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Abstract 
Post-translational modifications such as phosphorylation can have profound effects on the 

physicochemical and biological properties of proteins. However, high-throughput and systematic 

approaches have not yet been developed to assess the effects of specific modification types and sites on 

protein lifetime, which represents a key parameter for understanding signaling rewiring and drug 

development. Here we describe a proteomic method, DeltaSILAC, to quantify the impact of site-specific 

phosphorylation on the endurance of thousands of proteins in live cells. Being configured on the 

reproducible data-independent acquisition mass spectrometry (DIA-MS), the pulse labeling approach 

using stable isotope-labeled amino acids in cells (SILAC), together with a novel peptide-level matching 

strategy, this multiplexed assay revealed the global delaying effect of phosphorylation on protein 

turnover in growing cancer cells. Further, we identified local sequence and structural features in 

proximity to the phosphorylated sites that could be associated with protein endurance alterations. We 

found that phosphorylated sites accelerating protein turnover are functionally selected for cell fitness 

and evolutionarily conserved. DeltaSILAC provides a generalizable approach for prioritizing the effects 

of phosphorylation sites on protein lifetime in the context of cell signaling and disease biology, which is 

highly complementary to existing methods. Finally, DeltaSILAC is widely applicable to diverse post-

translational modification types and different cell systems. 

 

Introduction 
Biological signaling features both amplitude and duration1. As the prominent molecule for most cellular 

processes, protein has been characterized by various properties, such as structure, abundance, 

localization, stability, and turnover. Post-translational modifications (PTMs) generate different 

proteoforms for a given protein, altering the above properties and leading to diverse functions2, 3. 

Phosphorylation is particular critical PTM and has been shown to be essential for signaling 

transduction4, can mediate protein-protein interaction5, and affect the three-dimensional structure of the 
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protein, its thermal stability6, and subcellular localization7. However, the impact of phosphorylation on 

protein turnover has so far not been assessed at the proteome-scale. 

 

To adapt to temporal environmental changes, the cells have to utilize kinases and phosphatases to 

effectively and instantly catalyze phosphate transfer between substrates. Nevertheless, the long-term 

regulation of endurance and decay of those constitutively phosphorylated proteins is also critical for the 

cell systems. This regulatory mechanism enables the rewiring of cellular states after adaption8, 9, and the 

establishment of fitness against intrinsic genetic alterations10, 11. Specifically, the functional crosstalk 

between phosphorylation and ubiquitination was discovered to substantially downregulate levels of key 

phosphoproteins in a variety of pathways such as EGFR/MAPK signaling9, 12 and cell-cycle control13, 14. 

However, the high-throughput discovery tools are currently lacking to illustrate how phosphorylated 

proteins are degraded by proteostasis and proteolysis pathways. 

 

In the last decade, mass spectrometry (MS) based proteomics has greatly facilitated the analysis of 

proteins and their PTMs15, 16. MS-based mapping of phosphorylation and ubiquitylation sites previously 

suggested that distinct phosphorylation sites often co-occur with ubiquitylation17. This analysis, 

however, relied on the MS detection frequency of PTM sites after individual or tandem PTM 

enrichments17, which does not consider the relative stoichiometry of both PTMs, and the qualitative 

results are likely affected by the abundance of bulk proteins and the sensitivity of MS analyzers. As an 

arising MS-based technique, data-independent acquisition mass spectrometry (DIA-MS)16, 18 makes the 

full use of the current high-speed mass spectrometers. DIA-MS usually generates continuous, high-

resolution MS2 peak profiles during liquid chromatography (LC) separation that can be used for the 

simultaneous identification and quantification of thousands of peptides, including their PTMs 19, 20. 

Promisingly, when combined in a pulse experiment using isotope-labeled amino acids in cells 
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(SILAC)21-24, we demonstrated that DIA-MS provides high efficiency, reproducibility, and accuracy to 

measure the turnover rates of proteins25, 26 and, recently, their alternative splicing isoforms27. 

 

Here we sought to develop an integrative proteomic method that directly interrogates the lifetime of 

phosphorylated proteins in reference to their unphosphorylated versions. Our method DeltaSILAC (delta 

determination of turnover rate for modified proteins by SILAC) is built on pulse SILAC (pSILAC) 

labeling, phosphoproteomic enrichment, and DIA-MS. We show that DeltaSILAC can successfully 

reveal endurance alterations for constitutively phosphorylated proteins in cellular systems and provides a 

comprehensive and generalizable approach to characterize the effects of phosphorylation sites on protein 

lifetime in the context of cell signaling and disease biology. 

 

Results 

Development of DeltaSILAC for timing the protein endurance in response to site-specific 

modification. 

We first overview the rationale of our DeltaSILAC method (Fig. 1). In a typical pSILAC experiment, 

the growing cells are maintained in a steady-state in which the degraded and synthesized protein copies 

are balanced28, 29. Such a concentration balance should also apply to most if not all modified proteins – 

otherwise, the system will be perturbed. Thus, by culturing cells in the heavy SILAC medium and 

monitoring the exchange rate of heavy (H) and light (L) amino acids containing peptide signals for a 

time course, the protein turnover time can be determined by MS analysis for both modified or 

unmodified proteoforms. Because the concepts of protein lifetime and degradation rate were defined 

within particular cells and therefore interlace with cell doubling time, herein we postulate the new 
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concept “endurance” for timing the existence of different proteoforms of a given protein and for 

emphasizing the site-specific effect for a PTM (e.g., a functional phosphorylation) on protein turnover. 

 

To develop and demonstrate the DeltaSILAC workflow using a well-defined model system, we 

investigated a panel of 12 HeLa cells initially collected from different research laboratories26. A 

considerable heterogeneity of gene copy number alteration (CNA) was previously documented between 

these HeLa strains, which leads to systematic rewiring of mRNA, protein, and bulk-protein degradation 

levels26. This prior data provides the basis to assess the roots of phosphoprotein abundance variability. 

Using DIA-MS30, we confidently quantified 24,119 ± 446 Class-I phosphopeptides (with confident 

phosphorylation site-localization)4, 31 across 12 HeLa cell lines (Fig. S1 & Supplementary Table 1). 

Consistent with previous multi-omics reports32, we found that phosphoprotein abundance is globally 

more variable than the corresponding mRNA and protein levels. While we acquired phosphoproteomic 

profiles for all HeLa CCL2 and Kyoto strains covered by the original study26 (Fig. S1), we herein chose 

HeLa_7 and HeLa_8 as a representative HeLa CCL2 and Kyoto strains for the follow-up PTM 

endurance analysis. 

 

To systematically determine the protein and phosphoprotein lifetime (i.e., endurance in cells), we 

deployed a five-time point pSILAC experiment at 0, 1, 4, 8, 12 hours for both HeLa_7 and HeLa_8 cells 

(Fig. 1). The cell lysates of different time points were then trypsin proteolyzed. Each peptide aliquot was 

split, with 5% of peptides used for direct proteomic measurement and 95% for phosphoproteomics. To 

measure proteomes and phosphoproteomes during labeling, DIA-MS was employed (Fig. 1a-b), which 

provides high quantitative reproducibility for multiple samples labeled by pSILAC25, 27. Using a direct 

identification approach30 (see Methods), we confidently inferred 7,583 and 7,550 proteins for HeLa_7 

and HeLa_8 from single-shot measurements, detected by 87,266 and  86,881 peptides (both peptide- and 
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protein- FDR were < 1%). For 5,456 and 5,608 proteins (detected by 47,831 and 50,978 peptides), we 

computed turnover rates (kLoss), which can be mathematically transformed to provide an estimation of 

the protein half-life time (T50% values33, hereafter, T1/2, see Methods and Fig.1c-d & Fig. S2). 

