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Abstract 

Both human and animal studies support the relationship between depression and reward processing 

abnormalities, giving rise to the expectation that neural signals of these processes may serve as biomarkers 

or mechanistic treatment targets. Given the great promise of this research line, we scrutinize those findings 

and the theoretical claims that underlie them. To achieve this, we apply the framework provided by classical 

work on causality as well as contemporary approaches to prediction. We identify a number of conceptual, 

practical, and analytical challenges to this line of research, and use a pre-registered meta-analysis to quantify 

the longitudinal associations between reward processing aberrations and depression. We also investigate the 

impact of measurement error on reported data. We find that reward processing abnormalities do not reach 

levels that would be useful for clinical prediction, yet the evidence thus far does not exclude their possible 

causal role in depression. 

Introduction 

 
Aberrations in how people form expectations about reward and how they respond to receiving rewards are 

thought to underlie depression, in particular the symptom of anhedonia. Anhedonia is the loss of interest or 

pleasure in activities that were previously considered pleasurable (1,2). Several lines of evidence support the 

relationship between reward and anhedonia. The most basic of these is face validity between anhedonia and 

reward related processes. These processes are instantiated in a network encompassing the ventral striatum, 

the anterior cingulate cortex (ACC), and the orbital prefrontal cortex (OFC) (3) and work from animal models 

has shown that lesions in these areas produce anhedonic phenotypes (4,5). Meta-analytic evidence from 

fMRI and EEG studies concurs; reduced neural signals in these brain areas acquired during reward tasks are 

associated with depression (6–8). 

 

These findings offer hope for the use of reward processing aberrations as either biomarkers for prediction of 

depression onset and course, or as targets for future treatments. Given their potential, we scrutinize those 

2 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.04.975136doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.04.975136


findings and the theoretical claims that underlie them. To achieve this, we build on previous reviews that have 

quantified cross-sectional associations; evaluating the literature in the framework provided by classical work 

on causality (9) and contemporary approaches to prediction (10). First, we critically examine the conceptual 

challenges to the purported relationship between reward processing and depression. Second, we consider 

the challenges of measuring symptoms of depression and reward processing. Third, we examine the existing 

meta-analytic evidence for a cross-sectional association between reward processing and depression. Fourth, 

we present a new meta-analytic analysis of the critical longitudinal associations and estimate the magnitude 

of these effects in the best case. Fifth, we review any evidence on the impact that manipulation of reward 

processes has on depression. Finally, based on the challenges that we have identified, we provide a list of 

specific recommendations about how to improve modelling and experimental approaches to the study of the 

relationship between neural signals of reward processing and depression. 

 

Conceptual challenges  

Reward processing encompasses a number of phases that we illustrate using the following example: A child 

sees a chocolate wrapper on her kitchen table and forms the expectation that there is chocolate nearby. In 

other words, she forms a prediction and anticipates that she will find chocolate. The terms expectation, 

prediction and anticipation are often used interchangeably; here we will largely refer to prediction, but many 

tasks that probe this behavior refer to it as the anticipatory phase. The child decides to investigate a nearby 

tin on the kitchen table and then tries to open it based on her prediction that it may contain chocolate. Here, 

the child acts and expends effort to obtain a reward. The child finds one chocolate left and enjoys the 

experience of eating the chocolate. The next day, she finds a new tin of chocolates, but opens it to discover 

that all of the chocolates have been eaten by her brother and becomes disappointed. The child experiences 

what is termed a negative reward prediction error (RPE), in this case a negative prediction error,  because 

she got less than expected. RPEs are thought to underlie reward-related learning, which for this example, 

would reduce the likelihood that the child looks into the tin for chocolate in the future. 
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The disruption of any of these reward processes - prediction, decision, effort, and experience - are thought to 

be associated with symptoms of anhedonia (7). Indeed, it is argued that anhedonia in the context of 

depression may be of the same kind as anhedonia experienced when physically ill (11,12).  

  

Motivated by this thinking--and by preclinical evidence from animals and humans--there has been a surge of 

experimental research in humans that uses reward tools to understand depression. Here, we critically review 

some of the conceptual challenges to this research.  

 
Figure 1: Two approaches for testing the relationship between neural signals of reward processing (N) and 
anhedonic symptoms (A). The first is an example of a rigorous theoretical test of our hypothesis that reduced 
neural reward processing signal at time t predicts future changes in anhedonic symptoms only through the 
persistence of that reduction. We test that model for non-equivalence against three reasonable alternatives: 
1) Two processes correlated cross-sectionally with no prediction across time. 2) The relationship is the 
opposite of our hypothesis, anhedonic symptoms predict reward processing signal. 3) A fully cross-lagged 
model where symptoms and reward processing interact over time. If we find our hypothesis to be superior, 
then we have strong evidence in its support. Alternatively, we could focus on making clinical predictions 
without concern for theoretical justification (note this is not an SEM). In this case, we are just trying to use 
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baseline neural data (Nt) to improve our prediction of future anhedonia (At+1) beyond what we could already 
predict based on baseline anhedonia (At) using some machine learning approach such as a regularized 
regression.   
 
