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Abstract 
 

Recent studies revealed global shifts in RNA editing, the modification of RNA 
sequences, across many cancers. Besides a few sites implicated in tumorigenesis or 
metastasis, most tumor-associated sites, predominantly in noncoding regions, have 
unknown function. Here, we characterize editing profiles between epithelial (E) and 
mesenchymal (M) phenotypes in seven cancer types, as epithelial-mesenchymal 
transition (EMT) is a key paradigm for metastasis. We observe distinct editing patterns 
between E and M tumors and EMT induction upon loss of ADAR enzymes in cultured 
cells. E-M differential sites are highly enriched in genes involved in immune and viral 
processes, some of which regulate mRNA abundance of their respective genes. We 
identify a novel mechanism in which ILF3 preferentially stabilizes edited transcripts. 
Among editing-dependent ILF3 targets is the transcript encoding PKR, a crucial player 
in immune response. Our study demonstrates the broad impact of RNA editing in 
cancer and relevance of editing to cancer-related immune pathways.  
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Introduction 
 

RNA editing, the modification of specific nucleotides in RNA sequences, expands 
diversity in proteins and gene regulatory mechanisms1,2. The most frequent type of RNA 
editing in human cells is A-to-I editing, which refers to the deamination of adenosine (A) 
to inosine (I) and is catalyzed by the Adenosine Deaminases Acting on RNA (ADAR) 
family of enzymes3. Three ADAR genes are encoded in the human genome, namely 
ADAR1, ADAR2 and ADAR3. Catalytically active ADAR1 and ADAR2 are widely 
expressed across tissues. In contrast, ADAR3 is exclusively expressed in certain brain 
regions and is catalytically inactive4. As inosine is recognized as guanosine (G) in 
translation and sequencing, A-to-I editing is also referred to as A-to-G editing. Though 
millions of editing events have been revealed across the human transcriptome, only a 
small proportion of editing events have been functionally characterized. The effects of 
most editing sites, primarily within non-coding regions, have yet to be discovered5,6. 
 
 Increasing evidence has established the importance of RNA editing dysregulation 
in cancer. A number of studies have delineated mechanisms through which individual 
RNA editing sites, mostly causing recoding events (i.e., amino acid changes), promote 
or suppress tumor development7–10. Besides functioning in tumorigenesis, edited RNA 
transcripts can be translated into edited peptides, which may be recognized as cancer 
antigens and activate an anti-tumor immune response11,12. Furthermore, across various 
cancer types, genome-wide aberrations in RNA editing were observed and associated 
with clinical features13–15. Within each cancer type, editing levels generally increased or 
decreased in tumors, compared to matched normal samples. Editing levels of specific 
sites were correlated with tumor stage, subtype, and patient survival, and for a smaller 
subset of nonsynonymous sites, editing altered cell proliferation and drug sensitivity in 
cell line experiments13. As RNA editing has the potential to inform development of 
improved cancer diagnostics and patient-specific treatments, thorough investigation of 
the precise functions and regulatory mechanisms of the many cancer-type-specific RNA 
editing changes is needed10. 

 
In cancer progression, activation of epithelial-mesenchymal transition (EMT) 

facilitates metastasis by enabling tumor cells to gain an invasive phenotype, infiltrate the 
circulatory and lymphatic systems, and reach distant sites for colonization16–18. A few 
RNA editing sites have been associated with this process so far. Specifically, editing 
events in SLC22A3, FAK, COPA, RHOQ, and miR-200b were demonstrated to 
accelerate metastasis12,19–23. While miR-200b normally targets ZEB1 and ZEB2, which 
are key EMT-inducing transcription factors, editing alters its targets and enhances cell 
invasiveness and motility23. The SLC22A3 recoding event also promoted EMT, causing 
expression changes in EMT marker genes19. In contrast, a recoding event in GABRA3 
inhibited metastasis and was present only in non-invasive cell lines and non-metastatic 
tumors22. These studies highlight the functional relevance of RNA editing in metastasis 
and the merit of a more comprehensive investigation. 
 

Here, we present a global analysis and comparison of RNA editing profiles 
between epithelial (E) and mesenchymal (M) phenotypes of primary tumors across 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.981191doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.981191
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

multiple cancer types. Using RNA-seq data derived from bulk tumors and single cells, 
we observed distinct editing patterns between phenotypes, with editing differences often 
enriched among immune response pathway genes. Supported by experimental 
evidence, we show that differential editing sites affect host gene mRNA abundance and 
identify a novel mechanism of editing-dependent stabilization of mRNAs by ILF3. One of 
the target genes of ILF3 is EIF2AK2, coding for Protein Kinase R (PKR), a key player in 
immune and viral response.  
 
Results 
 
Altered RNA editing profiles between epithelial and mesenchymal tumors 
 

EMT is known to be accompanied by substantial transcriptome remodeling17,24–

28. Given the previously reported functional relevance of RNA editing in EMT19,23,29, we 
hypothesized that epithelial and mesenchymal tumors possess different transcriptome-
wide RNA editing profiles. Thus, we analyzed RNA-seq datasets of primary tumors from 
The Cancer Genome Atlas (TCGA). We focused on seven cancer types that have been 
previously studied in the context of EMT and have relatively large sample sizes 
available from TCGA (Fig. 1A). To classify tumors to epithelial (E) and mesenchymal 
(M) phenotypes, we utilized a well-established EMT scoring system, where scoring and 
categorization of tumors into these E and M phenotypes enabled systematic 
identification of cancer-specific differences in treatment response between phenotypes, 
as well as associations with survival30. Of all categorized tumors for each cancer type, 
we further refined the subset of tumors such that metadata were matched between the 
two groups (Supplementary Table 1).  

 
Applying methods previously published from our lab1,31,32, we quantified editing 

levels at over 4 million editing sites recorded in the REDIportal database33. We then 
identified sites that were differentially edited between E and M tumors in each cancer 
type. To control for false discoveries, we filtered out predicted differential editing sites 
that repeatedly exhibited differences in editing when phenotype labels were shuffled 
randomly. Principal components analysis on differential editing levels showed that E 
and M tumors could be well separated by the first two principal components of editing 
(Fig. 1A). These first two principal components did not appear to be confounded by 
sample metadata and suggest that most of the variation in editing is explained by the 
distinction of E and M phenotypes (Supplementary Fig. 1).  

