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Abstract 
Although single molecule localisation microscopy enables for the visualisation of cells nanoscale 

organisation, its dissemination remains limited mainly due to the complexity of the associated 

imaging acquisition, impacting on outputs’ reliability and reproducibility. We propose here the first 

all-in-one fully virtual environment for SMLM acquisition: Virtual-SMLM, including on-the-fly 

interactivity and real time display. It relies on a novel realistic approach to simulate fluorophores 

photo-physics based on independent pseudo-continuous emission traces. It also facilitates for user-

specific experimental and optical environment design. As such, it constitutes a unique tool for the 

training of both users and machine learning approaches to automated SMLM, as well as for 

experimental validation, whilst providing realistic data sets for the development of image 

reconstruction algorithms and data analysis software. 

 

Main 
Super resolution microscopy encompasses a range of diverse imaging techniques that have in 

common to circumvent the diffraction limit of light, achieving an imaging resolution under 200nm. 

Since its development, it has opened new avenues of research, allowing for the first time to study cells 

at the nanoscale with light microscopy. Single molecule localisation microscopy (SMLM) in 

particular has sparked a growing interest: whilst relying on conventional optical set-ups for the most 

part as well as existing staining strategies, it uniquely offers a resolution down to 10-30nm[1-4], 

enabling for quantitative bio-imaging at the molecular level. It relies on the separation of 

fluorophores’ emission in time (or blinking) recorded over multiple frames. On a given frame, only a 

small subset of the overall fluorophores population is emitting. It results in spatially well separated 

point spread functions (PSFs), allowing for precise localisation. Overall, SMLM has proven to be a 

very powerful tool to identify and investigate cellular structures[5, 6].  

 

Despite these very promising outcomes, SMLM remains far from being a widely used tool across 

biological sciences. This comes down to a number of issues users are facing: - the complexity of the 

acquisition process, - the overall lack of guidelines and/ or automation strategies, - the low 

accessibility to these set-ups for training and optimisation (in terms of price / time). Indeed, although 

SMLM methodology mostly relies on conventional microscopes (e.g. wide field, total internal 

reflection), the acquisition itself is highly complex. It includes many user definable parameters 

(UDP), which impact considerably on the reliability and quality of the output images in a non-

intuitive as well as non-linear manner. For new users, this is a considerable setback as tedious and 
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expensive training is required. For instance, both the activation and excitation laser powers have to be 

set, whilst managing the camera frame rate and gain. Each one of these parameters plays a key role in 

the fluorophores’ blinking properties and how efficiently it is recorded.  

 

Artefact and limitations (e.g. multiple blinking, high density, relocation over following frames) are 

directly resulting from the chosen UDP combination[7]. The controversy surrounding protein clusters 

at the cell membrane is a probing illustration of the limitations of state-of-the-art approaches to 

SMLM [8-11]. Further complicating, how to best set these UDP depends vastly on the sample itself 

(e.g. dimensionality, density of the labelling)[12] and remains, for the most part, an open question in 

the field. As a result, a new sample systematically calls for extensive optimisation and fine tuning on 

the microscope even for expert users, with no guarantee of results. Overall, these constraints 

constitute a major flaw when it comes to the reproducibility and reliability of data sets acquired with 

SMLM, as well as its broader deployment in core biology laboratories. It highlights the crucial need 

for a realistic and versatile simulation platform allowing, for the first time, to experience a fully 

virtual SMLM acquisition truly tailored to users’ specific sample and optical set-up, very much like 

they would experience on a physical microscope. Such platform would not only facilitate users 

training but also experimental validation and optimisation based on ground truth. It is a requirement 

for users to investigate the feasibility of novel experiments. Questions such as -“can a given structure 

be resolved with the experimental design and optical set-up at disposition?,” could be accurately 

addressed in realistic imaging conditions for the first time.  

