles stratified by genotypes are shown in Fig. 

6A-O. Following our previous observations [14] and recent insights connecting the 

circulating proteome with genetic variation [23], we investigated if differences in 

detected proteins can be linked to protein polymorphisms. Even though non-

synonymous SNPs are rare (< 0.3%) [24], we found these to be overrepresented among 

the identified cis-pQTLs. Indeed, out of the 15 identified pQTLs, nine of the loci (60%) 

contained variations that induce a change of amino acids in the protein sequence. 

Because these genetic associations were obtained in the relatively small S3WP cohort 

of 101 subjects, we corroborated the results by checking for the same associations 

between genetic variation and circulating proteins in an independent set of 3,000 

individuals from the TwinGene study [13].  

Among the most significant association between genetic variation and circulating 

proteins were Tetranectin (C-type lectin domain family 3 member B, CLEC3B) and the 
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SNP rs4683026 (P = 5·31 × 10-38). One of the perfect linkage disequilibrium (LD) 

proxys (R2 = 1) of that SNP is rs13963, which can lead to two proteoforms with either 

a serine at the 106th position or a glycine. Detected levels of CLEC3B, a protein secreted 

by the lung, muscle, spleen, and adipose tissue, were highest for the CC genotype and 

decreased as the number of C alleles decreased (Fig. 6A). This indicated that the assay 

preferred the Gly106 isoform produced by the C allele over the Ser106 isoform 

produced by the T allele.  

Similarly, proteoforms of liver secreted vitamin-D-binding protein (GC) could be 

linked to non-synonymous SNPs, hence reporting an isoform-specific affinity rather 

than differences in abundance [25]. We indeed found that specific alleles had major 

effects on the reported amount of this circulating protein (Fig. 6D). We concluded that 

the levels of GC detected by the assays were strongly determined by the genetic variants 

rs222047, rs843005 and rs7041. Reassuringly, rs7041 had previously been described 

as a cis-pQTL of GC when using an even larger study set and another type of 

quantitative immunoassay [26].  

As shown in Fig. 6I, we also found a cis-pQTL SNP rs1801020 (P = 1·25×10-14) 

corresponding to the 5’ untranslated region of the coagulation factor XII (F12) gene 

[27], and we replicated this association in the TwinGene cohort (P = 7·61×10-126). The 

common genetic variant rs1801020 modulates F12 liver expression [28], and thus 

provides additional evidence that the detected SNP modulates gene expression, which 

in turn impacts the F12 protein abundance rather than the protein sequence. Out of all 

101 subjects, we found that among seven participants with the F12 genotype, one 

individual had substantially lower secreted levels of F12. Subsequent tests of the 

participant in the clinic confirmed a delayed activated partial thromboplastin time 

(aPTT), which has also previously been described for this F12 polymorphism [28].  

Besides GC and F12, we identified subgroups of individuals linked to differences in 

plasma protein levels for the secreted liver proteins complement factor H (CFH) and 

haptoglobin (HP). Lower levels of HP were determined in 22% (21/93) of the plasma 

samples from the S3WP study participants and in 15% (447/2,974) of the sera from 

TwinGene study (Fig. S9A). For one of the anti-CFH antibodies (Bsi0885), the detected 

protein levels were lower in plasma of 2% (2/93) of the S3WP individuals, and equally 

in 2% (62/2974) of the TwinGene participants (Fig. S9B). Compared to the second anti-

CFH antibody (MAB4779), which was not included when analyzing the TwinGene 
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samples, the main SNP for Bsi0885 did induce a missense mutation affecting the 

protein’s sequence. This effect could explain the differences in binding properties of 

the antibodies towards the variants of CFH. No distinct population subgroups with 

either lower GC or F12 protein levels were detected in the serum samples of the 

TwinGene study (Fig. S9C-D). As further described in Supplementary, we also 

compared pQTLs with eQTLs and other RNA expression data to pinpoint the source of 

expression regulation of proteins with cis-pQTLs. There were no significant 

associations between the genetic data and clinical.  