 
Based on the differential editing sites, most cancer types, including LUAD, LUSC, 

PRAD, KIRC and HNSC, demonstrated a hyperediting trend in the M phenotype (Fig. 
1B). In contrast, two cancer types, BRCA and OV, had a trend of hypoediting in the M 
samples. The majority of differential editing sites in all cancer types were located in the 
3’ untranslated regions (UTRs) or introns (Fig. 1C). The above results suggest that 
distinct RNA editing profiles exist between E and M phenotypes.  
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Editing patterns are shared among cancer types and distinct from differential expression 
 

Given dominant trends of hyperediting or hypoediting that distinguished E and M 
phenotypes in an individual cancer type, we asked whether genes with differential 
editing patterns were shared or distinct across cancer types. We examined the 
statistical significance of overlap in differentially edited genes between pairs of cancer 
types by Rank-rank Hypergeometric Overlap (RRHO). Extending Gene Set Enrichment 
Analysis (GSEA) to two dimensions, RRHO tests the significance of the intersection of 
gene lists, ranked by a metric of differential expression, across two genome-wide 
datasets34. We applied RRHO to RNA editing here by ranking genes according to the 
significance of tested editing differences between E and M. Beyond shared 
directionality, we found significant overlap in genes with editing changes among multiple 
cancer types (Fig. 2A). The significant overlap in genes based on differential editing 
suggests that editing changes in EMT may affect common pathways across cancer 
types.   

 
It should be noted that differentially edited genes do not overlap with differentially 

expressed genes (Fig. 2B). This observation indicates that gene expression changes in 
EMT did not confound the RNA editing differences observed. Thus, altered editing 
potentially represent a distinct layer of molecular changes in EMT.  
 
Differential editing occurs in genes of immune relevance 

 
Next, we examined the gene ontologies enriched among genes with differential 

editing in EMT. In this analysis, background control genes were chosen randomly from 
those that did not have differential editing sites but had similar gene length and GC 
content as the differentially edited genes (Methods). Across multiple cancer types, 
differentially edited genes were enriched with viral-host interaction features, interferon 
(IFN) and other immune response pathways, metabolic processes and translational 
regulation (Fig. 2C).  

 
The observation of immune-relevant categories is of particular interest. RNA 

editing has been described as a mechanism to label endogenous double-stranded 
RNAs and consequently prevent IFN induction35–39. However, the roles of editing events 
in genes directly associated with immune response such as those in the IFN response 
pathways have not been well characterized. Our observation indicates that RNA editing 
may directly affect immune response genes in EMT.  
 
Contribution of cell types to differential editing 

 
Given the observed enrichment of differential editing in immune-relevant genes, 

we asked whether our identified differential editing events primarily occur in cancer cells 
or in other cell types in the tumor microenvironment. To address this question, we 
analyzed single cell (sc) RNA-seq data from three non-small cell lung cancer (NSCLC) 
patients, each with three tumor samples from the tumor edge, core, and in-between40. 
Following quality control measures, we clustered the cells in two rounds and labeled cell 
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types based on marker genes to obtain T cells, B cells, myeloid cells, endothelial cells, 
fibroblasts, epithelial cells, mast cells, alveolar cells, and cancer cells (Supplementary 
Fig. 2A-C, Methods). Supporting the accuracy of this clustering, expression of marker 
genes was generally highest in their expected cell types when RPKM was calculated 
from pooled cells and when a signature gene expression matrix was predicted by 
CIBERSORTx41 (Supplementary Fig. 2D).  

 
Gauging the contribution of individual cell types to bulk tumor differential editing, 

we calculated the percent of differentially edited genes from the bulk tumor analysis that 
were expressed in each cell type (with cells of each type pooled together). Cancer cells 
expressed the highest proportion of genes that were differentially edited (Fig. 3A). As 
we would not expect cell types expressing few differentially edited genes to be strongly 
represented by bulk tumor differential editing, the editing differences observed among 
bulk tumors may be predominantly attributable to the cancer cells.  

 
We next separated cancer cells to epithelial and mesenchymal cell clusters (Fig. 

3B, Methods). Sampling epithelial cells to match mesenchymal cells in terms of cell 
number (200 cells) and metadata, we pooled cells within each phenotype together and 
detected RNA editing events (Supplementary Fig. 3). Although the scRNA-seq primarily 
sequences the 3’ ends of mRNAs, a relatively small number of RNA editing events were 
still captured. We identified nine editing sites with significant differences between E and 
M (Fig. 3C). All nine differential sites exhibited higher editing levels in the M phenotype, 
which is consistent with the hyperediting trend in M observed in bulk LUAD and LUSC 
tumors (Fig. 1B). Notable differentially edited genes include RHOA, which is active in 
cell migration and is associated with metastasis in multiple cancer types42–44, and 
ARL16, a reported negative regulator of RIG-I activity45, consistent with the observed 
enrichment of immune-relevant genes that were differentially edited in bulk tumors. 
Overall, the findings from single cell data support the hypothesis that editing differences 
between bulk E and M tumors mainly reflect changes occurring in cancer cells. 
 
ADAR1 or ADAR2 knockdown induced EMT 
 
 Given the differential editing profiles between E and M tumors, an important 
question is whether the editing changes are functionally relevant to EMT. To address 
this question, we first examined if changes in ADAR expression affect EMT. Using cell 
culture systems commonly employed in EMT studies, we carried out knockdown (KD) 
experiments of ADAR1 or ADAR2 in two cell lines, A549 and MCF10A, via siRNAs. 
Upon ADAR1 KD, A549 cells showed elongated spindle-like mesenchymal morphology 
(Fig. 4A). We also confirmed the loss of epithelial markers (E-cadherin and 𝛾-Catenin) 
and gain of mesenchymal marker (Vimentin) in ADAR1 KD A549 cells (Fig. 4B). Similar 
results were observed upon ADAR2 KD in A549 cells (Fig. 4C-D) and reproducible in 
MCF10A cells (Fig. 4E-F). These findings suggest that loss of either catalytically active 
ADAR enabled EMT in the two cell lines. The phenotypic changes following ADAR2 KD 
are consistent with a previous report that ADAR2-deficiency can induce EMT in SW480 
cells29.  Together, these results indicate that knockdown of ADARs, which impairs RNA 
editing at genome scale, promotes EMT.  
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Impact of RNA editing on mRNA abundance 
 
 Given ADAR’s primary role in RNA editing, we next asked how RNA editing may 
affect genes relevant to EMT, especially those related to immune response (Fig. 2C).  
Since a relatively large fraction of differential editing sites is located in 3’ UTRs, we 
examined the hypothesis that these sites may affect mRNA abundance of their 
respective genes. Thus, we first calculated the correlation between editing levels and 
mRNA abundance for differentially edited sites observed in the E-M comparison. Using 
a regression model accounting for confounding factors including age, gender and race, 
we observed a total of 127 genes whose editing sites are significantly correlated with 
mRNA abundance (FDR<10%) in at least one type of cancer (Fig. 5A). In addition, 
among these genes, 77% (94 of 122 testable genes) demonstrated a significant 
correlation in at least one human tissue type based on a similar analysis of GTEx data, 
78% (73/94 genes) of which showed the same direction of correlation between cancer 
and at least one GTEx tissue.   
 