Moreover, among ~24,000 phosphopeptides detected in HeLa_7 and HeLa_8, 13,781 and 15,777 

phosphopeptides (that is, 12,134 and 13,078 phosphosites) were quantified with a T1/2. We found that 

T1/2 correlation between HeLa_7 and HeLa_8 for phosphopeptides (R=0.90) was similar as T1/2  for 

proteins (R=0.86, Fig. S2), suggesting the quantitative performance of pSILAC-DIA25, 27 can be 

extended to phosphoproteomics. Altogether, this dataset (Supplementary Table 2) presents a first 

systematic analysis of phosphoproteome endurance. 

 

We then benchmarked the phosphopeptide dynamics in comparison to other omics layers. For this 

purpose, the genome-wide ratios between HeLa_7 and HeLa_8 were assessed across the levels of gene 

copies, mRNA, bulk-protein expression, phosphopeptides, as well as turnover rates of all peptides and 

phosphopeptides (Fig. 1e). We found that whereas the change of phosphopeptide abundance follows 

mRNA and protein levels (R=0.40 and 0.46), the turnover regulation of phosphopeptide does not (Fig. 

1f). Additionally, the correlation between turnover ratios for phosphopeptides and peptide counterparts 

are modest (R=0.39; Fig. 1g), similar to that correlation between abundance ratios (R=0.46). This data, 

therefore, highlights the strong need to independently analyze phosphopeptides for both abundance and 

endurance. Also, although the gene dosage compensation mechanism at the protein turnover level was 

confirmed by positive mRNA~peptide kLoss correlation (R=0.12), we found the mRNA~phosphopeptide 

kLoss correlation to be weaker (R=0.06) which is not significant after correction against their relevance to 

peptide kLoss (p>0.05). This implicates that broad CNA have a limited impact on phosphoprotein 

endurance overall. We therefore analyzed on HeLa_7 and HeLa_8 datasets independently in the 

following analysis. 
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To summarize, with DeltaSILAC, we were able to measure half-lives for both modified and unmodified 

versions of the same protein (Fig. 1d). This matched dataset enables a novel strategy (see below) to 

interrogate the impact of PTM on protein expression duration. 

 

Regulation of protein endurance by phosphorylation is site-specific, rather than gene-specific. 

To pinpoint PTM influence on protein lifetime, we subtracted T1/2 of backbone sequence-matching non-

phosphorylated peptides (np-peptide) from the T1/2 of counterpart phosphopeptides (p-peptide), 

resulting in the delta value (DT1/2). Thus, DT1/2 was used for all following endurance analysis. After 

filtering (see Methods), 1,919 and 2,147 such pairs of np- and p- peptides in HeLa_7 and HeLa_8 were 

quantified. We found that for those proteins identified with multiple phosphorylation sites, different sites 

can lead to a variable DT1/2 (Fig. 2). For example, the pT490 increased T1/2 of AHANK by ~7.5 hours 

(i.e., DT1/2 = 7.71 and 7.58 hours in HeLa_7 and HeLa_8) whereas pT4100 shortened T1/2 by > 15 hours 

(i.e., DT1/2 = -15.61 and -16.86 hours; Fig. 2a). For MAP4 certain phosphosites such as pS507 and 

pT521 could greatly enlarge T1/2 by > 40 hours, having a much higher protein endurance modulation 

effect than other phosphosites of the same protein (Fig. 2b). In comparison, for MARCKS, 

phosphorylation on most sites detected on average similarly increased protein endurance of about 5 

hours (Fig. 2c). Interestingly, all the 19 phosphorylated versions of SF3B1 barely changed their lifetime 

as compared to the non-phosphorylated counterpart (DT1/2 =0.7194 ± 1.956 hours) and other cases (Fig. 

2d-e), indicating endurance can be robust for specific proteins despite variable modifications. 

 

We further found that our approach was able to impressively discriminate the turnover discrepancy 

between proteoforms carrying closely located phosphosites, even those identified on the same peptide 
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backbone. The sites S79 and S86 in RPLP2 present such an example, as they share the same np-peptide 

(Fig. 2f). The unique MS2 signatures carrying either pS79 or pS86 were extracted from the DIA-MS 

dataset. Moreover, the heavy-to-light (H/L) ratios of the two sites during pSILAC labeling were 

confidently resolved to respective LC peak groups, which have only a < 1 min retention time (RT) 

interval that presents a challenging case for MS1 alignment34, 35 (Fig. 2g-h). Accordingly, a T1/2 

difference of 9.66 hours between pS79 and pS86 was successfully determined. In contrast, we found that 

the MS1 features alone cannot differentiate the two phosphopeptides owning to their identical m/z (Fig. 

2i). 

 

To gauge the precision of DT1/2, we checked the H/L ratios of np-peptides and p-peptides during 

pSILAC labeling. We found the sequence-matching strategy to be useful, because even np-peptides can 

show variable labeling rates, such as npT34 and npS203 of FAM207A in Fig. 2j. The extended protein 

endurance by phosphosites was credibly inferred from H/L ratios measured by DIA-MS, such as pS47 of 

NMT1 and pS212 & pS107 of LMNA (Fig. 2k-l). Other sites instead reduce the proteoform endurance, 

such as pT177 in PRDX6 (Fig. 2m). We further found the determined np-peptide and p-peptide T1/2 to 

be highly stable across replicates, validating the reproducibility of experimental and computational 

pipeline in DeltaSILAC and indicating that even small changes in protein endurance (for example, ~1 

hour) are detectable with statistical cutoffs (Fig. S3). Therefore, DeltaSILAC reliably uncovered a 4-6 

hours variability of half-life time, on average, between differentially phosphorylated versions of the 

same protein (Fig. 2n). 

 

Altogether, our analysis demonstrates that DeltaSILAC can accurately assess the effects of 

phosphorylation on protein endurance in a site-specific manner. 
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Phosphorylation prefers to increase endurance for many proteins in growing cells. 

To understand the global effect of phosphorylation on protein turnover, we analyzed T1/2 in three 

comparative scenarios. 1. Total comparison: T1/2 of all phosphopeptides identified versus T1/2 of all bulk 

proteins identified (Fig. 3a-b, left panel). This “unmatching” comparison is regardless of the mapping 

of np- or p- peptides. 2. Protein-matched comparison: T1/2 of phosphopeptides whose corresponding 

proteins were identified versus T1/2 of proteins whose corresponding phosphosites were identified (Fig. 