Theoretical weakness 

As we attempt to probe the causal nature of the relationship, specific theories for the mechanism by which 

reward processing causes depression should be postulated and tested. For example, we hypothesize that 

reduced neural reward processing signal at time t predicts future changes in anhedonic symptoms only 

through the persistence of that reduction (Figure 1, Hypothesis). When we test this hypothesis, failure to 

falsify it does not confirm the model since there are alternatives that may also be supported by the data 

(Figure 1, Alternatives):  

1) Two processes correlated cross-sectionally with no prediction across time. 

2) The relationship is the opposite of our hypothesis, anhedonic symptoms predict reward processing signal. 

3) A fully cross-lagged model where symptoms and reward processing interact over time. 

If we showed that our a priori hypothesis was superior to reasonable alternatives, we would have stronger 

evidence to confirm our model (13). Alternatively, we could focus purely on clinical application without 

concern for theory; for example, testing if baseline neural reward signals improve the prediction of future 

anhedonia beyond what baseline anhedonia contributes (Figure 1, Clinical Prediction) -- a concept termed 

incremental validity (14). In both cases stronger evidence is provided by pre-registered hypotheses and 

analytical plans.  

 

State vs trait 

A rarely discussed question is whether reward processing abnormalities are trait or state problems.. 

Longitudinal studies (reviewed in detail below) suggest that neural signal reduction precedes the onset of 

depression in some youth, which would suggest that it is a trait rather than a state condition. In addition, 

evidence of blunted reward processing in remitted MDD (15–17) and in unaffected first degree relatives (18) 

argue also for a trait interpretation. However, treatment studies find that aberrant neural reward processing 

normalizes over the course of treatment in correlation with symptom reduction (19,20), indicating that reward 
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processing abnormalities may be a state rather than a trait. To our knowledge, no studies have directly tested 

how reward processing abnormalities covary with changes in anhedonia over the course of multiple 

assessments. If these are trait abnormalities, then their utility as biomarkers of the course of mental illness 

may be limited. 

 

Developmental moderation 

There are good reasons to assume that development could somehow influence the association between 

reward and depression. For example, a dramatic rise in depression cases occurs during puberty (21) 

coinciding with a period of time when, normatively, adolescents are apparently more sensitive to rewards 

(22). Moreover, there is some meta-analytic evidence (7) to suggest that reduced reward processing in 

depression may be more pronounced in adolescents compared to adults. Yet, with notable exceptions 

(23,24), rarely are specific theories being proposed about the interplay of development with reward 

processing and depression (23,24). It is even rarer to see any robust tests of such theories (23). This is not 

surprising given how difficult it is to conduct such studies. For example, a study about the effects of puberty 

would ideally have the following characteristics: a) be large enough to test for interactions between 

developmental time (linear and quadratic) with reward processing for the outcome of depression; b) include 

puberty-specific measures (e.g. pubertal hormones) as well as environmental factors (e.g. school transition, 

bullying, etc) that could confound such relationships; and c) be representative of the population of 

adolescents. To our knowledge, the study that most closely fits these criteria is the Adolescent Brain and 

Cognitive Development (ABCD) study (25). We urge researchers to take advantage of the measures of 

development that will be available in the next rounds of data released by ABCD. 

 

Specificity 

Often implicitly, but also explicitly (e.g. (11)), anhedonia in depression is thought of as an overall reduced 

wanting or liking of rewards. However, this model is challenged by the well-validated clinical observation that 

participants with depression have a higher likelihood of drug and alcohol addictions to hedonic substances 
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(26). This suggests that reward processing abnormalities may present context-dependent dysregulation of 

hedonic processing as suggested by Volkow (27). This is a more nuanced and complex hypothesis to specify 

and is rarely, if ever, empirically tested. 

 

Additionally, it is unclear whether reward processing abnormalities--for example, a reduction in the neural 

signal during the anticipation of a reward--are confined to anhedonia in the context of depression. There are 

several alternative hypotheses that have only partially been tested. First, within depression it remains to be 

established whether reward processing abnormalities are differentially related to anhedonia as opposed to 

other symptoms. We only know of two studies, which have found that anhedonia but not low mood are 

related to reward processing abnormalities in community (not clinically diagnosed) samples (28,29). Yet 

comparing anhedonia to other plausible symptoms, such as loss of energy or fatigue, is also important. 