To further evaluate the regulatory role of RNA editing on mRNA abundance, we 
next examined the change in mRNA expression levels upon ADAR1 KD.  We used 
ADAR1 KD RNA-Seq data from 5 cell lines: U87, HepG2, K562, HeLa and B cells1,46,47, 
respectively.  Out of the 127 edited genes identified above, 126 of them were detectable 
at an expression level of at least 1 FPKM (and edited) in at least one cell line (control or 
ADAR1 KD condition). Among them, 71% (89 genes, red dots, Fig. 5B) showed inverse 
correlation between ADAR1 KD and editing level coefficient in at least one cell line (Fig. 
5B). These genes showed an enrichment of negative expression changes upon ADAR1 
KD, indicating a likely stabilizing effect imposed by RNA editing (p = 2.7e-4, binomial 
test).  Among expression-correlated editing sites in the 89 genes, 64% are located in 3’ 
UTRs, a percentage that’s significantly higher than that of E-M differential editing sites 
in general (p = 2.4e-4, Fig. 5C).  We thus refer to the 89 genes as putative target genes 
whose expression is modulated by RNA editing (Supplementary Table 2).  
 

Next, we experimentally validated the regulation of mRNA abundance by six 
editing sites within three genes: RNF24, RHOA, and MRPS16. We used a minigene 
reporter with bi-directional promoters for mCherry and eYFP48 and cloned edited and 
unedited versions of each editing site and its surrounding 3’ UTR region into the 3’ UTR 
of mCherry. Using expression of eYFP as an internal control, we compared mCherry 
expression between cells carrying the edited and unedited versions for each editing site. 
All six editing sites induced significant expression differences in the direction consistent 
with the editing-expression correlations observed in primary tumors (Fig. 5D, 
Supplementary Table 3). While positive editing associations were dominant among 
predicted target genes, there also exist negative associations between editing and 
expression levels. We tested one example of the latter category (RHOA).  
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ILF3 as an editing-dependent regulator of mRNA abundance 
 

Since mRNA stability is closely regulated by RNA-binding proteins (RBPs)49–52, 
we next asked whether RBPs are involved in the modulation of mRNA abundance by 
RNA editing sites. To this end, we analyzed enhanced ultraviolet crosslinking and 
immunoprecipitation (eCLIP) datasets of 126 RBPs in two cell lines (HepG2 and K562) 
from ENCODE46,53. We asked whether RBP binding signals are enriched significantly 
closer to editing sites in the 89 potential target genes than expected by chance. This 
analysis identified ILF3 as a top protein with significantly short distances to the editing 
sites in both cell lines (Supplementary Fig. 4A).  To validate this finding and test this 
relationship in a different cell type, we performed eCLIP-seq of ILF3 in A549 cells. The 
same observation was made via this data set (Fig. 6A). As observed in HepG2 and 
K562 cells, differential editing sites within predicted target genes were significantly 
closer to ILF3 binding regions in A549 cells than random gene-matched control sites. 
Furthermore, 75 (84%) of the 89 genes showed a significant correlation between their 
gene expression and the expression of ILF3 (FDR<10%), 37 of which had an absolute 
correlation coefficient of at least 0.2 (Fig. 6B). Importantly, the majority of the significant 
correlations were positive, consistent with the known roles of ILF3 in stabilizing its target 
mRNAs54–56.  

 
Impact of ILF3 on immune-relevant genes 
 
 ILF3 promotes an antiviral response through its binding to RNAs57–59. Given the 
fact that immune-relevant genes are differentially edited in E-M (Fig. 2C), we next asked 
whether ILF3 regulates the mRNA abundance of these EMT-associated differentially 
edited, immune-relevant genes. Among the 89 genes whose expression was affected 
by RNA editing, 20 genes fall into the immune or viral GO categories. Interestingly, the 
ILF3 binding sites were significantly closer to the differential editing sites of these 20 
genes than differential sites in immune-related genes without editing-expression 
associations (Fig. 6C). Together, these results suggest that ILF3 binds close to the 
editing sites of immune-related genes. 
 
 Since we observed that differential editing between bulk E and M tumors mainly 
reflected changes occurring in cancer cells (Fig. 3A), we next asked whether the above 
regulatory relationship between ILF3 and immune-related genes also occurs in cancer 
cells. To this end, we analyzed gene expression of individual cell types identified in the 
NSCLC scRNA-seq dataset. Within each cell type, we correlated ILF3 expression with 
expression of the 20 immune-related target genes. In cancer cells, all 20 genes had 
expression levels positively correlated with ILF3 expression at 10% FDR (Fig. 6D). 
Though significant correlations were also observed in other cell types, only cancer cells 
showed correlation coefficients of at least 0.2 in magnitude. This result suggests that 
the mRNA stabilizing function of ILF3 is prominent in cancer cells, in line with our 
observation that E-M differential editing primarily occurs in cancer cells.  
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PKR expression is affected by 3’ UTR editing through ILF3 regulation 
 
 Among the 20 immune-related genes putatively regulated by ILF3, the gene 
EIF2AK2, coding for Protein Kinase R (PKR), had most significant expression-editing 
correlation (Supplemental Table 2) and expression correlation with ILF3 (Fig. 6D). 
Activated by dsRNA, PKR suppresses translation and promotes apoptosis through its 
phosphorylation activity60,61. PKR also regulates various signaling pathways, such as 
NF-kB and p38 MAPK, in response to cellular stress60. Using the editing minigene 
reporter, we examined the effects of seven 3’ UTR editing sites on EIF2AK2 mRNA 
abundance in A549 cells. Five of the seven editing sites showed significantly higher 
normalized mCherry expression compared to their unedited counterparts (Fig. 6E, 
Supplementary Fig. 4B), suggesting that the editing sites enhanced mRNA abundance, 
consistent with the positive editing-expression correlation in primary tumors. 
 
