
 - 1 - 

Phenotype Prediction using a Tensor Representation and Deep Learning 

from Data Independent Acquisition Mass Spectrometry 
 

Fangfei Zhang 1#, Shaoyang Yu 1,2#, Lirong Wu 3#, Zelin Zang 3, Xiao Yi 1, Jiang Zhu 4, Cong Lu 4, Ping Sun 5, 

Yaoting Sun 1, Sathiyamoorthy Selvarajan 6, Lirong Chen 7, Xiaodong Teng 8, Yongfu Zhao 9, Guangzhi 

Wang 9, Junhong Xiao 9, Shiang Huang 4, Oi Lian Kon 11, N. Gopalakrishna Iyer 10,11, Stan Z. Li 3*, Zhongzhi 

Luan 2*, Tiannan Guo 1* 

 
1. Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 

Shilongshan Road, Hangzhou 310024, Zhejiang Province, China 

2. Sino-German Joint Software Institute (JSI), Beihang University, Beijing, China 

3. Center for AI Research and Innovation (CAIRI), School of Engineering, Westlake University, Hangzhou, China 

4. Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, 

Huazhong University of Science and Technology, Wuhan, Hubei, China 

5. Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and 

Technology, Wuhan, Hubei, China. 

6. Department of Pathology, Singapore General Hospital, Republic of Singapore 

7. Department of Pathology, The Second Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, 

China 

8. Department of Pathology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China 

9. Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China 

10. Division of Surgical Oncology, National Cancer Centre Singapore, Republic of Singapore 

11. Division of Medical Sciences, National Cancer Centre Singapore, Republic of Singapore 

 

#, co-first authors 

* co-correspondence authors: Stan.ZQ.Li@westlake.edu.cn; luan.zhongzhi@buaa.edu.cn; guotiannan@westlake.edu.cn 

Abstract 

A novel approach for phenotype prediction is developed for mass spectrometric data. First, the data-

independent acquisition (DIA) mass spectrometric data is converted into a novel file format called “DIA 

tensor” (DIAT) which contains all the peptide precursors and fragments information and can be used for 

convenient DIA visualization. The DIAT format is fed directly into a deep neural network to predict 

phenotypes without the need to identify peptides or proteins. We applied this strategy to a collection of 102 

hepatocellular carcinoma samples and achieved an accuracy of 96.8% in classifying malignant from benign 

samples. We further applied refined model to 492 samples of thyroid nodules to predict thyroid cancer; and 

achieved a predictive accuracy of 91.7% in an independent cohort of 216 test samples. In conclusion, DIA 

tensor enables facile 2D visualization of DIA proteomics data as well as being a new approach for phenotype 

prediction directly from DIA-MS data. 
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Introduction 

Phenotype prediction is a central task for biomedical 

research and clinical decision making, which is 

typically dependent on phenotypic measurement, such 

as blood pressure monitoring [1], electrocardiogram [2] 

at the macro level as well as high throughput omics 

sequencing technology of the genome [3], DNA 

methylome [4], mRNA [5], proteins [6]  and 

metabolites [7] at the molecular level.  

Mass spectrometry (MS)-based proteomics [8] has 

demonstrated its ability to measure thousands of 

proteins in complex biological samples within several 

hours using data dependent acquisition (DDA) MS and 

data-independent acquisition (DIA) MS. In DIA-MS, 

exemplified by SWATH [9], all flyable peptide 

precursors are recursively fragmented in parallel in 

isolated m/z windows, and all the fragment data, 

together with the peptide precursor data, are 

comprehensively recorded. The resultant DIA data 

therefore serve as a permanent digital map representing 

all the measurable protein signals that is re-minable to 

test the new hypothesized biomarkers [10]. Emerging 

high-throughput sample preparation methods such as 

pressure-cycling technology (PCT) offer rapid and 

reproducible processing of minute amounts of biopsied 

tissue archived as formalin‐fixed paraffin‐embedded 

(FFPE) samples [11]  which can be then proteome-

digitized by DIA-MS as a permanent digital archive 

[12].  