 

A very exciting avenue of research that also calls for the development of such virtual acquisition 

platform is “Smart Microscopy”[13]. It aims at designing self-driving, sample-driven microscopes 

with limited human inputs. In the case of SMLM, the transition to automated approaches is a 

requirement if the field wants to provide trustworthy reproducible data. In this context, machine 

learning (ML) has proven to be an extremely powerful tool to infer optimal UDP combination on-the-

fly and is starting to be an active research topic for microscopy, including automated SMLM. 

Importantly, ML relies heavily on realistic virtual environment for training (e.g. DeepSTORM[14]), 

which should include real-time AI-simulator interactions and produce a considerable number of 

studied cases in a short period of time. Self-driving cars for instance are first trained exclusively in 

such virtual environment, as it leads to reliable future proof as well as fast and safe deployment. In 

other words, for ML strategies to be applied to SMLM automation, it needs a new simulation tool that 

recapitulates real life SMLM acquisition. 

 

Whilst some strategies already exist for simulating SMLM like data sets[15-17], they systematically 

lack the real-time display and the on-the-fly interactivity required for AI and human training. 

Although more recent studies have started investigating the potentiality of comparing different 

imaging modalities[18], they continue to lack the requirements of realistic virtual environments. As 

such, existing simulators have no, or restricted, compatibility with ML training for smart microscopy. 

Overall, state-of-the-art simulators rely on unrealistic simplified photo-physics (e.g. frame rate 

dependant, population average) that do not accurately recapitulate the phenomena collected on a 

physical microscope. They also lack the versatility required for tailored experimental design as well as 

accurate PSF or camera noise model, and remain limited for the most part to 2D structures. As a result 

they are only suitable to a very limited number applications, mainly benchmarking or simplistic 

experimental validation.  

 

We propose here the first virtual platform for SMLM acquisition dedicated to both AI and users 

training, called: “Virtual-SMLM”. This new strategy uniquely enables for real-time display and on-

the-fly interaction with the fluorophores photo-physics properties, very much like a user would 

experience on a physical microscope. As such it provides a milestone for the development and 

comparison of “smart SMLM” methods. Considerable advances have also been made to the 

fluorophores photo-physics model, improving significantly the accuracy of the detected fluorescence 

at the frame level. In addition, to ensure versatility, Virtual-SMLM package already includes an 

intuitive user interface (Supplementary Figure 1), as well as a number of realistic 2D and 3D 

structures (Supplementary table 1) and imaging modalities (i.e. allowing to simulate a variety of 
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optical set-ups), and it is compatible with any commercially available or home build imaging camera. 

It is designed to be a fully open-source and community-oriented tool. User can easily add new 

structures to the range we provide and exchange on how to best image specific structures.  

 

A high level workflow of Virtual-SMLM is summarised in Figure 1.a. The input consists of the 

ground truth structure, defined as a set of 3D coordinates (a.k.a a point cloud) or a surface/volume 

from which coordinates can be extracted (online methods). We already provide a range of such 

structures but the platform can easily integrate new ground truth data (extracted from electron 

microscopy (EM) images for instance). Exactly like when planning for a physical experiment, 

Virtual-SMLM includes a number of choices for experimental design, which is divided in two 

stages: sample preparation and optical set-up. The added value is to generate a virtual acquisition that 

fits the specificities each user case. For the sample preparation, we propose a range of staining 

strategies (e.g. direct labelling, immunostaining) (online methods). Detailed characteristics concerning 

the chosen staining method can also be specified if the user has access to them (e.g. labelling 

efficiency, size of the used antibodies (AB)), resulting in a realistic synthetic sample to image. For the 

optical set-up, our approach is similar: although we already provide a range of commercially available 

cameras and illumination solutions (online methods), new specifications can easily be uploaded if 

required. Virtual-SMLM’s versatility is a pre-requisite for the development of both efficient analysis 

and reconstruction software, as well as general ML-based automation strategies for SMLM, as ML 

relies on realistic and diverse training sets that should mirror real physical case studies. 