 Based on the eCLIP data, all five editing sites are located within ILF3 binding 
sites (Fig. 6F, Supplementary Fig. 4C-D). To test the hypothesis that ILF3 regulates 
PKR mRNA abundance in an editing-dependent manner, we generated ILF3 KD A549 
cells (Fig. 6G). The edited and unedited reporters, demonstrating differential expression 
in control cells, no longer produced different expression levels upon ILF3 KD (Fig. 6H). 
These results support the hypothesis that ILF3 mediates regulation of mRNA 
expression levels by 3’ UTR RNA editing for PKR. 

 
Discussion 
 

As most cancer patient deaths are due to metastasis, thorough understanding of 
the molecular mechanisms underlying metastasis is crucial to developing effective 
preventative measures62. EMT plasticity is thought to underlie cell dissemination and 
metastatic formation in many cancer types18. Supported by studies on primary tumors 
and various model systems, features of EMT have been associated with 
metastasis16,18,63,64. For instance, higher expression of mesenchymal markers, with 
preserved epithelial markers in the absence of nearly all canonical EMT transcription 
factors, was detected in cells located at the leading edge of primary human HNSC 
tumors64. Furthermore, this partial EMT program was correlated with multiple metastatic 
characteristics, including abundance of lymph node metastases, lymphovascular 
invasion, and tumor grade64. While mutations are understood to drive primary 
tumorigenesis and are often found in reported oncogenes and tumor suppressor genes, 
the existence of recurrently mutated genes specific to metastasis is not clear18. 
Accordingly, mechanisms regulating cell invasiveness beyond genetic variation need to 
be more thoroughly investigated. Our study is the first to report a systematic 
characterization of RNA editing in EMT phenotypes across several cancer types. 
Through a combination of experimental and computational analyses, we observed many 
editing differences in EMT-relevant genes, especially those related to immune and viral 
response, with the potential of affecting mRNA abundance of these genes. We also 
show that higher expression levels of these edited transcripts may be due to 
stabilization by ILF3.  
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Located in noncoding regions, most editing sites have unknown function. To 
assess the contribution of differential editing to altered cell phenotypes in cancer, we 
focused on the capacity of editing to regulate host gene mRNA abundance. To our 
knowledge, very few studies have examined this question on the transcriptome-wide 
scale65,66. Previously, several studies demonstrated this regulatory role for a handful of 
editing sites through alteration of miRNA binding sequences or mRNA secondary 
structure or otherwise unknown mechanisms6,20,67–72. Expanding on these previous 
studies, we incorporated tissue-rich data from GTEx and ADAR KD expression changes 
from five cell lines to computationally support associations of editing with mRNA 
abundance. We also validated the effects of specific editing sites and explored the 
involvement of RBPs in this regulatory mechanism. It should be noted that we were able 
to detect associations between editing and mRNA abundance levels, even though 
differentially expressed genes did not significantly overlap differentially edited genes. 
These findings do not contradict each other because editing levels are relatively low. 
Consequently, inosine may affect mRNA abundance, but when present at low levels, 
may not necessarily lead to significant expression differences. 

 
Tumor heterogeneity may help explain the seemingly divergent roles of ADARs 

and their editing activity in this study. Our cell line experiments showed EMT induction 
upon KD of either ADAR1 or ADAR2. Loss of ADAR2 was also previously reported to 
trigger EMT by mediating the extracellular shuttling of EMT-repressing miR-200s29. 
Given these findings for both enzymatic ADARs, we might expect to observe 
hypoediting in the M phenotype (which we observed for BRCA and OV). Conversely, 
another study showed that ADAR1 knockdown diminished EMT phenotypes in oral 
squamous cell carcinoma cell lines with unknown mechanism73. As primary tumors are 
heterogenous not only across patients but also within an individual tumor, in terms of 
genetic variation among malignant cells and cell type composition, hyperediting or 
hypoediting trends in M-categorized tumors may reflect the diverse nature of primary 
tumors in addition to the pleiotropy of ADARs74.  

 
Considering tumor heterogeneity and the roles of stromal and immune cells in 

EMT, it is important to examine the contributions of different cell types to differential 
editing observed in the E-M comparisons. Our results using single-cell data supported 
that cancer cells are a main cell type underlying differential editing between E and M 
phenotypes in lung cancer, although contributions by other cell types cannot be 
excluded. Furthermore, cancer cells demonstrated the strongest expression correlation 
between ILF3 and immune-relevant differentially edited genes among all cell types 
considered in lung cancer. These findings suggest that RNA editing is likely an 
important aspect of transcriptome remodeling of cancer cells in EMT, at least in lung 
cancer. Single-cell analysis of RNA editing in other cancer types should be conducted in 
the future.   

 
RNA editing is known to be important to innate immunity by preventing viral 

dsRNA sensors, such as MDA5 and RIG-I, from sensing host dsRNA35,39,75. In this 
study, we provided multiple lines of evidence to support that RNA editing differences in 
EMT may affect immune response genes directly, adding a new dimension to the 
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relationships between RNA editing and innate immunity. Interestingly, a major RBP that 
mediates this relationship is ILF3. ILF3 was identified as a PKR substrate and serves as 
a negative regulator of viral replication upon phosphorylation76,77. Upon viral infection 
and sensing viral dsRNA, PKR activates, suppresses translation, and promotes 
apoptosis of affected cells61. Importantly, this mechanism has been targeted in oncolytic 
virotherapy for cancer. Cancer cells that have low PKR expression are sensitive to 
oncolytic viruses78–80. Our study showed that ILF3 mediates the RNA editing-dependent 
regulation of PKR expression, suggesting that these two factors are intertwined in gene 
regulation. Additional studies on their interaction during viral infection or cancer 
treatment will be informative for therapeutic development. Previously, ADAR1 loss has 
been shown to render tumor cells sensitive to immunotherapy through enhanced 
inflammatory response81,82. Our findings on the regulation of immune response genes 
by RNA editing may add additional mechanisms in this process that will need further 
investigation. 
 