DIA maps are usually analyzed with pattern match 

algorithms such as OpenSWATH [13]. In DIA data, co-

eluting precursors may be co-fragmented in the same 

window which generates highly convoluted fragment 

spectra. This complexity can be deconvoluted using 

prior information such as a highly curated spectral 

library containing peptide precursors of interest, which 

includes precursors’ m/z and the m/z of their fragment 

ions with corresponding relative intensities and 

calibrated retention times (RT). The software performs 

targeted extraction of ion chromatograms (XIC) from 

DIA maps for selected peptide precursors based on 

mzXML [14] or mzML format [15]. Together with 

other features, such as errors in mass and RT, and peak 

shape, a discriminating statistical learning model is built 

to score the true target based on target-decoy approach 

for peptide identification [13]. Several deep learning-

based algorithms have been developed recently to 

directly predict spectral library and to reduce bias from 

DDA experiments [16].  Alternatively, the DIA data can 

be analyzed by spectrum-centric library-free approach 

[17] which determines precursor-fragment pairs from 

precursor ions and fragment ions, uses theoretical 

fragment ion predictions to query and score the 

multiplexed MS2 spectra of SWATH‐MS data. These 

tools will usually give rise to a distinct identified and 

quantified peptide or protein matrix which are subject to 

downstream statistical learning procedures for 

classification of disease types and feature selection of 

biomarker candidates [18]. However, these tools 

analyze only a small portion of the DIA map, leaving 

many biological signals uninterpreted. Erroneous 

estimation of protein intensities and technical missing 

values are additional challenges for effective statistical 

analysis, including deep learning. 

Deep learning, or deep neural networks (DNN), learns 

from training data to extract effective features and 

performs classification tasks in an optimal way [19]. 

Instead of relying on handcrafted assumptions and 

knowledge, the deep learning methodology learns 

domain knowledge from data and delivers the best 

models that fit reality. It has surpassed human 

performance in image classification on the ImageNet 

dataset [20] as Large Scale Visual Recognition 

Challenge. In particular, ResNet [21], a special type of 

convolutional neural network (CNN), has demonstrated 

advantages over conventional CNN. It has been widely 

used for object detection and classification in computer 

vision.  

In this work, we propose a novel MS data analysis 

approach for phenotype prediction. First, a novel data 
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format called “DIA tensor” (DIAT) is proposed as a 

preprocessing step and also as a convenient means of 

data visualization. Second, the pooled DIAT map is 

divided into blocks and fed into a deep neural network, 

a modified version of ResNet-18 to predict the 

phenotype probabilities for benign vs. malignant 

classification of clinical samples. Finally, the prediction 

scores of all blocks are fused to make the final 

prediction. This approach works directly on MS data, 

without the need to identify peptides or proteins, 

avoiding the computationally intensive and error-prone 

XIC procedure. 

To prove the concept of our approach, we performed 

the classification task on a set of 102 human liver tissue 

samples consisting of benign liver and hepatocellular 

carcinomas. We further applied these procedures to a 

more challenging clinical problem of diagnosing the 

malignant vs. benign status of thyroid nodules. We 

showed that deep learning using the pooled DIAT data 

format could provide an alternative approach for MS-

based clinical diagnosis.  

 

Results  

DIAT enables end-to-end phenotype prediction 

without peptide identification 

Here we developed DIA tensor (DIAT) as a new format 

to represent DIA-MS data that can be used directly for 

end-to-end deep learning classification model, skipping 

the peptide identification step by the peptide centric 

[13] or spectrum centric [17] approach of DIA MS data. 

The DIAT is a three-dimensional tensor to represent the 

pooled MS2 ion maps, consisting of MS1 precursor 

window index, cycle index, and pooled fragment m/z. 