 

The virtual live acquisition starts once the experimental design is completed. Figure 1.b summarizes 

the methodology developed for live acquisition. Like on a physical microscope, a number of UDP, 

which are key to the resulting output image quality, can be modified on-the-fly whilst acquiring. It 

includes both features associated with camera settings (i.e. frame rate and gain) and laser powers. 

These parameters are assessed at each ms time step (independently of the frame rate), and uniquely 

allows for real-time interaction on the virtual microscope. A user can modify the rate of activation for 

instance, switching from sparsely to densely PSF populated frames on-the-fly. This enables for fine 

tuning, exactly as would be the case on a physical microscope, whilst providing a unique tool to 

assess the quality of the reconstructed image versus the ground truth. In parallel, our method ensures 

real-time display, a requirement for users to assess on-the-fly if the blinking is well recorded and if 

the PSFs are well enough separated in space to allow for reliable reconstruction. The faithful display 

required the real-time computation (up to 100Hz) of the convolution with the 2D/3D PSF and the 

generation of the noise camera.  

 

More specifically, we use a set of proxies to account for the laser powers in our Virtual-SMLM 

microscope. These proxies recapitulate fluorophores photo-physics under given activation and 

excitation constraints, and are defined by the four states model described in Figure 1c. This model fits 

accurately photo-activation (PALM) as well as photo-switching (STORM) modes. It relies on a set of 

4 rates: enable, on, dark, bleach, our proxies on the virtual microscope. Concretely, enable, and on are 

associated with the activation laser, whilst bleach and dark are linked to the emission laser. We provide 

examples of frames acquired on Virtual-SMLM whilst varying values for the previously described 

proxies in Figure 1d, and further quantification in Supplementary Figure 2. Although the exact 

mathematical relationship between these rates and laser powers remains an active topic of research, it 

is possible to empirically calibrate this relationship for a given experimental design. However, the 

advantages of using the rate proxies as UDP rather than approximated laser powers are multiple: -it 

allows for a general framework that do not require for calibration, -it does not impact on ML training, 

- it facilitates user’s understanding of what they are effectively attempting to fine tuning with the 

lasers on a physical microscope.  

 

Virtual-SMLM also relies on the real-time assessment of each fluorophore’s quantum state. A unique 

pseudo continuous temporal trace of photo-activity is generated for each fluorophore independently of 

the frame rate, with a resolution of 1ms (roughly an order of magnitude smaller than the frame rate 

used for STORM). This is considerable step forward compared to existing simulators which rely on 

per frame approximation of fluorophores photo-physics (leading to inconsistency in the photon counts 
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and measured uncertainty, as a function of the frame rate chosen), as well as population averaging. In 

contrast, temporal traces allow for micro-blinks within a frame and spreading of a given fluorophore’s 

emission over subsequent frames (Figure 1.e). Also, Virtual-SMLM relies on Bernoulli statistics for 

the transition on/dark, dark/on and photo-bleaching, independently for each fluorophore, mimicking 

accurately a potential change of quantum state at each time step to reach a more realistic scenario 

(online methods). This has been made possible with extensive algorithmic innovation to allow for a 

significant decrease of associated computer time. We provide the super resolved image reconstructed 

from a typical virtual imaging session of one of the provided structures, centrioles, using Virtual-

SMLM (Figure 1.f,g, Supplementary Figure 3 and online methods).  

 
To further illustrate the need for virtual environments such as Virtual-SMLM to provide reliable and 

reproducible data, we asked two experts to image 2 consecutive times the same distribution of 

proteins in PALM mode i.e. synthetic sample and virtual acquisition (online methods). We generated 

for that purpose a ground truth distribution of membrane proteins, with an un-clustered and clustered 

pool (Figure 2.a), from which we build a realistic synthetic sample using our platform (i.e. immuno-

staining). Indeed, although SMLM resolution enables for the visualisation of signalling protein 

nanoclusters at the cell membrane, it consists of a particularly difficult sample to image. Depending 

on UDP used for the acquisition, the resulted super resolved image is prone to artefact and lack of 

reproducibility, giving rise to persistent controversies when used for quantification as previously 

mentioned.  