The functional roles of RNA editing in cancer have been increasingly recognized 
in recent years. Highlighting the extensive editing differences between EMT phenotypes 
and their impact on mRNA abundance, especially for genes involved in the immune 
response, our work extends the basis for future studies on the contribution of editing to 
metastasis and patient outcomes. 
 
Methods 
 
Plasmid construction 
 

For bi-directional reporters, full length or partial 3’ UTR regions (1~2kb) of 
candidate genes were cloned from the genomic DNA extracted from HMLE or A549 
cells. Edited versions of 3’ UTR inserts were generated using overlap-extension PCR 
(Supplementary table 3). Edited and unedited versions of 3’ UTR regions were then 
cloned into the pTRE-BI-red/yellow vector via ClaI and SalI-HF enzyme sites48. To 
obtain a lentiviral vector expressing ILF3 shRNA, oligos containing the target sequence 
(GGTCTTCCTAGAGCGTATAAA, TRCN0000329788) were ordered from Integrated 
DNA Technologies (IDT) and cloned into pLKO.1 via EcoRI and AgeI enzyme sites. 
 
Cell culture and transfection 
 

A549, Hela and HEK293T cells were maintained in DMEM with 10% FBS and 
Antibiotic-Antimycotic reagent (Gibco). MCF10A cells were maintained in DMEM/F12, 
supplemented with 5% Horse serum, 20ng/ml human EGF (PeproTech), 0.5mg/ml 
Hydrocortisone (Sigma), 100ng/ml Cholera Toxin (Sigma), 10ug/ml Insulin (Sigma), and 
Antibiotic-Antimycotic reagent (Gibco). For siRNA treatment, A549 or MCF10A cells 
were seeded at 1´105cells per well in 6-well plates. After 24 hours, siRNAs 
(Supplementary table 3) were introduced at the final concentration of 10nM~100nM 
using lipofectamine RNAiMAX (Invitrogen) according to the manufacturer’s protocol. 
Media were changed 24 hours post-transfection, and cells were harvested 72 hours 
post-transfection. For transfection of bi-directional reporters, Hela and HEK293T cells 
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were seeded in 12-well plates to reach 90% confluency by the time of transfection. 
A549 cells were seeded at 0.15x105 cells per well in 12-well plates 24 hours before 
transfection. Reporter plasmids were transfected at 200ng per 12-well with 
lipofectamine 3000 (Invitrogen), following the manufacturer’s protocol. Cells were 
harvested 16 hours post-transfection. 
 
Western blot 
 

Cells were lysed with RIPA buffer containing protease inhibitor (EDTA-free, 
Thermo Fisher Scientific) at 4°C for 30 minutes. The whole cell lysates were then 
centrifuged at 12,000g, 4°C for 15 minutes. The supernatants were collected for protein 
concentration measurement using Bradford assay (Pierce™ Detergent Compatible 
Bradford Assay Kit, Thermo Fisher Scientific). Protein samples were prepared by mixing 
protein lysates with 4x SDS protein loading dye at 3:1 ratio. The mixture was boiled for 
5 minutes. 10 ug of each protein samples were loaded on SDS-PAGE gels and 
transferred to nitrocellulose membranes for antibody incubations. Antibodies used were 
as follows: ADAR1 antibody (Santa Cruz Biotechnology, sc-73408, 1:200), ADAR2 
antibody (Santa Cruz Biotechnology, sc-73409, 1:200), E-cadherin antibody (Cell 
Signaling Technology, #3195, 1:1000), γ-Catenin antibody (BD Transduction 
Laboratories, 610253, 1:8000), N-cadherin antibody (BD Transduction Laboratories, 
610920, 1:500), Vimentin antibody (Cell Signaling Technology, 5741, 1:1000), 
NF90(ILF3) antibody (BETHYL Laboratories, A303-651A, 1:1000), β-actin-HRP 
antibody(Santa Cruz Biotechnology, sc-47778, 1:2000), goat anti-rabbit IgG-HRP(Santa 
Cruz Biotechnology, sc-2004, 1:2000), goat anti-mouse IgG-HRP(Santa Cruz 
Biotechnology, sc-2005, 1:2000). Membrane blots were incubated with SuperSignal 
West Pico PLUS Chemiluminescent Substrate (Thermo Fisher Scientific) and visualized 
under the imager (Syngene PXi). 
 
RNA isolation and real-time qPCR 
 

Cells were lysed using TRIzol (Thermo Fisher Scientific). Total RNA was isolated 
using Direct-zol RNA Miniprep Plus kit (Zymo Research) following the manufacturer’s 
protocol. 2 ug of total RNA was used for cDNA synthesis with SuperScript IV (Thermo 
Fisher Scientific). The real-time qPCR reaction was assembled using the PowerUp™ 
SYBR® Green Master Mix (Thermo Fisher Scientific). The reaction was performed in 
the CFX96 Touch Real-Time PCR detection system (Bio-Rad) with the following 
settings: 50°C for 10 minutes, 95°C for 2 minutes, 95°C for 15 seconds, 60°C for 30 
seconds, and with the last two steps repeated for 45 cycles. For bi-directional reporter 
assays, mCherry expression was normalized against eYFP expression within the same 
sample. ILF3 expression was normalized against the expression of internal control gene 
TBP. For qPCR validating the eCLIP peaks, the final libraries were diluted to the same 
concentration at 0.01ng/ul. 5ul of diluted libraries were used in each qPCR reaction. 
Around 80 bp upstream each EIF2AK2 editing site was amplified. The expression of 
each EIF2AK2 region was normalized against the expression of 18s. 
 
Categorization of tumors as epithelial and mesenchymal 
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We downloaded fragments per kilobase million (FPKM) data of primary tumors 

from patients across seven cancer types from TCGA: BRCA, LUAD, LUSC, PRAD, OV, 
KIRC, and HNSC (GDC Data Portal; https://portal.gdc.cancer.gov/). To assess E and M 
phenotypes of the tumors of each cancer type, we quantified the enrichment of E and M 
gene sets by applying gene set variation analysis (GSVA)83. We obtained pan-cancer E 
and M gene sets from a 2014 publication by Tan and colleagues (Table S1A from their 
publication)30. Tumors with high E scores and low M scores were considered to have an 
E phenotype, while tumors with low E and high M scores were classified as M. Subsets 
of E and M tumors were selected for each cancer type to minimize confounding of E 
and M distinction by patient and sample metadata. 
 