In summary, distinct differences in plasma protein levels can be explained by genetic 

variants. These insights are valuable when comparing the protein levels between 

individuals as they can provide another motivation for why a more precise and 

personalized assessment of health in circulation requires both longitudinal monitoring 

and the influence of genetics. 

Facets of individual and longitudinal protein profiles 

UMAP analysis revealed that overall, person-specific profiles remained stable over 

time. To identify inter-individual differences on a protein level, we z-scored the data 

and determined the inter-quartile range (IQR) as a measure of diversity between 

individuals. Only minor differences between the participants of the study where seen 

for proteins such as DSC3, GFAP, and GDF15 (IQRs ≤ 0.15), as compared to more 

prominent inter-individual diversity in levels for the liver proteins LEPR, IGFBP2, 

FCN2 or SERPINA1 (IQRs ≥ 1.5).  

To further illustrate changes occurring in the plasma proteomes, we queried the data 

for representative examples among the participant’s protein profiles (Fig. 7). We asked 

which protein might vary due to distinct events, remain different during the study, or 

gradually change over time in any of the individuals. We again used protein z-scores 

with all participants serving as a reference population. To this end, we selected the 359 

most stable protein profiles (ICC ≥ 0.8) in order to focus on capturing individual rather 

than common patterns. We applied an annotation scheme that was based on the 

parameters we obtained from fitting linear models to every protein profile. We scored 

each of the protein profiles for every individual based on three criteria: 

i) baseline = individual deviation of protein levels from the population, 
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ii) trend = a person’s changes in (increasing or decreasing) protein levels, 

iii) fluctuation = fluctuation of protein levels as deviation from linear changes. 

In total, 33,028 profiles were derived from 359 proteins and 92 individuals. We 

classified each profile to each criterion as deviating if the obtained values were ± 3xSD 

of the population average. As shown in Fig 7, 3,7% (1,223/33,028) of all possible 

participant-protein measurements revealed a variation at the individual level on one or 

several of the categories. This frequency is ten times higher than observing these 

variations by chance (0,27%). We then summarized these scores and evaluated the 

outcome per protein (including all individuals) and per participants (including all 

profiles). 

Concerning the proteins, levels of CAPZB, RPSA, FGFR1, BPGM, and PECAM1 were 

longitudinally preserved and least unique to any participant as these were neither 

elevated, changed nor fluctuated over time. Interestingly, none of these proteins were 

annotated to be secreted into bloodstream, hence likely represent leakage products. In 

contrast, we found that secreted blood proteins GDF15 and MMP9, as well as LCT, 

were variable proteins along the longitudinal axis when considering the total number 

of individuals with changes to any of the three annotation criteria. As exemplified by 

GDF15, aspects of inter-individual diversity and longitudinal variability can present as 

independent characteristics of circulating proteins. 

Among the protein profiles of each participant, there was at least one protein with 

elevated baseline or trends of fluctuating levels (Fig. 7B-C). The most variable profiles 

were found for participant W0065, as there were 39 proteins being different in term of 

baseline levels, 51 increased or decreased, and 49 proteins fluctuated over time. In 

contrast, participant W0086 was ranked as most stable (accumulated score = 2) and the 

two deviating profiles corresponded to elevated baseline for the two proteins PDZD2 

and KLK11.  