To transform a DIA raw file into DIAT format, the 

vendor mass spectrometry DIA raw files were first 

converted into mzXML files by MSconvert [22]. Key 

attributes such as the scan level, scan index, precursor 

center m/z, fragment m/z and their intensities were 

extracted from the open data format mzXML files. The 

mzXML file of DIA-MS data is recorded by 

consecutive repeated cycles throughout the LC time 

range. Each cycle contains one MS1 spectrum and the 

corresponding fragment ion MS2 spectra stepping 

through a sequential discrete precursor isolation 

window (Figure 1A).  Some scans in a cycle may be 

missing occasionally due to MS analyzer instrument 

error, which will cause the subsequent scan sequence 

numbers to be misaligned. To keep the scans in order, 

the missing scans were detected and filled with zero 

values. The m/z values were binned with the size of the 

mass accuracy of the mass analyzer. The MS2 fragment 

ion spectra of the same precursor window are aligned 

together accordingly by scans tensor generation, similar 

to the concept of extracted ion chromatograph [9] to 

depict the elution pattern of a peptide precursor or its 

fragment ions. We then generated a three-dimensional 

tensor of reordered MS2 intensity as binned m/z 

reordered cycle index, and precursor window index as 

DIA tensor. (Figure 1C).  

The size of original DIA tensor is nevertheless too large 

to feed into the deep learning module and for 

visualization. Interestingly, we found that the 

combinations of sequential amino acid m/z values are 

aggregated into discrete values, which we consistently 

observed as a pattern of alternating peaks (Figure 1B) 

with predefined grids in the MS2 m/z dimension when 

counting the nonzero intensity. We further confirmed 

this pattern by simulation of single charged fragment 

m/z of human proteome where we also found the same 

pattern of major peaks (Figure 1B) and minor peaks 

which could be interpreted as doubly charged fragment 

ions. We then utilized this feature to further reduce the 

tensor in the m/z dimension. To dynamically determine 

the pooling size of different m/z ranges, nonlinear 

squared Gaussian fit of non-zero m/z peaks was used to 

determine the pooling boundary. By dropping all the 

grid without peaks and binning major/minor peak area 

to one row, we reduced the m/z dimension by fifty-fold 

with the m/z intensity pooled as the sum of the  
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Figure 1. Establishment of DIA tensor.  A) Illustration of raw data structure of DIA-MS acquisition scheme, which is a two-

dimensional array of MS2 m/z and ion intensities arranged by sequential scans of repeated cycles of one MS1 scan plus a series of 

MS2 scans that span the entire MS1 precursor m/z range. B) Left panel, image crop of the raw MS2 intensity shows fragment ion 

clusters in rows. Right panel, the nonzero intensity count distribution of fragment ion m/z from an empirical DIA map. Major 

peaks are colored in red, while the minor peaks are in blue. C) Layout of the intensity tensor is illustrated by pooled MS2 m/z with 

reordered scans by cycle index and precursor window index. D) Visualization of DIA tensor. An orthogonal linear sampling was 

used to sample the Red-Green space to generate a color scheme of green (lowest)-to-red (highest). Black is used for zero values. 

Zoomed in is a sample visualization in the first isolation window. E) A sample image visualization by flattening the window index 

dimension. The MS2 windows were sorted by precursor centers accordingly, where the continuous clear red line indicates the 

corresponding precursor windows of unfragmented precursor ions. F) Visualization of the last window of three different types of 

clinical samples with different DIA acquisition scheme and gradient length. Liver fresh frozen: SWATH 66 windows, 60 minutes; 

Thyroid nodule FFPE: DIA 24 windows, 45 minutes; Plasma: 55 windows, 30 minutes. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.05.978635doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978635
http://creativecommons.org/licenses/by-nc-nd/4.0/


 - 5 - 

intensities within the pooling boundaries. To visualize 

the tensor (Figure 1D), we discretized the non-zero 

intensity space and assigned 

three channel RGB colors, sampled from green to red 

bidirectional color space, and flattened 2D images by 

window index, as shown in representative samples 

(Figure 1E, 1F). The stellar DIA image depicts the MS2 

windows sorted by precursor centers, where the 

continuous clear red line indicates the corresponding 

precursor windows of unfragmented precursor ions. For 

deep learning, we used a single channel grey color to 

match the discretized value and avoided introducing 

extra redundancy in color dimension. The file size of 

pooled DIAT is 10-fold smaller than mzXML by 

SWATH and 2-fold smaller than mzXML by DIA. 