Quantification and comparison of RNA editing levels 
 

We downloaded RNA-seq fastq files of categorized tumors from the GDC Legacy 
Archive (https://portal.gdc.cancer.gov/legacy-archive). We mapped reads to hg19 with 
HISAT2, using default parameters. Dense clusters of editing sites, or hyperedited 
regions, can lead to many mismatches in reads. Consequently, these reads may be left 
unmapped and hinder accurate detection of editing in these regions. To rescue reads 
that were originally unmapped due to high density of editing activity, we applied a 
hyperediting pipeline and combined the recovered reads with uniquely mapped reads 
for downstream analyses32,84. To analyze editing sites of high confidence, we 
downloaded the REDIportal database, comprising over 4 million editing sites identified 
across 55 tissues of 150 healthy humans from GTEx 
(http://srv00.recas.ba.infn.it/atlas/)33. We applied methods used in our previous studies 
to detect editing at REDIportal sites in the tumor samples. We filtered out editing sites 
found in dbSNP (version 147) and COSMIC (version 81), except for reported cancer-
related editing sites8,13,19,85–88, since editing sites have been shown to be mistakenly 
recorded as SNPs89,90. Within each sample, we also filtered out editing events that 
overlapped with sample-specific somatic mutations and copy number variants. Somatic 
variants were obtained from the publicly released MC3 MAF 
(https://gdc.cancer.gov/about-data/publications/mc3-2017), and copy number variants 
were obtained from copy number segment data downloaded from the GDC data portal.  

 
Differential editing sites were defined as editing sites with significantly different 

editing levels between E and M phenotypes. To identify such sites, we used an adaptive 
coverage approach32. For an individual editing site, we determined the highest read 
coverage threshold that was satisfied in at least five samples of both phenotypes, 
among twenty, fifteen, and ten reads. If none of these thresholds was satisfied and 
fewer than ten samples in each phenotype had at least five reads covering the site, we 
did not test the site for differential editing. Using the highest coverage determined, we 
calculated the mean editing levels among samples of each phenotype separately. We 
then consecutively lowered the read coverage threshold by 5 reads and compared the 
new mean editing levels of each phenotype, when including additional samples, to the 
original high-coverage-only editing means. If the differences in mean editing levels were 
less than 0.03, we used the lower read coverage threshold to delineate which samples 
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to include for the differential test. Editing levels between E and M samples were 
compared by a Wilcoxon rank-sum test. Editing differences were considered significant 
if the Wilcoxon p-value < 0.05 and the magnitude of the difference > 0.05. To account 
for false positives, we shuffled phenotype labels and retested for significant differences 
for each differential editing site, 100 times. If a site showed significant differences for 
shuffled labels over ten times, it was filtered out and no longer considered a differential 
editing site.  
 
Identification of differentially expressed genes 
 

HTSeq-Count data were downloaded from the GDC data portal. We identified 
genes with significantly different mRNA expression levels between E and M tumors of 
each cancer type, using limma-voom91. Metadata significantly correlated with the top 
two principal components of expression were included as covariates in the linear 
models. Expression differences were considered significant if log2-fold change was at 
least 1 and adjusted p-value was less than 0.05.  
 
Rank-rank hypergeometric overlap 
 

To measure the similarity in patterns of editing changes across cancer types, we 
ranked genes based on differential editing between E and M phenotypes for each 
cancer type. More specifically, the ranking metric was the statistical significance of the 
differential editing test (-log10(Wilcoxon p-value)), multiplied by the sign of the editing 
difference (mean of M editing levels – mean of E editing levels). Accordingly, genes at 
the top of the ranked list had the highest increases in editing in M, while genes at the 
bottom had the largest decreases in editing in M. For each gene with multiple editing 
sites tested, the site with the most significant change in editing levels was used to 
represent the gene. We used the RRHO package within Bioconductor to test for 
significance of overlap between ranked gene lists, with a step size of 30 genes between 
each rank92. To make RRHO maps comparable across pairs of cancer types, we scaled 
the log-transformed p-values to account for different lengths of gene lists and then 
applied the Benjamini-Yekutieli correction for multiple testing34.  
 

We also ran RRHO between gene rankings by differential editing and differential 
gene expression for each cancer type. To order genes based on differential gene 
expression, genes were ranked according to the signed statistical significance of 
differential expression tests (signed by the direction of expression change in M). As a 
result, genes at the top of the list were more highly expressed in M and genes at the 
bottom, more lowly expressed in M.   
 
Gene ontology enrichment analysis 
 

To evaluate whether an individual GO term was enriched in differential editing in 
one cancer type, we compared the occurrence of the term among query genes – genes 
containing differential editing sites – to its occurrences within 10,000 sets of control 
genes. In each set, one control gene was randomly selected for each query gene 
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among non-differentially edited genes that matched the query gene based on gene 
length and GC content (within 10%). Query genes that did not have at least ten 
matched control genes were excluded. We calculated the p-value of the term’s 
enrichment among query genes from the normal distribution fit to occurrences of the 
term among control gene sets.  
 

Likewise, we tested the occurrence of each GO term represented among 
differentially expressed genes to its occurrences among 10,000 sets of non-differentially 
expressed control genes, randomly selected to match the differentially expressed query 
genes for gene length and GC content.  
 
scRNA-seq dataset analysis 
 
 We downloaded fastq files from 15 tumor samples of five NSCLC patients 
(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6149) and ran CellRanger 
(version 3.0.2) to map reads and obtain count matrices. We excluded the tumor 
samples from three LUSC patients exhibiting low percentages of valid barcodes and 
mapped reads. For the remaining samples, we loaded the filtered feature-barcode 
matrices from CellRanger and merged the datasets into a single Seurat object with the 
R package Seurat93 (version 3.0.2). Next, we filtered out cells that did not meet the 
following criteria: 101-6000 expressed genes, over 200 UMIs, and less than 10% UMIs 
corresponding to the mitochondrial genome. Following normalization by sctransform94 
(version 0.2.0), we performed dimensional reduction with PCA. Based on an elbow plot, 
we decided to consider the first ten PCs for downstream clustering and TSNE 
embedding. To assign cell identity labels to clusters, we matched differentially 
expressed genes of clusters to reported marker genes. One cluster had differentially 
expressed markers of multiple cell types, so we subclustered its cells. To assess the 
accuracy of our final labeling of nine cell types, we examined expression of marker 
genes across the cell types in two approaches. In one approach, we used 
CIBERSORTx (https://cibersortx.stanford.edu/) to generate a gene expression signature 
matrix, which is a matrix of expression signatures characterizing cell types. To create 
this matrix from expression profiles of single cells labeled by cell type, CIBERSORTx 
identified differentially expressed genes. In the second approach, we pooled reads of 
each cell type together and calculated FPKM. These FPKM values calculated from 
pooled cells were also used to correlate ILF3 expression with expression of editing-
correlated genes.  
 