3a-b, middle panel). This comparison thus excludes ~10,000 phosphopeptides and ~3,500 proteins that 

were only detected by either phosphoproteomics or proteomics (Fig. 1d). 3. Peptide-matched 

comparison:  T1/2 of p-peptides versus T1/2 of np-peptides (Fig. 3a-b, right panel). This comparison only 

accepts T1/2 data with a pair of np- and p- peptides. Comparison 1 suggests that the total 

phosphoproteome and the proteome have comparable T1/2 (median is 16.8 vs. 16.3 hours for HeLa_7 

and 15.8 vs. 16.1 hours for HeLa_8). The slightly reduced T1/2 in HeLa_8 from HeLa_7 is expected 

because HeLa Kyoto has a shorter doubling time than HeLa CCL2, as reported26.  Intriguingly and 

significantly, a trend of increasing protein endurance conferred by phosphorylation was demonstrated by 

both protein- and peptide- matched strategies: the T1/2 median increase by phosphorylation was 

determined to be 0.70 and 1.10 hours for HeLa_7 and HeLa_8 according to the protein-matched 

comparison and 2.53-2.55 hours according to peptide-matched comparison (Comparison 2 and 3; Fig. 

3a-b). The volcano plots suggest that, based on the matching-peptide comparison, T1/2 is significantly 

upregulated for 623 and 679 phosphopeptides but only downregulated for 148 and 156 in two cell lines 

(P < 0.01, T1/2 change > 1.5 hours; Fig. 3c-d). The different outcome from Comparison 1 might be 

ascribed to the phosphoproteomic enrichment step. This step could cover more low-abundant proteins, 

which in turn have a shorter T1/2 than high-abundant proteins detected by total proteomics25, 29, 36 (Fig. 
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S4a). The above global result further emphasizes the importance of using sequence-matched controls for 

analyzing the endurance of modified proteoforms. 

 

Taken together, the matching comparisons somewhat surprisingly elaborate that many proteins tend to 

increase rather than decrease T1/2 when phosphorylated. The peptide-matching strategy (Comparison 3) 

which generated more significant DT1/2 values is thus preferably used, whereas the protein-matching 

strategy (Comparison 2) was also adopted in some of the following analyses because it generates 2.5 

times more the valid DT1/2 values for phosphosites (6,834 for HeLa_7 and 7,654  for HeLa_8).  

 

Structural features associated with protein endurance altered by site-specific phosphorylation. 

The effects of phosphosites on protein endurance (Fig. S5a) prompted us to investigate whether certain 

local structural environments and other properties of particular phosphosites are associated with DT1/2. 

By comparing site-specific T1/2 to a recently published dataset reporting the site-specific melting 

temperature (Tm) for phosphoproteins6, we found a positive correlation of R=0.20 across all 

phosphosites. This relationship holds even after stringent correction using bulk-protein abundance which 

positively correlates to both T1/2 and Tm (Fig. S4). Conceivably, this result indicates that 

phosphorylation sites bringing more thermal stability to proteins may increase protein endurance (Fig. 

4a) and might be suggestive of a coupling mechanism between structural stability and expression 

stability for achieving cellular proteostasis. 

 

Next, to facilitate the relative DT1/2 analysis, we divided DT1/2 into quintile segments, with Q1 (0-20%) 

representing phosphosites reducing endurance (i.e., faster turnover), Q2-Q4 (20-80%) representing 

intermediately regulated cases, and Q5 (80-100%) representing the highest endurance (i.e., dramatically 
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slowed down protein turnover with phosphorylation; Fig. S5b-d). Firstly, we found that the grand 

average of hydropathy (GRAVY) score of all np-peptides negatively correlates to DT1/2, suggesting the 

higher peptide-hydrophobicity tends to stabilize the existence of the phospho-proteoform (P= 0.0029 

and 0.0014 between Q1 and Q5 in HeLa_7 and HeLa_8, Wilcoxon sum test; Fig. 4b).  Secondly, 

different protein domains did not show a general effect on DT1/2 (Fig. 4c & Fig. S6). One of the 

exceptions is the increased endurance for phosphorylated MARCKS (P= 0.006 and 0.034), an 

intrinsically disordered, alanine-rich protein whose phosphorylation translocates the protein from plasma 

membrane to cytoplasm through conformational changes37. Another exception is the shortening 

endurance of phosphorylated KI67/Chmadrin repeat (P= 4.3E-09 and 1.5e-4) with presumable functions 

in the cell cycle process38. Thirdly, global DT1/2 values among the phosphorylated serine (S), threonine 

(T), and tyrosine (Y) sites revealed longer lifetime for pS than pT containing peptides (median is 2.43 

vs. 1.48 hours of DT1/2, P=0.0011, for HeLa_7). Seemingly, pY yields the shortest endurance (DT1/2 = 

0.066 hours). Notably, the combination of two phosphorylated amino acids further increased protein 

endurance: DT1/2 is 6.87 hours for two pS containing peptides and 3.70 for those with one pS and one pT 

(Fig. 4d), higher than single phosphosite containing peptides. This reinforces the delaying effect of 

individual phosphorylation on protein turnover globally. All identical observations were obtained from 

HeLa_8 (Fig. S7a). Finally, phosphosites without transmembrane topologies (non-TM) demonstrated 

smaller DT1/2 than those with transmembrane domains (e.g., helices, Fig. 4e, and Fig. S7b). 

Nevertheless, phosphosites predicted in a buried region with low solvent accessibility and in helical, or 

β-sheet demonstrated smaller half-life changes than those in exposed and loop area, in agreement to 

thermal stability data6 (Fig. 4f-g and Fig. S7c-d). 
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In summary, we discovered that local protein structural properties around specific phosphorylation sites 

influence protein endurance in response to phosphorylation. 

 

Functional insights for altered protein endurance induced by phosphorylation. 

Next, we studied the functional relevance between phosphorylation and protein endurance alteration. 

Ochoa et al. recently conducted a meta-analysis of phosphoproteomic datasets and extracted 59 features 

annotating phosphosite functions. They further integrated these features to a single score that prioritizes 

phosphosites relevant for cell fitness11. Correlating DT1/2 to this score reveals a strong, negative trend 

(Fig. 5a), reassuringly indicating that those functionally important phosphosites are likely to have a 

faster turnover, underscoring the actual functional relevance of previous studies focusing on the 

crosstalk between phosphorylation and ubiquitination as well as phosphodegrons17, 39. In-depth 

correlation analysis suggests that DT1/2 has high evolutionary relevance. For example, compared to Q2-4 

and Q1, Q5 sites exhibit a much higher variant tolerance (SIFT score) that summarizes the lower 

conservation for phosphosite residue to alanine mutations or any mutations11, 40 (Fig. 5b & Fig. S8). 

Thus, phosphosites, mainly slowing down protein turnover, tend to be less conservative during 

evolution. Moreover, the kinase and kinase-substrate annotation suggested that phosphorylated kinases 

generally increased their lifetime, just as other phosphorylated proteins. Deviating from this norm are a 

few examples showing faster turnover in steady-state cells, such as Rho-associated coiled-coil 

containing kinases, ROCK1, and ROCK2 (Fig. 5c &S9). Kinase-substrate mapping further revealed that 

the phosphosites activated by Cyclin-dependent kinases, especially CDK1, have a drastically short 

endurance (Fig.5d & Fig. S10a), in agreement with prior knowledge that the phosphorylation coupling 

degradation is essential in cell division39. In the next step, to obtain an unbiased functional view for site-

specific DT1/2, we performed a biological process (BP) enrichment analysis in each segment from Q1 to 
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Q5 (Fig. 5e for HeLa_7 & Fig. S11 for both cells). A few BPs are universally enriched by the 

phosphoproteome (throughout Q1-Q5), such as cell-cell adhesion, RNA splicing, and RNA binding. 