This analysis illustrated that there is diversity in terms of how longitudinally stable or 

variable an individual’s plasma proteome can be. It is likely that many of the unique 

and stable trajectories that deviate from the average population baseline might be due 

to genetic effects, lifestyle factors or medication, however our study was underpowered 

to extract other associations of weaker effect sizes.  
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Discussion 

We profiled 101 individuals using a multiplexed affinity proteomic assay and found 

that the plasma proteome signatures were highly individual-specific. To address 

concerns about antibody validation, our exploratory multiplexed approach applied a 

scoring scheme to identify binders with consistent performance across assays and 

longitudinally collected samples. We highlighted findings related to individual protein 

variability, found interesting links to genetic components and networks of co-regulatory 

proteins, and lastly demonstrated the potential benefits of individual-level, longitudinal 

protein profiling. Our observations can have substantial impact on studies searching for 

common disease proteins across a population, because both the inter-individual 

diversity and longitudinal variability can have influence on the composition of the 

circulating proteome.  

Affinity binders are important tools frequently used in research and as diagnostic 

reagents. The current concern surrounding the reproducibility of data derived from such 

research has raised awareness and increased the efforts in developing strategies for 

antibody validation [29]. The utility of antibodies is context dependent and the 

performance may vary depending on technological method or sample composition. 

Therefore, it is necessary to annotate and validate the specificity of each binder in its 

intended application, preferably by using orthogonal methods as applied here. The 

selected antibodies have passed several validation steps in the generation pipeline [30], 

but validation needs to be tailored for plasma analysis [31, 32]. The multiplexed assay 

applied here was an exploratory effort allowing the analysis of large numbers of 

samples and analytes. The method relied on a single binding event between an antibody 

and its target protein, hence, the inherent risk of the method is off-target binding, 

unspecific binding, or capturing of protein complexes [33]. Notably, several proteins 

measured with our assays were identified with a cis-pQTL, providing inferred evidence 

for on-target binding. By combining information for each antibody regarding technical 

reproducibility and supportive data including other antibody-free assays [34], we 

developed a transparent annotation strategy to limit our analysis from the initial 1,450 

antibodies to a set of ~700 high confidence protein profiles of which almost 50% were 

very stable over time. Indeed, many proteins in the latter selection can be expected to 

be detectable in the circulation because these were either secreted from solid tissues 

into blood or leakage from blood cells. 
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Considering the intra-individual diversity, we found that ~50% of the studied protein 

profiles were stable across the four sampling occasions over one calendar year. We 

acknowledge though that some proteins can appear to be more dynamic depending on 

the studied timespan, or if any other perturbation, disease or intervention occur among 

the participants. For the majority of the proteins, variability was low for both the 

technical replicates and between time points. Hence, the fluctuations observed between 

two time points could also likely be due to technical variability rather than life style 

related perturbations. Nonetheless, changes that occurred on a continuous scale for a 

subset of the study group could serve as supportive evidence for physiological rather 

than technical changes. Clearly, our observations are restricted to the proteins targeted 

by our assays and may be affected by limitations in terms of the sensitivity to the effects 

from protein interactions as well as co-enrichment of other proteins [33]. Nonetheless, 

we observed a high consistency when profiling circulating proteins in the longitudinal 

sample collection, which encompasses the process of drawing blood, processing the 

collections and analyzing different samples from the same subject. Hence, a 

longitudinal assessment reflected a combination of different variables such as sampling, 

biobanking, assays and physiological changes. However, we found and focused on 

protein profiles with low longitudinal variability. This indicated that the applied 

concept, sampling schemes and method had the precision to define personal baseline 

values and capture individual changes.  

We applied multivariate analysis to cluster 734 protein features from four time points 

and found individual-specific profiles that were retained throughout one year. This 

observation was further supported by the fact that the majority of proteomic and clinical 

profiles showed ICC > 0.9 between the visits for each individual. It is worth noting that 

our study included a small number of subjects (~100) followed during a relativity short 

time span (one year). Further, the participants were deemed clinically healthy with a 

balanced (and possibly more deliberately healthy) lifestyle during this period. Both the 

intra-individual diversity and the longitudinal variability are important observations 

because these can lay the foundation to a next-generation of studies aiming to more 

accurately assess diseased individuals or those in treatment. It will, however, require 

even larger study populations that include a defined intervention, such as common 

disease incidents, drug treatment, or surgery to determine which subset of proteins are 

needed for a respective disease phenotype.  
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We also applied a network approach to study any coordinated change of several 

proteins over time. Although proteins within the same WGCNA-defined module were 

covarying, we did not collect evidence about their physical interactions. These modules 

rather suggest that there is an interconnection that can coordinate protein expression. 