Deep learning based on DIAT using a hepatocellular 

carcinoma cohort 

Modified neural networks of ResNet-18 (see Materials 

and Methods) was applied to DIAT data directly for 

phenotype prediction in cancer diagnosis, without 

relying on the computationally intensive and error-

prone XIC procedure. Each tensor was divided into sub-

tensors as multi-channel images with a size of pixel 

224x224xC (Figure 2A) where 224 is the size of the 

input layer used in ResNet and C is the number of 

precursor isolation windows. To fit the full size of the 

tensor, some of the regions on the boundary have partial 

overlap.  

A modified ResNet-18 network was applied to each 

region to obtain prediction scores and the prediction 

scores of all regions were fused to get the final 

prediction through a fusion module. The structure of the 

modified ResNet-18 was the same as conventional 

ResNet 18 except that the output size of the last fully 

connected layer was modified to suit the binary 

classification problem.  From this, the output of all 

regions formed two vectors according to the node type 

(benign vs. malignant). Finally, two fully connected 

layers were used in the fusion module to perform the 

weighted average on two vectors, the output being the 

final prediction. (Figure 2A) A cohort of fresh frozen 

tissue biopsies of primary liver cancer, hepatocellular 

carcinoma (HCC) [23], was used in this study. The data 

set used here is described in greater details in a separate 

manuscript in preparation. For each patient, tumor and 

non-tumorous tissue samples were collected and 

processed with the PCT-SWATH workflow [24] to 

generate 102 SWATH MS files. We used 70 sample 

files as the training set and 20 sample files as the 

validation set, and 12 sample files as the test set. Since 

there was insufficient data in the test set, ten trials of 

training were performed, attaining a mean accuracy of 

96.8%. (Figure 2B) The accuracy was 96.8%, the 

precision 95.2%, the recall 98.3%, and F1-score 0.967 

(Figure 2C-D). The hyperparameters such as learning 

rate, number of iterations, batch size, and loss function 

were optimized in the HCC dataset so that we could use 

for the other proteomic data sets.  

Application on cohorts of papillary thyroid 

carcinomas  

To prove that our methodology is generic, we further 

applied it to a different DIA data set of thyroid nodules 

which is bigger and more complicated. We adopted the 

same framework and hyperparameters as in the HCC 

experiment. Thyroid nodules are a common endocrine 

disease affecting approximately 50% of the population 

globally, particularly in women [25]. Nevertheless, only 

7-15% of them are malignant and papillary thyroid 

carcinoma (PTC) accounts for 85% of malignant 

nodules [26]. Patients suffering from clinically 

indeterminate nodules are often advised to have surgical 

resection. However, most resected nodules turn out to 

be benign after histopathological evaluation, leading to 

pervasive overtreatment in many countries. PTC has 

one of the lowest mutation densities compared with 

other cancers [27], and so is not readily detected by 

genomic technology. Therefore, we applied PCT-DIA 

to acquire a total of 708 thyroid DIA files consisting of  
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158 normal thyroid DIA files (N) and 550 papillary 

thyroid carcinoma DIA files (P) [28]. The discovery 

cohort was collected from single hospital and the test 

cohort was from three different hospitals (Figure 2E). 

The discovery cohort comprised 126 N and 366 P DIA 

files; the test cohort consisted of 216 DIA files. The 

data set used here is described in greater details in a 

separate manuscript under review. Applying the same 

framework and hyperparameters as in the HCC 

experiment, we attained an accuracy of 91.7%, 

precision of 94.6%, recall of 95.7%, and F1-score of 

0.951 (Figure 2F-G) at the sample level. These results 

show that our methodology is generic and can be 

potentially applied to address a broader range of clinical 

questions. 

 

Discussion 

Although a plethora of mass spectrometric methods 

enables generation of precise mass spectral data in high-

Figure 2. DIA tensor coupled with deep learning for phenotype prediction. A) Overview of a general deep learning framework. DIA 

tensor was divided into sub tensors of 224 x 224 x number of isolation windows, followed by modified ResNet-18 analysis on each 

region, and fusion of the results of each region through two fully connected layers. B) The design of HCC PCT-SWATH experiment.  C) 