Specific BPs essential for translational control such as translational initiation (P=0.035), protein 

biosynthesis (P=0.013), as well as cell cycle (P=0.008) are enriched in Q1, demonstrating their shorter 

endurance upon phosphorylation. The SH3 domain was preferably enriched in Q2-4, indicating the 

robustness of endurance for these phosphoproteins, on average. Q5 enriched distinctive BPs such as 

translocation (P=1.93e-5), glucose transport (P=4.1e-4), and tRNA transport from the nucleus (P=6e-4), 

suggesting a stabilization of the expression of proteins participating in cellular transport by 

phosphorylation. In addition, distributing DT1/2 values to their protein subcellular locations41 only 

revealed an exceptional case of Nuclear Speckles, where the phosphoproteins have a relatively faster 

turnover (Fig. S12). 

 

Besides biological function annotation, we assessed the frequency of amino acids (A.A.) surrounding 

phosphosites, with the expectation to identify more coupling rules for phosphorylation and degradation 

(Fig. 5f). The central A.A. position in this analysis confirmed that pT and pY outperform pS in reducing 

protein endurance (see also Fig. 4d). Also, interestingly, we did not detect apparent enrichment of lysine 

(K) residues around phosphosites in Q1, although lysine residues can be potentially ubiquitylated. 

Instead, we discovered a prevalent enrichment of glutamic acid (E) in Q5. Indeed, more Es within ±14 

A.A. residues remarkably increase the phosphosite expression stability, which was not previously 

reported (Fig. 5g and Fig. S10b). Finally, we mapped the phosphosites with their DT1/2 to a dataset 

identifying ubiquitylation peptides containing K-e-diglycine42 in human cells (diGly, Fig. 5h and Fig. 

S10c). We found that DT1/2 indeed shrinks with an increasing percentage (from 0-60%) of modifiable Ks 

17, 43 around the phosphosites. However, the highest density of K(diGly) conversely confers delayed 
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degradation effect (i.e., DT1/2 is larger for 80-100% range, Fig. 5h), suggesting that the density of 

K(diGly) alone without the ubiquitin stoichiometry is not enough to denote protein degradation extent. 

 

In summary, biological annotation on DeltaSILAC data provides the novel functional recognition of 

phosphorylation stability. 

 

Regulation of protein endurance due to phosphorylation can be largely conserved across cells. 

Above, we analyzed cervical cancer cells HeLa_7 and HeLa_8 by DeltaSILAC. We next sought to 

assess the generalizability of the major observations in two colorectal cancer (CRC) cell lines, SW948 

and RKO, by conducting DeltaSILAC measurement. We performed absolute and relative correlation 

analysis for T1/2 and DT1/2 between all four cell lines (Fig. 6a-c). The correlations of proteome-wide, as 

well as phosphoproteome-wide T1/2 between two CRC cells and two HeLa strains, were higher than 

correlations across the tissue types of the cells (R=0.82-0.83 for CRC cells, R=0.87-0.89 for HeLa cells, 

in contrast to R=0.53-0.59 between them). The relative measure, DT1/2, resulted in almost comparable 

correlations (R=0.76 for CRC cells, R=0.83 for HeLa cells, and R=0.31-0.49 between them). Also, we 

were able to broadly reproduce observations made in HeLa cells, such as the enrichment of Es in Q5 

(Fig. 6d) and the globally increased protein endurance by phosphorylation (Fig. S13). Thus, DT1/2 

demonstrates a promising, non-stochastic parameter to be measured for different cell lines. 

 

Discussion 
Here we established an unbiased proteomic method, DeltaSILAC, that quantitatively measures the site-

specific impact on protein turnover rendered by PTM events on thousands of proteins. Although 

phosphorylation was heavily studied in response to perturbations such as drug treatment and was heavily 
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discussed together with instant “phosphate-transfer” activities by kinase and phosphatase, many 

druggable phosphorylation sites are constitutive, stabilized, or rewired in the disease status. We used the 

fact that in steady-state growing cells, the abundance of almost all proteins, as well as their modified 

versions, achieves a balance between synthesis and degradation22, 24, 29. Accordingly, a pSILAC 

experiment provides an excellent opportunity to study the de facto outcome of this balance for proteins 

and proteoforms. DeltaSILAC essentially measures this balance after the addition and removal of 

phosphate groups by kinases and phosphatases and the stabilization of the protein synthesis and 

degradation processes such as the ubiquitin-proteasome pathway and lysosomal proteolysis. This is 

because, in DeltaSILAC, the counterpart non-modified peptide (np-peptide, or at least the deriving 

protein) for each Class-I phosphopeptide has to be quantified with a half-life, simulating a virtual, non-

modified proteoform reference that is also PTM site-specific. It should be stressed, thus, that the bona 

fide endurance change at the protein level might be smaller than DT1/2 appeared, due to the mutually 

causal relationship between lifetimes of modified and non-modified proteoforms in growing cells. The 

real proteoform endurance, in theory, has to be measured by top-down approaches3, which currently still 

lack sensitivity. Nevertheless, we believe DeltaSILAC presents a significant methodological advance, in 

contrast to traditional qualitative LC-MS/MS studies17 that might be biased by PTM enrichment 

efficiency, basic protein abundance, and the possibility of other co-existing PTMs. 

 

Of note, the high reproducibility of DIA-MS is extremely important for DeltaSILAC, because DIA-MS 

favorably supports the pSILAC experiment, which routinely requires multiple samples to be measured. 

The single-shot DIA-MS already achieved substantial coverage on both proteome and 

phosphoproteome, minimizing the overall instrument time needed for a global analysis. Importantly, as 

illustrated in Fig. 2f-i, the MS2-level ion signatures unique to PTM can be extracted from DIA, together 

with high-resolution LC separation, to reach unprecedented analytical specificity for each PTM sites. 
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Such specificity may be challenging to achieve for MS1 alignment algorithms34, 35. Another prominent 

advantage of DeltaSILAC is its accuracy because every H/L ratio is inferred from the same MS2 scans 

in the same MS injection. This means, even MS has a sensitivity drift between injections, the relative 

H/L ratios between PTM and non-PTM peptides, once identified, remain quantitatively accurate. 