 

Both experts imaged the generated synthetic sample in the same conditions, with 1000 frames 

recorded for each virtual acquisition. Not only do we observe that the reconstructed localisation 

distributions vary from one acquisition to the next as the expert optimised or fine-tuned the UDP, but 

more strikingly, the image quantification for our two experts are drastically different (Figure 2.b-g 

and Supplementary Figure 4-5). The clustering analysis was extracted using Ripley’s K density curves 

for entire field of view (FOV) characterisation (Figure 2.d-e) and region of interest (ROI) cluster 

identification with Bayesian-based cluster analysis tools[8] (Figure 2.c,f,g and online methods). We 

further verified in Supplementary Figure 6 that the observed variations in the reconstructed images, in 

particular their clustering characteristics, are not resulting from stochastic sampling alone, but rather 

significant differences on the imaging performances.  

 

The results summarized in Figure 2 are highlighting the limitations of state-of-the-art unguided 

SMLM. It showcases the need for, at least the rise of consensus and agreed guidelines for SMLM 

acquisition, and soon user-free ML approaches to super resolution, all of which require virtual 

environment such as Virtual-SMLM. Open source community-driven platform, such as proposed 

here, directly leads to the rise of novel consensus and guidelines for SMLM as it enables for the 

development of systematic and robust approaches when it comes to acquisition. With Virtual-

SMLM, experts can quantitatively compare their methodologies to imaging the same synthetic 

samples for the first time. Furthermore Virtual-SMLM is a requirement for the development of 

automation strategies relying on benchmark diverse and realistic learning datasets, a necessary 

transition if SMLM is to increase its dissemination in core biology laboratories. Finally, our approach 

is fully compatible with multicolour imaging. 
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Figure 1: Virtual-SMLM methodology. a. high level workflow. POI stands for protein of interest. b. Live acquisition step by 

step. c. four states model. d. Example frames with fixed proxies except for an increase of enable. e. Independent pseudo 
continuous temporal traces for one given fluorophore. f. 2D projection (x,y) of the organization of Cep152 in human 
centrioles, ground truth point cloud used as input for the virtual imaging session. Colour coded by z point position. g. 
Resulting super resolved image of the complete FOV following image reconstruction. Cep152 labelled with immunostaining. 

Scale bar 2m. 
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Figure 2: Non-guided virtual SMLM acquisition with two experts. a. Ground truth distribution of proteins for a 2 m x 2 m 
ROI extracted from the FOV. The number of protein has been thinned to mirror the mean number of points collected by for 
users for the following analysis. b. Overall results (i.e. over the whole FOV) for both experts and both successive acquisitions 
(A1 and A2). Total number of localisations and time required for fine-tuning the UDP (in number of frames). c. Clustering 
characteristics extracted from the ROI (e.g. for the ground truth, 57% of proteins were found in clusters, the remaining 
proteins consists of monomers). d and e Statistical estimation over the whole FOV. d. Ripley’s K estimated curves. e. 

Linearised Ripley’s L(r) estimated curves. f. 2 m x 2 m ROI extracted from the FOV (i) Reconstructed image from Expert 1’s 
first acquisition in blue, grey for the ground truth clustered proteins and associated (ii) Cluster map (identified clusters are 
colored, monomers are grey). (iii) Reconstructed image from Expert 1’s second acquisition in blue, grey for the ground truth 
clustered proteins, and associated (iv) Cluster map. g. (i) Reconstructed image from Expert 2’s first acquisition in blue, grey 
for the ground truth clustered proteins, and associated (ii) Cluster map. (iii) Reconstructed image from Expert 2’s second 
acquisition in blue, grey for the ground truth clustered proteins and associated (iv) Cluster map. 
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Online methods 

Ground truth point clouds from known structures (Supplementary 

Table 1) 

Generated via the platform 

Random distribution (3D) 

Proteins of interest are distributed as a complete spatial randomness (CSR) in a volume. The user can 

provide the number of proteins to throw as well as the dimension (x,y,z) of the volume. This is a 

particularly useful synthetic sample for 3D imaging modalities. 