The total confusion matrix of 10 training experiments. D) The UMAP of training and validation sets of HCC samples E) The ROC curve 

of the HCC experiment of one test set. The AUC is 0.88. F) The design of thyroid nodule PCT-DIA experiment.  G) The confusion 

matrix of the thyroid nodule diagnosing experiment. H) The UMAP of training cohort of thyroid nodule samples I) The ROC curve for 

diagnosing malignant thyroid nodules. 
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throughput and large volume, application of these data 

to (clinical) phenotype prediction are mostly performed 

after molecular interpretation of the mass spectral data 

[8]. Direct use of mass spectrometric data is used in 

mass spectrometry imaging technique, often referred to 

as Matrix-Assisted Laser Desorption/Ionization–Mass 

Spectrometry Imaging (MALDI-MSI) [29, 30], 

although ionization methods other than MALDI have 

been developed too [31]. Currently this field is mainly 

focused on generating high spatial resolution spectral 

data for maximal number of molecules, and correlation 

with histology images [32, 33]. The throughput to 

generate an image of high spatial resolution is still low. 

Moreover, the images thus generated can be hardly be 

the source for deep learning models for phenotype 

prediction. In addition, clinical application of MALDI-

MSI is constrained to analyzing biopsies tissues but is 

incapable of measuring other types of clinical samples 

such as unsectioned fresh frozen tissue, blood plasma or 

serum and stool.  

DIA-MS data can be visualized [34, 35] by manual 

inspection of DIA ion maps, but such visualization is 

not designed as the input for deep learning model where 

the large input of m/z data by high-resolution mass 

analyzers needs to be properly handled.  

In this work, we have established an end-to-end 

methodology allowing direct deep learning analysis of 

DIA-MS raw data in the format of DIAT for phenotype 

prediction. We first applied this method to distinguish 

between benign and malignant liver tissues as proof of 

principle. Then the same method was deployed to 

predict malignant thyroid nodules. Our method bridges 

DIA-based proteomics directly to deep learning 

technology such as residual neural network for 

computer vision. With this new approach, DIA data do 

not need to be processed through heavy computation for 

interpreting the mass spectra data, thereby 

circumventing errors and distortions artificially 

introduced during mass spectral interpretation. As the 

quality and quantity of MS data increase, we can 

foresee the potential of DIAT in rapid clinical 

diagnosis. Future research is required to interpret the 

biological insights revealed from deep learning of the 

DIAT maps. Our preliminary data show this data format 

and data analysis strategy also applies to DIA data of 

metabolomes and lipidomes. 
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Materials and Methods 

Patients and tissue samples of HCC 

All tissue samples of hepatocellular carcinoma cohort 

were collected from Union hospital, Tongji Medical 

College, Huazhong university of Science and 

Technology, Wuhan, China. Tissue samples were 
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collected within 1.5 hour after hepatectomy, then frozen 

and stored at -80℃ or temporally in -20℃ before 

moving to -80℃. For each patient, two tissue biopsy 

punches (with dimension of 5 x 5 x 5mm) including a 

tumorous tissue and a non-tumorous tissue from an 

adjacent region as determined by histomorphology.  

PCT lysis and extraction of proteins 

About 1mg of the frozen tissue on average was lysed 

with the PCT-Micro Pestle device in 30μL of lysis 

buffer composed of 6M urea, 2M thiourea and 0.1M 

ammonium bicarbonate in a barocycler HUB440 

(Pressure BioSciences Inc, South Easton, MA, USA), 

where the tissue lysis was performed under a program 

consisting of 60 oscillating cycles, where each cycle 

consists of high pressure at 45,000psi and 10s of 

ambient pressure at 30°C. Then the extracted proteins 

were reduced and alkylated by incubation with 10mM 

tris(2-carboxyethyl) phosphine (TCEP) and 40mM 

iodoacetamide (IAA) under gentle vortexing at 600 rpm 

for 30min (ambient pressure) at 25°C in the dark. 

Afterwards, proteins was first digested with lys-C 

(enzyme-to-substrate ratio, 1:40) in the barocycler 

under the program of 45 cycles of 50s high pressure at 

20,000psi 10s ambient pressure, followed with trypsin 

(enzyme-to-substrate ratio, 1:50) of 90 cycles of at 50s 

at pressure 20,000psi and 10s ambient pressure. After 

digestion, the peptides were acidified with 

trifluoroacetic acid (TFA) to pH 2-3 and cleaned with 

The Nest Group C18 (17-170ug capacity) and dried 

under vacuum. Peptides were reconstructed in HPLC-

grade water containing 0.1% formic acid and 2% 

acetonitrile before mass spectrometry injection. 