 

We show that DeltaSILAC has revealed novel biological insights. Firstly, the majority of the 

phosphorylation sites were determined to increase their lifetime, at least in the four investigated cancer 

cells under stable growing status. This delayed turnover of phosphoproteins, in the first sight, seems to 

be contradictory to the functional crosstalk events discovered between phosphorylation and 

ubiquitylation8, 9, 12. The further scrutiny suggests that the phosphosites of faster turnover (i.e., those in 

Q1) are indeed functionally more essential for cellular fitness, more evolutionarily conserved, and 

enriched for CDK1 substrate sites, all consistent to previous findings8, 9, 13, 14. Thus, the discovery that 

phosphorylation often negatively acts on protein turnover might be an observation that was 

underrepresented in previous studies due to the lack of unbiased quantitative measurements. Secondly, 

local protein structural feature analysis and biological annotation illustrate that these turnover-delaying 

phosphoproteins may involve multiple-phosphorylated sites, frequently in the loop and exposed regions, 

and might significantly regulate cellular transport and various processes. For example, the nuclear pore 

complexes (NPC) were previously identified to maintain over a cell’s life through slow but finite 

exchange44.  With a few sites being phosphorylated, these NPC proteins were found by DeltaSILAC to 

resist degradation even more, reinforcing their roles in cellular ageing44. Thirdly, the dataset suggests the 

lack of glutamic acid residues around the phosphosite might provide a more prominent feature than the 

existence of lysine in predicting the phospho-proteoform endurance. The frequency of glutamic acid is 

remarkably linked to longer phosphosite endurance. The above observations, although preliminary, open 
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an attractive avenue for perturbating the activity of key phosphorylation sites that are known to be 

responsible for drug response and disease development, for the possibility of phenotype management 

(Fig. S14). The targeted management could be directed by the prediction rules39 (Fig. 6f) exemplified 

above. Generating a data inventory of endurance features by DeltaSILAC measurements on more 

samples and relevant models is thus appealing in the future. 

 

As for potential applications, DeltaSILAC could be quickly adapted to study protein modifications other 

than phosphorylation. However, the pSILAC design will limit this approach in cell line models or other 

systems where the isotopic labeling is possible45, 46. Also, mechanistically, more time points of pSILAC 

labeling and subsequent biochemical experiments are required to further understand more detailed or 

alternative mechanisms underlying the altered turnover rates. Examples of interesting questions are. e.g., 

whether the newly synthesized proteins are less likely to be phosphorylated or modified? Do modified 

and non-modified proteins follow different exponential decay kinetics47? How does the DeltaSILAC 

result change between different subcellular compartments? 

 

In conclusion, DeltaSILAC offers a new and high potential workflow for timing the endurance of 

thousands of modified proteins, providing complementary knowledge to existing measurements for 

understanding functions of protein PTMs. 
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Figure Legend 

 

Figure 1. Development of DeltaSILAC to quantify protein endurance with site-specific 

phosphorylation. 

(a) Experimental workflow illustrating the DeltaSILAC method. The experimental method is comprised of 

pSILAC labeling, phosphoproteomics, and DIA mass spectrometry (DIA-MS). 

(b) Data analysis strategy illustrating the peptide sequence level matching used in DeltaSILAC. 

(c-d) Venn diagram of overlap between unmodified and phosphorylated proteins and peptides at expression (c) 

and endurance (d) levels. 

(e) Circos plot of relative HeLa_7 (CCL2)/ HeLa_8 (Kyoto) ratios in six layers, including expression and 

endurance, as depicted. Fold changes from high to low are shown in red to green. The data are phosphoproteome 

centric, i.e., data matched to available phosphoproteomic identifications.  

(f) Spearman correlation analysis between six layers using HeLa_7/ HeLa_8 ratio data. Spearman’s rho is shown, 

with positive correlations visualized in blue color and negative correlations in red color. 

(g) The scatterplot indicating HeLa_7/ HeLa_8 fold-change ratios of kLoss estimates between matched unmodified 

and phosphopeptides. 

 

Figure 2. Regulation of protein endurance by phosphorylation in DeltaSILAC data. 

(a-d) The averaged DT1/2 values (N=3 biological replicates) determined by an independent analysis of HeLa_7 

and HeLa_8 cells for protein examples of multiple phosphorylation sites. These examples include (a) neuroblast 

differentiation-associated protein AHNAK (AHNAK), (b) Microtubule-associated protein 4 (MAP4), (c) 

Myristoylated alanine-rich C-kinase substrate (MARCKS), and (d) Splicing factor 3B subunit 1 (SF3B1). 

(e) Demonstration of localization of nine phosphorylated sites of SF3B1 in its known structure. 

(f) The Heavy-to-Light (H/L) ratios determined for S79 and S86 phosphorylated form (p-peptide) and their shared 

un-phosphorylated form (np-peptide, LASVPAGGAVAVSAAPGS79AAPAAGS86APAAAEEK) in 60S acidic 

ribosomal protein P2 (RPLP2). 

(g) The DIA MS/MS peak groups during LC elution containing unique fragment ions for the peptide carrying 

phosphorylated S79 (pS79). Note that the heavy (above middle zero lines) to light peaks (below zero line) are 

scaled, respectively.  

(h) The DIA MS/MS peak groups during LC elution containing unique fragment ions for the peptide carrying 

phosphorylated S86 (pS86). Note that the heavy to light peaks are scaled, respectively.  
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(i) The MS1 peak groups from the same DIA run during the same elution region (corresponding to a peptide 

containing single phosphorylation).  

(j-m) Individual examples of H/L ratios determined for paired p-peptide and np-peptide for (j) Protein 

FAM207A, (k) Glycylpeptide N-tetradecanoyltransferase 1 (NMT1), (l) Prelamin-A/C (LMNA), and (m) 

Peroxiredoxin-6 (PRDX6). 

(n) Data variability of DT1/2 values summarized as standard deviation (S.D.) for different phosphosites within the 

same protein. All proteins were classified by the number of phosphosites measured by DeltaSILAC. The red 

numbers denote the median values in each group. 

 

Figure 3. Phosphorylation increases endurance for the majority of proteins in growing HeLa_7 

and HeLa_8 cells. 

(a-b) Distribution of T1/2 values in total proteome versus phosphopeptides matched proteins versus 

phosphoproteins (based on individual phosphopeptides not summarized), and matched peptides versus 

phosphopeptides in HeLa_7 (a) and HeLa_8 (b) cells. P values were calculated by Wilcoxon sum test. The 

borders of the box represent the 25th and 75th percentile, the bar within the box represents the median, and 

whiskers represent the range. 

(c-d) Volcano plots for DT1/2 of 3 vs. 3 biological replicates in HeLa_7 (c) and HeLa_8 (d) cells. P values were 

calculated by Student’s T-tests. The color dots denote the significantly altered gene expressions (P < 0.01; DT1/2 > 

1.5 hours). 

 

Figure 4. Global relationships between local structural features and phosphorylation-altered 

protein endurance. 

(a) The melting temperature (Tm, °C) of matched phosphosite-specific proteoforms is distributed into T1/2 

quintiles from small to large in HeLa_7 and HeLa_8 cells (***P < 0.001, *P < 0.05, Wilcoxon sum test). 

(b) The GRAVY score of phosphopeptides (based on their naked sequences) is distributed into DT1/2 quintiles 

from small to large percentage in HeLa_7 and HeLa_8 cells (**P < 0.01, *P < 0.05, Wilcoxon sum test).  

(c) Comparisons between the most detected protein domains and DT1/2 values (to bulk proteins) for measured 

phosphosites in HeLa_7 cells. 