Protein aggregates in a lipid bilayer (2D) 

We generate two pools for the protein of interest: clustered and un-clustered proteins in a cellular 

membrane bilayer. Proteins are projected on a fixed z plane. The clusters’ size, number of enclosed 

proteins as well as the total number of clusters and percentage of un-clustered proteins are user 

defined.   

Provided in the structure package 

Microtubules (3D)[1]  

Microtubules are generated using tubular shapes in the 3D space. These structures are defined by their 

central axis having typically an average outer diameter of 25 nm with an inner hollow tube of 15 nm 

diameter. The centre lines of the microtubules are represented by a continuous-domain 3D curve by 

means of a polynomial spline.  

Vesicles in a 3D volume[2] 

Vesicles are generated as hard edge sphere randomly distributed in a volume. Monomers are overlaid 

as a CSR in the pre-defined volume. The dimension of the volume, the vesicles’ size, the number of 

enclosed proteins as well as the total number of vesicles and percentage of un-clustered proteins are 

user defined. We provide a number of examples in the structures folder. 

Mixed model: membrane proximal signalling proteins[2] 

Signalling proteins proximal to the plasma membrane consist of a mixture model. Both vesicles in the 

cytosol as well as membrane-bound protein clusters are likely to be present, often associated with a 

population of monomers in both cases. We provide an example in the structures folder. 

Centrioles (3D)[3]  

The organization of the human centrioles protein Cep152 was modelled into a previously published 

SMLM 3D reconstruction[3]. To this end, the estimated number of about 550 Cep152 copies[4] was 

distributed along their 9-fold symmetry into the 3D volume (Supplementary Figure 7). 

TOROIDs 

TOROID ground-truth structures were generated as described previously[5]. Briefly, as a starting 

model, we generated a double-helix structure with dimensions according to the electron microscopy 
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TOROID reconstruction. The starting structure was then randomly rotated and projected onto the XY 

plane (Supplementary Figure 7).  

Building a synthetic sample 

Direct labelling 

This scenario models fluorescent proteins. The protein of interest positions are used as fluorophores 

positions (in situ) with a user defined steric hindrance in Virtual-SMLM platform. 

Immuno-staining strategies 

Both primary and secondary antibodies (AB) can be used for the immunostaining. The size of the AB, 

the labelling efficiency as well as the steric hindrance are user defined in Virtual-SMLM platform.  

For each successive staining step, we generate a new list from our initial list of locations. Each 

location is moved by the distance of the AB size in a random direction. The probability of a location 

to be stained (i.e. reported to the newly generated list) is also taken into account at that step (e.g. a 

labelling efficiency of 0.5 will result in 50% of the locations from the list to not be reported in the new 

list, a labelling efficiency >1 will result in some locations stained twice). The workflow is 

summarized in Supplementary Figure 8. 

Optical set up 

Camera settings 

Camera specifications extracted from commercial tools or home-build system can be added manually 

to the Virtual-SMLM platform. The key parameters are: the maximum framerate, the FOV 

dimension and pixel size, the quantum efficiency, the readout noise and the electron per ADU, as well 

as the EM gain in the case of an EMCCD camera. All these features are easily accessible on 

commercial set up user manual. 

Illumination 

We enable for both Gaussian and flat illumination of the FOV, following the development of high-

throughput flat-field illumination large FOV[6].  