Mass spectrometry of HCC samples 

One microgram of peptide sample was injected to an 

Eksigent 1D+ Nano LC systems (Eksigent, Dublin) and 

analyzed in a 5600 TripleTOF mass spectrometer 

(SCIEX) in SWATH mode. The LC gradient was 

reduced to 60 min, and the SWATH acquisition scheme 

to 66 variable windows (Table S1). The other SWATH 

parameters were set exactly as in our previous study 

except that the ion accumulation time for each SWATH 

window was 40 ms. Ion accumulation time for peptide 

precursors was set at 50 ms. The 102 samples were 

injected into the MS in randomized sequence once and 

then the same sequence was injected again to obtain a 

duplicate. After each gradient, the column was washed 

twice using ramping gradient to minimize carryover. 

Mass calibration using beta-gal was performed every 

fourth injections. 

Dewaxing, rehydration and hydrolysis of FFPE 

tissues  

For each case, three biological replicates of FFPE 

punches were processed. Before dewaxing, specimens 

were weighted and recorded. FFPE tissue samples were 

washed with heptane (Sigma) and 100% ethanol 

(Sigma), 90% ethanol, 75% ethanol successively in 

room temperature. After dewaxing and rehydration, 

0.1% formic acid (Sigma) was added for achieve C-O 

hydrolysis of protein methylol products and then 

washed with 100 mM Tris-HCl (pH=10, Sigma) to 

exchange the condition for following reaction. Base 

hydrolysis was performed under 95 degree centigrade 

using 100 mM Tris-HCl (pH=10). Finally, cool down 

immediately at 4 Celsius degrees.  

Patients and tissue samples of thyroid nodules 

The samples included in our study were FFPE punches 

collected from four clinical centers from Singapore and 

China with the approval of the ethics in the indicated 

hospitals. 

In the discovery dataset, FFPE specimens from patients 

with thyroid adenomas, nodular goiters or different 

thyroid cancer types, whom were treated in the 

Singapore General Hospital (SGH) between the year 

2012-2017, have been retrospectively retrieved from the 

Pathology Department of SGH. Haematoxylin and 

eosin-stained slides from tissue blocks of every single 

patient were carefully reviewed by an experienced 

histopathologist who marked out the disease region for 

tissue coring.  
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The selection of cases was excluded with extensive 

thyroiditis and/or inflammation and the pathological 

lesions of the cases were more than 1 cm in diameter. 

Pathologists viewed and marked haematoxylin-eosin 

stained slides and then each case were made punch 

cores at the region of interest using a hollow metal 

needle of 1 mm internal diameter and 1 mm length. 

Each dry FFPE punch weight around 0.6 mg including 

wax. 

mzXML file converting options 

The .wiff and .raw files were converted to mzXML files 

using MSconvertGUI (64-bit Version: 3.0.19172-

57d620127) with parameters peakPicking set as vendor 

msLevel=1-2 

DIA tensor data structure 

Data type: uint16 / uint32 (automatically selected 

according to the needs of stored data) 

Data space: 4D 

Z dimension: ms2 window index 

Y dimension: m/z index in 0.01 Da bin 

X dimension: cycle index (requires cycle alignment for 

the same batch of datasets) 

Color dimension: ms2 intensity (saved as integer type, 

without any other processing) 

The difference of raw DIAT and pooled DIAT:  

1. The m/z index changed from the bin number of 0.01 

Da bin to the m/z main and sub-peak division area, and 

then the main and sub-peak numbers after 95% 

confidence interval fitting. 