(d) Distribution of DT1/2 values for phosphopeptides with indicated phospho- amino acids and combinations 

thereof in HeLa_7 cells (***P < 0.001, *P < 0.01, Wilcoxon sum test). 

(e-g) Comparisons of DT1/2 values and predict transmembrane topologies (e), solvent accessibility (f), and 

predicted secondary structure elements (g) in HeLa_7 cells (*P < 0.05, Wilcoxon sum test).  

All corresponding results in HeLa_8 can be found in Figure S6-7. 
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Figure 5. Functional features associated with phosphorylation-altered protein endurance. 

(a) The functional scores of phosphosites are distributed into DT1/2 quintiles (Q1 to Q5: small to large) in HeLa_7 

and HeLa_8 cells (**P < 0.01, *P < 0.05, Wilcoxon sum test). 

(b) The Sift scores of the alanine mutant for phosphosites are distributed into DT1/2 quintiles (Q1-Q5: from small 

to large) in HeLa_7 and HeLa_8 cells (***P < 0.001, **P < 0.01, Wilcoxon sum test). 

(c) Depiction of human kinome indicating all kinases that harbor phosphorylation site with less (green) or greater 

(brown) phosphoproteoform T1/2 value compared to bulk proteins in HeLa_7 cells. A large node represents a 

greater difference. For kinase with multiple phosphosites, only the largest change (maximum absolute DT1/2 value) 

was shown.  

(d) Comparisons between detected kinase substrate motifs and DT1/2 values (to bulk proteins) for identified 

phosphosites in HeLa_7 cells. 

(e) Functional processes enrichment analysis for all five quintiles of proteins according to the ranked DT1/2 value 

of phosphoproteoforms compared to the matched proteins in HeLa_7 cells. 

(f) Sequence analysis of the ±14 amino acids around the phosphosite with the smallest and longest DT1/2 values 

(Q1 vs. Q5, where Q1 has a faster turnover for p-peptides than np-peptides, and Q5 has a much slower turnover 

for p-peptides than np-peptides) in HeLa_7 and HeLa_8 cells. The percentage of significant residues (P < 0.05) 

were shown.  

(g) Distribution of DT1/2 values of phosphopeptides with different numbers of Glutamic acids (Es) around the 

phosphosite (±14 amino acids) in HeLa_7 cells (***P < 0.001, Wilcoxon sum test). 

(h) Distribution of DT1/2 values (to bulk proteins) with different percentages of modifiable ubiquitination sites (the 

number of ubiquitination sites over the total number of Lys) around the phosphosite (±14 amino acids) in HeLa_7 

cells (*P < 0.05, one-sided Wilcoxon sum test). 

All corresponding results in HeLa_8 can be found in Figure S8-11. 

 

Figure 6. Phosphorylation conferred protein endurance regulation across HeLa_7, HeLa_8, 

SW480, and RKO cells. 
(a-c) Spearman’s correlation among four cell lines of T1/2 values for all peptides (a), phosphopeptides (b), and 

DT1/2 values (c).  

(d) Sequence analysis of the ±14 amino acids around the phosphosite with the fastest and slowest DT1/2 values 

(Q1 vs. Q5) in SW948 and RKO cells. The percentage of significant residues (P < 0.05) were shown. 

(e) Proposed model coupling protein endurance to phosphorylation with different surroundings. 
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Methods 

Cell culture. 

Twelve of 14 HeLa strains used in the multi-omics study were used in this report26, analyzing 

phosphoproteomic variability. The collection includes the original six HeLa cells variants subtype CCL2 

(2, 6, 7, 12, 13, and 14) and six HeLa cells variants subtype Kyoto (1, 3, 4, 8, 9, and 10). The original 

HeLa_11 (deviating genome26) and HeLa_5 (CCL2.2) were not used in this study. All HeLa cells were 

gifts from multiple laboratories, as documented previously. The human colon cancer cell lines, SW948 

and RKO, were kindly provided by Dr. Prem Subramaniam at Columbia University. All cells were 

tested and confirmed to be negative for mycoplasma. All cells were cultured for up to five additional 

passages for aliquoting and protein harvest. The cell culture protocol was detailed previously26. In brief, 

cells were routinely cultured in 5% CO2, and 37° in DMEM Medium supplemented with 10% FBS, 

Sigma Aldrich, together with a penicillin/streptomycin solution (Gibco). 

 

Pulsed SILAC experiment. 

For the two HeLa cell lines (HeLa_7, HeLa_8), SILAC DMEM medium (Thermo #88364) lacking L-

arginine and L-lysine was firstly supplemented with 10% dialyzed FBS (Thermo Fisher, # 26400044) 

and the same penicillin/streptomycin mix. For both SW948 and RKO cell lines, the SILAC RPMI-1640 

media lacking L-Arginine, L-Lysine (Thermo Scientific, # 88365) was used instead, with the same basic 

configuration. The Heavy L-Arginine-HCl (13C6, 15N4, purity >98%, #CCN250P1), and L-Lysine-

2HCl (13C6, 15N2, purity >98%, # CCN1800P1) were purchased from Cortecnet and spiked into the 

culturing medium in the same manner as described previously for DMEM or RPMI medium26, 48. Before 

SILAC labeling, cells were seeded (at 40-50% confluency for CRC cells and 50-60% for HeLa cells) 

and incubated in normal light DMEM medium for 24 hours, at 5% CO2 37°C, overnight. For pSILAC 

labeling, five-time points, including 0 hours and four labeling points 1, 4, 8, and 12 hours were applied, 

with three biological replicates (as individual dishes) per time point per cell line. This means a total of 

fifteen 10-cm dishes per cell line were prepared before labeling. For all four cancer cells, each replicate 

sample per time point yielded corresponding protein amount, sufficiently supporting 700 μg of protein 

mixture (see below) processed for proteomic and phosphoproteomic analysis. 
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DeltaSILAC proteomic sample preparation. 

Label-free and labeled cells of HeLa cells, including HeLa_7 and HeLa_8, SW948, RKO, were 

harvested and digested, mainly as previously described48, 49. Cells were washed three times by precooled 

PBS, harvested, and snap-frozen by liquid nitrogen. The cell pellets were immediately lysed by adding 

10 M urea containing complete protease inhibitor cocktail (Roche) and Halt™ Phosphatase Inhibitor 

(Thermo) and stored in -80°C for further analysis. After harvesting all dishes, samples of HeLa_7 and 

HeLa_8, as well as samples from SW948 and RKO, were processed for tryptic digestion. The cell 

pellets were ultrasonically lysed by sonication at 4 °C for 2 min using a VialTweeter device (Hielscher-

Ultrasound Technology)25, 48, 49 and then centrifuged at 18,000 × g for 1 hour to remove the insoluble 

material. A total of 700 μg supernatant proteins (determined by BioRad Bradford assay) were transferred 

to clean Eppendorf tubes. The supernatant protein mixtures were reduced by 10 mM tris-(2-

carboxyethyl)-phosphine (TCEP) for 1 hour at 37 °C and 20 mM iodoacetamide (IAA) in the dark for 45 

min at room temperature Then five volumes of precooled precipitation solution containing 50% acetone, 

50% ethanol, and 0.1% acetic acid were added to the protein mixture and kept at −20 °C overnight. The 

mixture was centrifuged at 18,000×g for 40 min. The precipitated proteins were washed with 100% 

acetone and 70% ethanol with centrifugation at 18,000×g, 4°C for 40 min, respectively. 300 μL of 100 

mM NH4HCO3 was added to all samples, which were digested with sequencing grade porcine trypsin 

(Promega) at a ratio of 1:20 overnight at 37 °C. After digestion, the peptide mixture was acidified with 

formic acid and then desalted with a C18 column (MarocoSpin Columns, NEST Group INC). The 

amount of the final peptides was determined by Nanodrop (Thermo Scientific). About 5% of the total 

peptide digests were kept for total proteomic analysis. 