Hence, and as previously observed by others on single time point measurements [35], 

there are possible processes that co-regulate protein levels via common mechanisms. 

Indeed, most of the identified core patterns were significantly enriched by proteins 

related to a particular biological function such as lipid metabolism (LDL, HDL and 

triglycerides). An added value of longitudinal profiling was further illustrated by 

WGCNA because not all proteins that co-varied within a single time point also 

continued to do so across all visits. Our findings suggested that coordination of other 

disease related networks and processes exists, but these may require a more dedicated 

study design and include pre-selected proteins. Nonetheless, we demonstrated in a 

study of clinically healthy individuals that processes related to metabolism, coagulation 

and inflammation were among the major coordinated functions of the plasma proteome 

and that these should be considered in any assessment of human health states. 

Profiling the plasma proteomes identified groups of participants that presented with 

distinct differences in circulating protein levels. These subgroups could be linked to 

cis-pQTLs such as for the proteins GC, F12, CFH and HP. Investigating the identified 

SNPs, we found that the variation at the loci for GC and CFH coded for a missense 

mutation. This implied that the assay measured the relative abundance of specific 

proteoforms rather than detecting different concentration levels. We explained this by 

changes inducted to the sequence, structure or even post-translational modifications 

that will make the antibodies bind to each of the proteoforms with a different affinity. 

Reassuringly, we observed concordant associations even in serum samples of the 

TwinGene cohort, which we used as a validation set and that consisted mainly of elderly 

individuals.  

One striking observation from a precision profiling perspective was to find a single 

participant with deficiency in F12 among all 101 individuals, and being able to use 

proteomic and genetic information to pinpoint a possible mechanism of lower levels of 

circulating F12. A deficiency in F12 is rare and generally non-symptomatic, however, 

in vitro F12 deficiency results in prolonged activated partial thromboplastin time 

(aPTT) [36]. Since aPPT is a measure of this and is a common screening test for 
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hemostatic function, an underlying unknown F12 deficiency can have clinical 

consequences for the patient through inhibited or delayed invasive procedures or 

surgery and extensive diagnostic workup before a clinically relevant hemostatic 

disorder is excluded. Furthermore, common variants of F12, not resulting in deficiency, 

have been correlated with aPTT, presumably through modulating F12 levels [37]. A 

patient would therefore benefit from knowing about such a deficiency prior to surgery. 

The case of F12 illustrates how our proteomics data from continuous monitoring of a 

particular parameter can be combined with genetic data to generate information with 

direct clinical utility.  

Collecting the pQTLs also allowed us to annotate whether differences in protein 

profiles were due to missense variants in protein coding regions or rather affecting gene 

expression. We used eQTL data accessible on the GTEx portal [38], accepting that the 

data is derived from tissues and cells from other individuals than the ones included in 

this study. Ideally, transcriptomic data from the same individuals should be 

incorporated in future analysis. Nonetheless, we found eQTLs in the liver (LRG1; F12), 

the artery (C6), pancreas (FGL1) or thyroid (C4A). Similarly, the relation of the pQTLs 

and splicing QTLs (sQTLs) were studied to annotate circulating proteins levels in 

relation to alternative splicing. We found sQTLs in the liver (AHSG; CFH), adipose 

tissue (CLEB3B), spleen (CFH), and thyroid (C4A). Connecting information from the 

pQTLs provides a useful approach to further annotate the levels of circulating proteins, 

even in 101 individuals. Nonetheless, the ~10 proteins we have discussed point at the 

value gained when connecting proteomic with genetic data, such as for defining patient-

specific cut-offs for disease classifications. This awareness will further assist our 

understanding of assay specific data in the context of precision phenotyping. 