2. MS2 intensity becomes integer type value after m/z 

main and auxiliary peak pool 

Binning of m/z 

Binning indices: I = ⌊X−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝛼𝛼

⌋; Binning value: 𝑧𝑧𝑘𝑘 =

∑ (𝑌𝑌|𝐼𝐼 = 𝑘𝑘)k , 𝑘𝑘 = 1, … ,  𝑁𝑁; where 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =

400,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1500;𝛼𝛼: bin size 0.01; 𝑋𝑋:𝑚𝑚/𝑧𝑧 values for 

a scan; 𝐼𝐼:  Indices after binning for a scan; 𝑌𝑌:  Intensities 

for a scan; 𝑁𝑁 = (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)/𝛼𝛼 𝑧𝑧𝑘𝑘:  Binned 

intensity in bin 𝑘𝑘; if there is no value in bin 𝑘𝑘, 𝑧𝑧𝑘𝑘 is 0. 

Pooling of m/z 

We count the number of m/z values in a bin to obtain 

the count distribution of m/z. We assume there is a 

repeating pattern in the m/z distribution (Figure S4A): 

major peak, no peak, minor peak and no peak with a 

fixed grid size (0.250132) and peak position, so that the 

peak apex can be designated into a grid. The original 

m/z range from 400 to 1500 will be transformed 

into 2199 grid lines (remove no-peak lines). For grid 

line with major and minor peaks, the peak center, peak 

standard deviation, and peak height are fitted by the 

gaussian function using the 25 points around the peak 

apex in the pre-designated grid. The pixel value for this 

grid line is determined by the sum of all the intensities 

within 1.96 standard deviation by lines. If we are not 

able to fit a proper peak, it will use the default args 

(sigma=0.03) to sum all the intensities within 1.96 

standard deviation (95% confidence) by lines (Figure 

S4B).  

Simulation of the single-charged human proteome 

The human proteome fasta file was downloaded from 

Uniprot (n2019 August). Monoisotopic mass of amino 

acid is downloaded from Unimod.org. The proteins are 

firstly trypsinized in silico into peptides with K/R 

terminus. Unique peptide sequences with length of six 

to thirty are retained. The fragment mass-to-charge ratio 

is binned with size 0.01 Dalton. The b-ions are 

calculated by the sum of monoisotopic masses of all 

composing amino acids plus one hydrogen 

monoisotopic mass while y ions are calculated as the 

sum of monoisotopic masses of all composing amino 

acids plus monoisotopic mass of one hydronium ion.  

Modified ResNet-18 

The structure of modified ResNet-18 is shown in Figure 

S6. The main modifications include structural 

modifications and weight modifications. For structural 

modifications, the output size of the last layer in the 

modified ResNet-18 is modified to 2 to suit the binary 

classification problem. For weight modifications, the 

weights of the first 17 convolutional layers in the 

modified ResNet-18 are fine-tuned using liver cancer 
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and thyroid cancer training data. The size of the 

subtensor is 224 x 224 x M, where the subtensor is the 

input of ResNet-18 and M is the number of precursor 

isolation windows. In the convolution and pooling 

operations, the dimension is generally reduced by 2, so 

the input size is preferably in the form of 
nb 2× . 

Furthermore, 224 x 224 is the size of the input layer 

commonly used in ResNet, facilitating us to directly 

call the pre-trained weights on the ImageNet dataset. 

Therefore, the input size 224 x 224 of the conventional 

ResNet is inherited in our model to extract the 

information embedded in the mass spectrum tensor.  

Deep neutral network implementation 

For a binary classification problem, the final outputs 

represent the probabilities of the input being negative 

(normal samples) and positive (cancerous samples). A 

softmax(·) active function is used to map the output 

values to the range of [0, 1]. Then the cross entropy is 

used to defined the loss function. 

∑
=

−−+−=
m

i
yyyy

m
L

1
)]ˆ1log()1()ˆlog([1

 
where m is the batch size, which is set to 8 in our model, 

y is the true label of the input, and ŷ  is the the 

predicted score of the input being cancerous. During the 

training process, the model is iteratively trained 128 

times on the dataset with Adam optimizer. The initial 

learning rate is set to 2x10-3, and after 64 iterations, the 

learning rate is changed to 2x10-4. 

Lastly, the modified ResNet-18 was implemented in 

Tensorflow-1.14.0 and Python 3.7 running on GeForce 

GTX 2080 Ti GPUs. 
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