 

DeltaSILAC phosphoproteomic sample preparation.  

From the same peptide digest above, 95% of peptides per sample was used for phosphoproteomic 

analysis. The phosphopeptide enrichment was performed using the High-Select™ Fe-NTA kit (Thermo 

Scientific, A32992) according to the kit instructions, as described previously50. Briefly, the resins of one 

spin column in the kit were divided into five equal aliquots, each used for one sample. The peptide-resin 

mixture was incubated for 30 min at room temperature and then transferred into the filter tip (TF-20-L-

R-S, Axygen). The supernatant was removed after centrifugation. Then the resins adsorbed with 

phosphopeptides were washed sequentially with 200 µL × 3 washing buffer (80% ACN, 0.1% TFA) and 

200 µL × 3 H2O to remove nonspecifically adsorbed peptides. The phosphopeptides were eluted off the 
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resins by 100 µL × 2 elution buffer (50% ACN, 5% NH3•H2O). All centrifugation steps above were 

conducted at 500 g, 30sec. The eluates were collected for speed-vac and dried for mass spectrometry 

analysis. 

 

DIA mass spectrometry. 

For each proteomic and phosphoproteomic sample generated by DeltaSILAC, DIA-MS analysis was 

performed on 1 μg of peptides, as described previously30, 48. 

 

LC separation was performed on EASY-nLC 1200 systems (Thermo Scientific, San Jose, CA) using a 

self-packed analytical PicoFrit column (New Objective, Woburn, MA, USA) (75 µm × 50 cm length) 

using C18 material of ReproSil-Pur 120A C18-Q 1.9 µm (Dr. Maisch GmbH, Ammerbuch, Germany). 

A 120-min measurement with buffer B (80% acetonitrile containing 0.1% formic acid) from 5% to 37% 

and corresponding buffer A (0.1% formic acid in H2O) during the gradient was used to elute peptides 

from the LC.  The flow rate was kept at 300 nL/min with the temperature-controlled at 60 °C using a 

column oven (PRSO-V1, Sonation GmbH, Biberach, Germany). 
 

The Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Scientific) instrument coupled to a 

nanoelectrospray ion source (NanoFlex, Thermo Scientific) was calibrated using Tune (version 3.0) 

instrument control software. Spray voltage was set to 2,000 V and heating capillary temperature at 

275 °C. All the DIA-MS methods consisted of one MS1 scan and 40 MS2 scans of variable isolated 

windows. This schema is comprised of 350~373, 372~391, 390~407, 406~421, 420~434, 433~447, 

446~459, 458~470, 469~482, 481~494, 493~506, 505~517, 516~529, 528~541, 540~553, 552~564, 

563~576, 575~588, 587~602, 601~614, 613~626, 625~641, 640~655, 654~669, 668~683, 682~698, 

697~714, 713~732, 731~751, 750~771, 770~792, 791~815, 814~839, 838~868, 867~899, 898~939, 

938~983, 982~1044,1043~1127, 1126~1650 m/z, with 1 m/z overlapping between windows. The MS1 

scan range is 350 – 1650 m/z, and the MS1 resolution is 120,000 at m/z 200. The MS1 full scan AGC 

target value was set to be 2.0E5, and the maximum injection time was 100 ms. The MS2 resolution was 

set to 30,000 at m/z 200 with the MS2 scan range 200 – 1800 m/z, and the normalized HCD collision 

energy was 28%. The MS2 AGC was set to be 5.0E5, and the maximum injection time was 50 ms. The 

default peptide charge state was set to 2. Both MS1 and MS2 spectra were recorded in profile mode. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2020. ; https://doi.org/10.1101/2020.03.12.989467doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.12.989467
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Mass spectrometry data analyses. 

DIA-MS data analyses were performed using Spectronaut v1351, 52. For both proteomic and 

phosphoproteomic measurements, the hybrid assay libraries were respectively generated, which were 

based on both DIA measurements as well as data-dependent acquisitions (DDA) on relevant samples 

method described previously48), as well as the optimized pSILAC-DIA workflow25, 27. To generate the 

library for pSILAC DIA-MS datasets, the default settings for Pulsar search of Spectronaut was used with 

modification in the Labeling setting: a) “Labelling Applied” option was enabled, b) SILAC labels 

(“Arg10” and “Lys8”) were specified in the second channel. c) The complete H/L labeling of the whole 

library was ensured by selecting the “In-Silico Generate Missing Channels” option in the Workflow 

settings. d) Importantly, for phosphoproteomic datasets, the possibility of Phosphorylation at S/T/Y was 

enabled during database searching (as a variable modification), together with Oxidation at methionine 

was set as variable modification, whereas carbamidomethylation at cysteine was set as a fixed 

modification. The final spectral libraries (HeLa proteome library containing 179,199 peptide precursor 

assays for 8,040 protein groups, HeLa phosphoproteome library containing 139, 117 peptide precursor 

assays for 7,758 protein groups, CRC proteome library containing 78,763 peptide precursor assays for 

6,593 protein groups, and CRC phosphoproteome library containing 56,056 peptide precursor assays for 

4,859 protein groups) were all made public through PRIDE (see below). 

 

For the targeted data extraction and subsequent identification and quantification for pSILAC datasets, 

the Inverted Spike-In (ISW) workflow was used, as described previously27. This means the “Spike-In” 

workflow was selected in Multi-Channel Workflow Definition, and both “Inverted” and “Reference-

based Identification” options were enabled. Both peptide and protein FDR cutoff (Qvalue) were 

controlled at 1%%, and the data matrix was strictly filtered by Qvalue. The “minor peptide group” was 

defined as Modified Sequences. In particular, the PTM localization option in Spectronaut v13 was 

enabled to locate phosphorylation sites31, 53, with the probability score cutoff >0.7531, resulting Class-I 

peptides4 to be identified and quantified. All the other settings in Spectronaut were kept as Default. 

 

pSILAC based calculation for endurance analysis. 

In a pSILAC experiment analyzing protein turnover, because the growing cells are respectively 

maintained in a steady state29, it is assumed that the degraded and synthesized protein copies are 

balanced28. Accordingly, almost all (if not all) the proteoforms, including alternative splicing isoforms33 
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and proteins with PTMs, should achieve the concentration balance between synthesis and degradation in 

such a state (i.e., without any perturbation). This principle essentially enables the protein turnover 

calculation by monitoring the intensities of light and heavy peptides across several time points.  
 