PSF 

We have used 3D PSFs to realistically generate the 2D shape of the emitter (3D position) in order to 

compute the 2D frame. These PSF were the ones used in [1]. They were derived from experimentally 

measured PSFs. for each tested 3D modality: astigmatism, double-helix, biplane and 2D. In practice, 

the PSF is typically sampled at 25 nm in the three directions and interpolated to the exact positions of 

the fluorophores.  

Photo physics 
For each fluorophore in our synthetic sample, we generate an independent pseudo-continuous 

temporal trace of emission with 1ms resolution (an order of magnitude smaller than the maximum 

frame rate used for SMLM). Importantly, these traces are fully independent of the frame rate. We rely 

on a four states model for the following statistics (Figure 1.c). At each 1ms time point, a small subset 

of fluorophores is switched from the OFF state to the ON state relying on a binomial distribution. 

when N (the number of fluorophores) is large and p (probability to turn OFF to ON) is low. Using a 
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binomial law allows to efficiently reproduce the equivalent of a large number of Bernouilli tests for 

each individual fluorophore. Whilst switched ON a fluorophore is included in the “active fluorophore 

list”. For every fluorophore entering the active list, we estimate when is the next state transition (from 

the ON state to either DARK or BLEACHED). For that purpose, we rely on Bernoulli statistics, 

mimicking quantum state transition mechanism. Which transition a given fluorophore undergoes is set 

by the chronology of events (the first to transition to test positive on the ms resolved clock). All 

transitions are independent of the frame rate and can be at any time on the 1ms clock (enabling for 

micro-blinks). A similar approach is followed for the DARK to ON transition. Once BLEACHED, 

fluorophores are discarded from the “active” list. 

Application with experts 

Defining an SMLM expert 

We define as an expert in the field of SMLM, a scientist who has had the opportunity to use one or 

more SMLM set up, on a very regular basis and has had already publications for which SMLM was 

the main imaging technique used. 

Imaging 

The two experts were presented with the same synthetic sample. Following a tutorial on Virtual-

SMLM basics, they were asked to image the synthetic sample twice in the same conditions than they 

would have experienced on a physical microscope.  

The ground truth (GT) protein distribution is provided in the Structures folder. It consists of a 

distribution of proteins in a membrane bilayer (z=0), including clusters of proteins and monomers. To 

switch from GT to synthetic sample, we designed a 2 stages immuno-staining directly on Virtual-

SMLM platform: 

- primary AB of 15nm with a labelling efficiency of 90% 

- secondary AB of 15nm with a labelling efficiency of 100% 

For the Optical set up, we used the specifications of the Evolve EMCCD 100x100 Delta and a 

Gaussian illumination of the sample. We performed a conventional 2D imaging virtual session. For 

each acquisition 1000 frames of 30ms were recorded. 

Overall quantification 

For the overall quantification of the experts’ imaging performances, we relied on ThunderSTORM[7] 

to extract the fluorophores localisations from the collected frames. Multi emitter fitting was 

performed to facilitate the detection of overlapping point spread functions, a very likely phenomenon 

in the context of a clustered distribution. We then estimated the total number of localisations extracted 

from each acquisition, the time the experts required for the optimisation/fine-tuning of the acquisition 

related user defined parameters (UDP) as well as the final choice of UDP for each acquisition. 

Furthermore, overall clustering characteristics were estimated relying on Ripley’s K curves. 

Cluster analysis 

A region of interest (ROI) of 2m x 2 m was extracted from the field of view for both experts’ 

acquisitions and the GT distribution. The GT ROI was thinned down to a comparable number of 

points than collected by the experts to allow for fair comparison. We performed state-of-the-art 

Bayesian based cluster analysis relying on topographic prominence for its thresholding[2,8]. The 

results are striking, in particular the impact of the sample preparation (i.e. the use of AB) on the 
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cluster size as well as the dramatic effect of UDP on the final cluster maps. From these cluster maps a 

number of parameters can be extracted: the number of clusters, their size and the number of proteins 

enclosed per clusters as well as overall characteristics such as the percentage of proteins in clusters 

and the number of clusters per ROI. 
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