Lastly, we investigated the longitudinal variability of each protein across time at the 

level of each individual. We dissected this into three distinct categories of longitudinal 

variation that occurred among the participants. First, we identified individuals with 

increased or decreased baseline abundance of proteins that are consistent throughout 

one year. It can be hypothesized that baseline levels above or below a relative 

population mean might be due to genotype, and that other factors such as medication 

can further influence these. Next, we found proteins with gradually increasing or 

decreasing abundance across time. Monitoring the progressive changes across the 

consecutive sampling can highlight which proteins play a role in pre-symptomatic 
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manifestation of a condition, or they reveal how effective a treatment of chronic 

conditions has been. Lastly, we found proteins that increased or decreased during 

shorter terms as these were captured only during specific visits. It remained a challenge 

to link many of these perturbations to reported changes in health, life style or behavior 

of an individual. Here a more detailed integration of the data on an individual level as 

well as decomposing the aspects related to sampling, shipment and analysis might be 

required.  However, this demonstrated the importance to follow plasma proteomes over 

time in order to assess where on the spectrum of inter-individual diversity and 

longitudinal variability a specific individual resides. The distinction between time-

resolved events and consistently changing or deviating baselines will consequently be 

important aspects to consider when implementing blood-based protein measurement to 

assess health in a clinic setting. It is by multiple layers of interconnected data, 

longitudinal sampling and individual-specific assessment over time that we can start 

predicting protein trajectories in time. Hence, utilizing such collected information will 

enable to distinguish between life-style related and short-lasting events (e.g. stress) over 

physiological processes that point at the onset, progression or manifestation of a disease 

or condition. 

In conclusion, we profiled longitudinal plasma samples from 101 subjects using 

exploratory affinity assays and found that proteome profiles of clinically healthy 

individuals were diverse and highly individual-specific. While there were proteins 

varying over time in some individuals, many of the circulating proteins as well as their 

co-regulated networks were predominantly stable in this study population. Our work 

highlights the facets of individual-specific proteomes and the need to consider both 

inter-individual diversity and longitudinal variability when assessing health or disease 

states.  
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Fig. 1. Experimental design and data analysis pipeline. (A) Over the course of one year, samples from 

101 individuals were collected at four different visits to the clinic. (B) Plasma proteins were measured 

from 1 µl EDTA plasma with antibodies conjugated to beads. (C) Following each completed visit, 

samples were randomized within an assay and analyzed together with all previously collected visits. In 

total, four SBAs were created and incubated with the samples as indicted in the flowchart. (D) Protein 

profiles were tested for associations to clinical traits, longitudinal stability, networks of co-regulation 

and GWAS. 

The underlined labels correspond to assays where the complete set of samples were analyzed in duplicate. 

Labels in bold correspond to assays where the SBA was incubated with 96 replicated samples for 

technical validation. SBA, suspension bead array; GWAS, genome wide association study.  
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Fig. 2. Association map of proteomics and clinical traits. Chord diagram of associations 
(FDR P < 0·001) between protein profiles and clinical traits obtained from linear mixed effect models. 
Line thickness is proportional to -log10(P-value) and colored by clinical trait. Protein features that 
represent a family of several proteins are denoted with one gene name followed by “*”. Feature names 
are colored red if predicted to be actively secreted into blood, or blue if they appear in blood due to cell 
leakage [9, 39]. 
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Fig. 3. Inter-assay and inter-visit variability. Shown are correlations of technical (inter-assay, upper 

panel) and longitudinal (inter-visit, lower panel) profiles. (A) CD5 molecule like (CD5L) represents a 

both technically and longitudinally stable protein, while levels of (B) Caldesmon 1 (CALD1) vary 

between visit but not repeated assays. Each dot represents one individual, colored by sex (F, female; M, 