To fit the model of protein turnover estimation, we used a similar approach as was employed in our 

previous studies25, 26. Below, we describe such an approach in the present study. 

a) We quantified peptide precursor intensities for light and heavy signals from the above 

Spectronaut results. 

b) We calculated the rate of loss of the light isotope (kLoss) by modeling the relative isotope 

abundance (RIA, analogous to Pratt et al. 54). RIA is determined by the signal intensity in the 

light channel divided by the sum of light and heavy intensities (RIA = L/ (H+L)), onto an 

exponential decay model assuming a null heavy intensity (RIA = 1) at time 0; i.e., RIA(t)=e−klosst.  

c) We used nonlinear least-squares estimation to perform the fit. A weighted average of the peptide 

precursor kLoss values was performed to calculate the kLoss values for all unique peptide sequence 

precursors, which were then aggregated as below.  

d) We then summarized kLoss to evaluate the turnover rate for each bulk-protein as previously 

described 25, 26, but also for each peptide and especially phosphopeptide in this study. In 

particular, for kLoss determination, we applied a strict filter strategy as previous studies 33 by only 

accepting those peptide H/L ratios showing monotone increasing pattern during pSILAC labeling 

process and by only accepting those turnover rates with the CV of  log2(kLoss) 29 <20% across 

three biological replicates.  

e) To calculate the half-life T1/233, 54, 55 for each peptide and phosphopeptide, we used T1/2= Ln(2)/ 

kLoss so that the kLoss rate can be converted to a time domain.  It should be noted that DeltaSILAC 

determination is performed per cell line. Thus, the relative doubling time difference between cell 

lines does not impact the calculation of our T1/2 values, which are essentially identical to the 

previously reported T50% values33. 

f) Finally, to pinpoint the endurance influence of each PTM, we subtracted T1/2 of backbone 

sequence-matching non-phosphorylated peptide (np-peptide) from the T1/2 of counterpart 

phosphopeptide (p-peptide), resulting in the value of DT1/2.  

This means DT1/2 = T1/2 p-peptide - T1/2 np-peptide was applied. 

The whole process of calculating T1/2 is also illustrated in Figure S2. 
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Bioinformatics analyses. 

Circos-0.69-9 (http://circos.ca/) was used for the circle visualization (Fig 1e). Spearman’s correlation 

coefficients were calculated using R (functions cor() or cor.test() to infer statistical significance). The 

colored scatterplots from blue-to-yellow were visualized by the “heatscatter” function in R package 

“LSD” using a two-dimensional Kernel Density Estimation (Figs 1g and 6a-c). The correlation matrix 

was created by the “corrgram” function in R package “corrgram” (Fig 1f). Partial correlation was 

analyzed by the “pcor” function in R package “ppcor” to inspect relationship between two continuous 

variables whilst controlling for or correct against the effect of another continuous variable. The melting 

temperature (Tm, °C) value (Fig 4a) for each phosphosite was taken from the reported dataset6. The 

flanking amino acid sequences (±14 amino acids) of phosphorylation sites were retrieved by motifeR 

(https://www.omicsolution.org/wukong/motifeR/)56. The Calculate the grand average of hydropathy 

(GRAVY) value for protein sequences, defined by the sum of hydropathy values of all amino acids 

divided by the protein length, was computed by GRAVY Calculator (http://www.gravy-

calculator.de/index.php). The flanking amino acid sequences (±14 amino acids) of phosphorylation sites 

that can be unambiguously assigned to specific serine, threonine, or tyrosine residues were used for 

GRAVY calculation (Fig 4b). Secondary structure element, solvent accessibility, and transmembrane 

topology were predicted using Predict_Property standalone package (v1.01)57 with the protein FASTA 

sequences (Figs 4e-g). The functional score can reflect the importance of phosphosite for organismal 

fitness11. The sift score predicts the functional impact of missense variants based on sequence homology 

and the physicochemical properties of the amino acids. Lower scores represent deleterious variants. For 

every phosphorylated protein site, the functional score (Fig 5a), sift scores of alanine mutant (Fig 5b), 

the average sift scores of all variants, protein domains (Fig 4c), and kinase substrate motifs (Fig 5d) 

were retrieved from the previous report11. Kinase family tree (Fig 5c) was depicted by Coral 

(http://phanstiel-lab.med.unc.edu/CORAL/)58. Functional annotation was carried out in David 

Functional Annotation Tool v6.8 (https://david.ncifcrf.gov/summary.jsp) with all detected proteins in 

this study as background (Fig 5e). The compound responses were enriched by phosphorylation site-

specific functional enrichment through ssGSEA2.0/PTM-SEA59. Sequence analysis (Figs 5f and 6d) 

was conducted and visualized by IceLogo (https://iomics.ugent.be/icelogoserver/)60. The modifiable 

ubiquitination sites in the flanking sequence (±14 amino acids) of the phosphosite were identified 

according to the reported dataset42, and the percentage of modifiable ubiquitination sites was calculated 

as the ratio of the number of ubiquitination sites over the total number of Lys (Fig 5h). The cellular 
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compartment location of proteins with phosphorylation was annotated by a subcellular map of the 

human proteome41. All boxplots were generated using the R package “ggplot2”. The bold line within 

box indicates median value; box borders represent the first and third quartile, and whiskers and grey 

panels represent the minimum and maximum value within 1.5 times of interquartile range. Outliers are 

depicted using hollow dots. The heatmap was created using the R package “heatmap.2”. 

 

Data availability. 

The mass spectrometry data, all the spectral libraries used, and raw output tables as results have been 

deposited to the ProteomeXchange Consortium via the PRIDE61 partner repository. 
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Supplementary Figure Legend 

 

Supplementary Figure 1. Phosphorylation profiles show high heterogeneity across 12 HeLa cell lines 

in steady states by the reliable DIA-MS measurement. 

Supplementary Figure 2. Comparison of kLoss and T1/2 profiles between HeLa_7 and 8 cells. 

Supplementary Figure 3. Intra-protein variability and biological repeatability for DT1/2 values. 

Supplementary Figure 4. Comparison of protein abundance and phosphoprotein endurance and melting 

temperature for site-specific phosphorylation. 

Supplementary Figure 5. Endurance distribution quantified by DeltaSILAC in HeLa_7 and HeLa_8 

cells. 

Supplementary Figure 6. Distribution of DT1/2 values for phosphosites within different protein 

domains. 

Supplementary Figure 7. Global relationships between local phosphosite environment and altered 

protein endurance. 

Supplementary Figure 8. Distribution of conservation for phosphoamino acids with different 

endurance. 

Supplementary Figure 9. Depiction of the kinome with different phosphoprotein endurance. 

Supplementary Figure 10. Comparison of phosphoproteome endurance with biological features. 

Supplementary Figure 11. Categories and functional analysis of phosphorylated protein endurance 

profiles. 

Supplementary Figure 12. Distribution of DT1/2 values for phosphoproteins with different subcellular 

location. 

Supplementary Figure 13. Phosphorylation increases endurance for most proteins in SW948 and RKO 

cells. 

Supplementary Figure 14. Analysis of the connection between phosphoproteome endurance with 

compounds responses. 
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