To identify cancer cells with E and M phenotypes, we subclustered the tumor 
cells. To this end, we first ran sctransform and PCA on only the tumor cells. Using the 
first twelve PCs, we clustered the cells and performed non-linear dimension reduction 
by UMAP. As a cluster of 200 M cells was identified, we sampled 200 E cells with 
similar numbers of features, numbers of UMIs, and percentages of reads mapped to the 
mitochondrial genome. For each phenotype, we compiled reads of cells together and 
detected editing levels at REDIportal sites. For each testable editing site, E and M 
editing levels were compared by a Fisher’s Exact test. An editing site was considered 
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differential if the difference in editing levels was at least 0.05 and the Fisher’s Exact p-
value < 0.05.   
 
Regression analysis 
 
 For each differential editing site, association between editing level and host gene 
mRNA abundance was tested by fitting a linear model of log-transformed gene FPKM 
against editing level and potentially confounding covariates (using the lm function in R). 
For associations in GTEx data, we included age, gender, and race as covariates. For 
associations in TCGA data, we included metadata that were significantly correlated with 
the top two principal components of expression, as in the differential expression 
analysis.  
  
eCLIP-seq generation 
  

The eCLIP experiment was performed following a published protocol53. The 
antibody used for this experiment is: ILF3/NF90 antibody (Bethyl Laboratories, A303-
651A). 107 cells of A549 were ultraviolet crosslinked at 254 nm (800 mJ cm-2). 
Crosslinked sample was then used for each eCLIP experiment, which was performed 
as described53. For controls, we sampled 2% of the pre-immunoprecipitation (post 
lysis and fragmentation) sample and prepared libraries identically to the ILF3 eCLIP 
(including the membrane size selection step). These libraries served as “size-
matched input” (SMInput) to minimize nonspecific background signal in the identical 
size range on the membrane as well as any inherent biases in ligations, PCR with 
reverse transcription (RT-PCR), gel migration and transfer steps. 
 
eCLIP-seq peak calling and distance analysis 

 
We obtained eCLIP peak data for 96 RBPs in K562, 83 RBPs in HepG2, and 

ILF3 in A549 cells, as described previously46. Briefly, after demultiplexing and trimming 
adapters, we aligned reads in multiple rounds with STAR. First, reads aligning to rRNA 
sequences were discarded, and then the unmapped reads were aligned to Alu 
sequences, permitting a maximum of 100 alignments for an individual read. In the final 
alignment step, the remaining unmapped reads were uniquely aligned to the hg19 
genome. Then read enrichment within a sliding window, considering both genome and 
Alu-aligned reads, was tested for significance by a Poisson model in order to call eCLIP 
peaks46,74.  