male), MFI relates to median fluorescent intensity and AU are arbitrary units.  
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Fig. 4. Diversity of individual-specific protein profiles. UMAP analysis of 734 protein features and 

samples from four visits, colored by subject (N = 101). Colored lines indicate which samples belong to 

the same individual. UMAP, Uniform Manifold Approximation and Projection.  
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Fig. 5. Networks of co-varying proteins. WGCNA was used to determine co-varying proteins per visit 
(stacked groups) and across visits (horizontal bands). Each vertical line represents one protein and its 
mega module membership in each visit. Proteins are colored according to the core pattern they belong 
to. Proteins that do not belong to any core pattern are grey. Each core pattern is annotated to the right 
with the number of proteins it contains, a summary of associated pathways and GO terms, and examples 
of proteins following the given pattern. The examples of proteins given are the five proteins with the 
highest correlation to the core pattern eigengene. 
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Fig. 6. Longitudinal characteristics of plasma protein genotypes. The line plots show plasma proteins 

associated to genetic variants where z-scores were used to represent protein levels. Each line represented 

one individual and color codes the genotypes.  Only individuals with data from all four visits were 

included for visualization.   
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Fig. 7. Facets of longitudinal protein variability. Protein profiles were stratified by their longitudinal 
profiles. (A) Venn Diagram indicates the number of observations (protein per individual) that was 
deviating (± 3xSD) from the population mean in terms of protein baseline, trend and fluctuations. Here, 
we selected 14 protein profile examples. Each gray line represents one individual. One selected 
individual with a particular protein profile is highlighted in red, and the category of the red profile is 
marked on the left side of the protein name. (B) Distribution of the three annotation criteria per subject, 
and (C) the sum of the three annotation criteria per individual.
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Table 1. Proteins with cis-pQTLs.  
Protein Antibody† P‡ Top SNP‡ Variant* TwinGene P 

CLEC3B HPA034794 5.31 × 10-38 rs4683026 Gly - Ser n.a. 

HRG Bsi0137 3.65 × 10-25 rs12493926 Asn - Ile < 1 × 10-300 

C1R HPA001551 2.18 × 10-22 rs1801046 Leu - Ser n.a. 

GC Bsi0185 8.13 × 10-20 rs843005 Asp - Glu 1.17 × 10-95 

CFH MAB4779 7.60 × 10-17 rs61818923 
 

n.a. 

CFH Bsi0885 1.81 × 10-16 rs1048663 Glu - Asp 8.96 × 10-269 

AGT HPA001557 3.26 × 10-16 rs4762 Thr - Met n.a. 

F9 HPA000254 5.16 × 10-16 rs422187 Thr - Ala n.a. 

F12 Bsi0849 1.25 × 10-14 rs1801020 
 

7.62 × 10-126 

C4A OASA01015 5.15 × 10-14 rs386480 
 

n.a. 

LRG1 Bsi3134 8.50 × 10-10 rs10426311 
 

n.a. 

C6 Bsi0731 3.88 × 10-9 rs7443604 Ala - Glu 1.67 × 10-71 

AHSG Bsi0907 4.58 × 10-9 rs13073106 Ser - Thr 1.24 × 10-16 

FGL1 HPA049320 6.83 × 10-9 rs10093134 
 

n.a. 

HP Bsi1809 1.18 × 10-8 rs811053 
 

4.86 × 10-88 

†The ID of the antibodies used in SBA assays. ‡The most significantly associated SNP 

and nominal P-value for the association. *Non-synonymous SNPs in almost perfect 

linkage disequilibrium (LD) with the top SNP (R2  ≥ 0.8) in genomic data of Utah 

residents from north and West Europe (CEU) in the 1000 Genome project. The amino-

acid variants were shown after the SNP ID. Additional details are provided in Table S4. 

GWAS analysis conducted with the TwinGene cohort also revealed significant 

associations when matching SNPs with those identified in the S3WP study.  
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