 
To assess the proximity of a single RBP’s binding to differential editing sites 

compared to random controls, we calculated the distance from each differential editing 
site or control to the closest eCLIP peak in the same gene. Control sites consisted of 
adenosines within genes containing differential editing sites32. We then calculated the 
area under the curve (AUC) of the cumulative distribution of distances from differential 
editing sites to the closest eCLIP peaks. Given our interest in close binding, we 
considered distances up to 10,000 bases only for AUC calculation. Similarly, we 
calculated the AUC of the distribution of closest distances between eCLIP peaks and 
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controls, for each of 10,000 sets of random controls. We computed the p-value of the 
AUC for differential editing sites from the normal distribution fit to the AUC values of 
control sets32.  
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Fig. 1 Overview of Differential Editing in Cancer EMT. The following cancer types were studied:
breast invasive carcinoma (BRCA), lung adenocarcinoma (LUAD), lung squamous cell 
carcinoma (LUSC), prostate adenocarcinoma (PRAD), ovarian serous cystadenocarcinoma (OV), 
kidney renal clear cell carcinoma (KIRC), head and neck squamous cell carcinoma (HNSC).
A. First two principal components of differential editing profiles separate tumor samples into 
epithelial (E) and mesenchymal (M) phenotypes across cancer types. B. Distributions of differences 
in mean editing levels between E and M tumors in each cancer type. The number of differential 
editing sites is listed on top of each distribution. C. Differential editing sites are mostly found in 
3’ UTR and intronic regions in all cancer types, with higher proportions of 3’UTR sites compared to 
that of all editing sites from the REDIportal database. 
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Fig. 2 Differential Editing Patterns Are Shared Among Cancer Types Yet Distinct from Differential Gene 
Expression. A. Rank-rank hypergeometric overlap (RRHO) map of RNA editing across pairs of cancer types. Each 
heatmap (for two cancer types) represents the matrix of log10-transformed adjusted p-values that indicate the extent 
of overlap in two gene lists at each possible pair of ranks. For an individual cancer type, genes were ranked by the 
signed significance of RNA editing differences (M-E). Genes with higher editing in the M phenotype are at lower 
ranks, while those with higher editing levels in E tumors are at higher ranks. Higher pixel darkness indicates 
stronger enrichment of overlapping genes within the rank thresholds given by the x and y coordinates. The step 
size between ranks was 30 genes. B. RRHO map of editing and gene expression within each cancer type. Each 
heatmap contains log10-transformed adjusted p-values of hypergeometric overlap between genes ranked by 
editing differences (x-axis) and genes ranked by expression differences (y-axis) in a single cancer type. Similar to 
ranking genes by differential editing, genes were ranked by the signed significance of expression differences, 
such that genes at lower ranks have higher expression in M tumors, while genes at higher ranks have higher 
expression in the E phenotype. The step size between ranks was 30 genes. C. Significance of enrichment of gene
ontology (GO) terms in differentially edited genes of each cancer type represented by point size (log10-transformed
adjusted p-value). Terms significantly enriched in at least two cancer types are shown. Check mark on the right 
indicates terms that were also significantly enriched in differentially expressed genes in at least two cancer types. 
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Fig. 3 Contribution of Cell Types to Differential Editing. A. Proportions of differentially edited (DE) genes
from bulk tumor analysis that were expressed in cell types identified in lung cancer single cell RNA-seq data. 
Each point represents the proportion of genes from one cancer type. A gene was considered as expressed 
in a cell type if its expression ≥ 1 RPKM. RPKM values were calculated within each cell type by pooling reads 
of the same cell type together. Proportions were compared for top cell types by Mann Whitney U test, 
with significance of p-values shown. **p ≤ 0.01. B. UMAP projection of 6526 tumor cells based on expression 
profiles, colored by cluster assignment (scatterplot, left). By differential expression of epithelial or mesenchymal 
markers (table, right), Green and Purple clusters were labeled as epithelial and mesenchymal, respectively. 
C. Scatterplot of editing levels of pooled E and M cells, with y = x line. Editing sites exhibiting significant 
differences between E and M were labeled in red. Differences were considered significant if the difference 
between editing levels ≥ 0.05 and Fisher’s Exact p-value < 0.05.
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Fig. 4 ADAR1 or ADAR2 knockdown induced EMT. A. Images of A549 cells transfected with siRNAs
for ADAR1 knockdown (KD) (siADAR1) or control siRNAs (siCtrl). Scale bars, 100um. B. Loss of epithelial 
markers (E-cadherin and γ-Catenin) and induction of mesenchymal marker (Vimentin) in A549 cells upon 
ADAR1 KD. Cells were treated with 100nM siRNA for 72 hours. C. Images of A549 cells transfected with 
siRNAs for ADAR2 KD (siADAR2) or control siRNAs (siCtrl). Scale bars, 100um. D. Loss of epithelial 
markers (E-cadherin and γ-Catenin) and induction of mesenchymal marker (Vimentin) in A549 cells upon 
ADAR2 KD. Cells were treated with 11nM siRNA for 72 hours. E. Images of MCF10A cells with ADAR1 or
ADAR2 KD or control siRNAs. Scale bars, 100um. F. Loss of epithelial markers (E-cadherin and γ-Catenin) 
and induction of mesenchymal markers (Vimentin) in MCF10A cells upon ADAR1 KD or ADAR2 KD. Cells 
were treated with 11nM siRNA for 72 hours. Three biological replicates were used in each condition.
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Fig. 5 Effects of Editing on mRNA Abundance. A. Scatterplot of coefficient estimate and statistical significance 
(log10-transformed adjusted p-value) of editing level as a predictor of host mRNA expression in linear regression, 
accounting for potential confounding variables. For genes with multiple editing sites associated with expression, 
the most significantly associated site was used. Dashed line indicates significance threshold based on 
10% false discovery rate (FDR). B. Scatterplot of editing level coefficient estimate from multiple linear regression 
models used in A and log2-transformed fold change of the corresponding gene observed in ADAR1 KD cells. 
Red points indicate expression changes in the direction consistent with the sign of the editing association,
in contrast to the gray points. C. Editing sites associated with host expression (Expression-Correlated) are 
more often found in 3’ UTR regions, compared to all differential editing sites (Diff Edited, not including intergenic sites). 
D. Validation of six editing sites affecting host mRNA abundance. For each site, a scatterplot of editing level and log2-
transformed mRNA expression in the TCGA data is shown. On the right of each scatterplot is mCherry expression, 
normalized by eYFP expression, of minigenes with A or G, corresponding to nonedited or edited versions of the sites 
in the 3’ UTR of each gene. Normalized expression values were compared between edited and nonedited versions 
by two-sided t-test. *p<0.05, **p<0.01, ***p<0.001. Note that RHOA and MRPS16 editing sites were identified as 
differential sites in the single cell RNA-seq analysis (Fig. 3C).
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Fig. 6 ILF3 Regulates mRNA Abundance through RNA Editing. A. Histogram of distances between differential editing sites in editing-correlated
genes and the closest ILF3 eCLIP peaks in A549 cells (turquoise), up to 10 kb. Gray curves represent distances for 10 sets of randomly picked A’s in the 
same genes as differential editing sites. Number of differential editing sites is given by n. P-value was calculated by comparing the area under the curve 
(AUC) of the distance distribution for differential editing sites to a normal distribution fit to the AUC values of 10,000 sets of random gene-matched A’s. 
B. Scatterplot of Pearson correlation coefficient and significance (log10-transformed adjusted p-value) of correlation between ILF3 mRNA expression 
and mRNA expression of editing-correlated genes. Genes passing 10% FDR are labeled as significant (sig, turquoise), others as nonsig. 
C. Cumulative distributions of distances between ILF3 eCLIP peaks and differential editing sites within editing-expression-associated genes (sig) or 
differential editing sites in genes without editing-expression associations (nonsig), up to 1 kb. Only genes associated with immune and viral related GO 
terms were included. P-value calculated by Kolmogorov-Smirnov test. D. For each cell type in the lung cancer scRNA-seq dataset, ILF3 mRNA expression 
was correlated with mRNA expression of editing-expression-correlated genes (identified in the TCGA data) by Pearson correlation. Genes associated with 
any immune or viral related GO term are shown. The size of each point indicates significance of correlation and color corresponds to values of the 
correlation coefficient. E. Normalized mCherry expression for nonedited or edited versions of sites in the 3’ UTR of PKR in A549 cells. Normalized 
expression values were compared between edited and nonedited versions by two-sided t-test. *p<0.05. F. Read coverage of ILF3 eCLIP-seq in A549
cells for two biological replicates (ILF3 IP1 and ILF3 IP2, turquoise) and size-matched input (SMInput, gray). The five validated 3’ UTR editing sites affecting 
PKR mRNA abundance in A549 cells are labeled in magenta (top). Bottom: Validation of PKR eCLIP signal overlapping two editing sites. PKR expression 
was measured by qRT-PCR in the IP or SMInput samples and normalized against the expression of 18s rRNA. Three technical replicates were performed.
P-value calculated by t-test. *p<0.05. G. Western Blot confirming shRNA-mediated ILF3 KD in A549 cells (left). ILF3 mRNA levels were quantified in A549 
shCtrl and ILF3 KD cells by qRT-PCR (right). ILF3 mRNA expression were normalized against gene TBP mRNA expression. P-value calculated via t-test.
****p<0.0001. H. Normalized mCherry expression for nonedited or edited versions of sites in the 3’UTR of PKR in shCtrl or ILF3 KD A549 cells. Normalized 
expression values were compared between edited and nonedited versions by two-sided t-test. *p<0.05, **p<0.01.
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