Second, anhedonia is present in other disorders, such as schizophrenia or ADHD. Indeed, reduced striatal 

BOLD signal during reward anticipation has been described in these populations (30,31). In some studies, 

this signal has been accounted for by depression comorbidity (32); in others, this reduction was only 

observed in adult but not youth samples (33). In a recent study from our group, reduction in striatal activity 

was observed only in children with anhedonia but not in those with anxiety or ADHD in a community sample 

(whilst ADHD was associated with BOLD signal aberrations during a working memory task) (29). 

Measurement Challenges 

 

Measurement of the clinical phenotype 

 

Human self-report, on which studies rely, is extremely important and it would be wrong--from a clinical as well 

as ethical point of view--to dismiss it. However, it is also fraught with the following problems, among others 

(see Rizvi et al. (2) for a thorough review of challenges). 
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Retrospective accounts of anhedonia 

There are inherent problems with self-report of anhedonia, in particular consummatory anhedonia, or the lack 

of enjoyment when experiencing a reward. In the example above, the child would be asked--now sitting in 

some research laboratory--about her experience of consuming the chocolate. This requires forming the 

mental representation of a past event and attaching value to it, a different process than that of actual 

consummation, and in some ways more related to the process of predicting the value of a future reward 

based on past experiences. This is especially problematic in depressed patients, who tend to recall rewards 

as rarer than they actually were (34). Ecological momentary assessments may allow more direct 

measurement of consummatory anhedonia (35,36).  

 

Human-animal translation 

Self-report measures of anhedonia are obviously not translatable to animal models, so animal research into 

anhedonic symptoms focuses instead on behavioral assessment. However, these animal behavioral 

assessments don’t translate back to humans. A classical test of consummatory anhedonia in animals is the 

sucrose preference test--chronic stress reduces an animal’s preference for sucrose, which has been shown 

to reverse with the administration of antidepressant treatment. Yet, no differences between depressed and 

non-depressed participants have been found in a human sucrose test (37) and anhedonia is associated with 

failure to respond to SSRIs in human depression (38). This has cast doubt on whether reward consummation 

is a part of reward processing that is affected in depression. On the other hand, prediction has been 

assessed with analogous modalities in both animals and humans and was shown to be affected by 

depression, but the relationship with deficits of anticipation has not been demonstrated (39,40). 

 

Measurement of reward processing 

 

Reward processing is a promising avenue for understanding the mechanisms of anhedonia, and several 

experimental approaches have been developed to isolate components such as anticipation or consummation 
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of reward. Many behavioral tasks correlate poorly with self-report measures due to low reliability and 

measurement of different entities (41), and task-based functional magnetic resonance imaging (fMRI) may 

have similarly low reliability (42). Measurement of reward processing faces these problems and others:  

 

Not measuring behavior 

Some of the most widely used tasks in reward processing neuroimaging lack a behavioral output. For 

example, the titrated Monetary Incentive Delay (MID) task (43,44), an experimental set up used by us and 

many others in the field, does not offer behavioral output that could help differentiate between depressed and 

non-depressed participants. Interpreting blood oxygen level dependent (BOLD) signal in its own right is 

fraught with ambiguities: a reduced BOLD signal could be a deficit or a compensatory mechanism, and in the 

absence of a task-related behavioral response it becomes harder to interpret.  

 

Measuring some but not all phases of reward processing 

Most studies employ tasks that only measure some of the components of reward processing. For example, in 

the MID, the most commonly used task, only prediction (measured as neural activity during the anticipatory 

period) and experience (neural activity during the feedback period) of reward are probed, while other 

important phases such as decision and effort are left out (45). This means that key components of the reward 

system are not probed in the same individuals, and therefore inferences drawn about reward processing may 

be biased or partial. Computational modeling (as in (46,47)) of all of the phases of reward, potentially across 

multiple tasks within the same individuals, would allow a more thorough phenotyping of the reward system 

(48,49).  

 
 

9 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.04.975136doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.04.975136


Figure 2: Diversity of tasks and contrasts in studies reviewed by Keren, O’Callaghan et al. (7) and Ng et al. 
(6). The majority of task/contrast combinations in the literature have appeared in only a single study. 
Classification of the task as assessing anticipation or feedback is based on the information reported in each 
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meta-analysis. MID: Monetary Incentive Delay task; AID: Affect Incentive Delay; EEfRT: Effort-Expenditure 
for Rewards Task; RPE: Reward Prediction Error 
 
Multiplicity of measurement 

Different neuroimaging studies define the same phase of reward processing in different ways. For example, 

the label reward anticipation is applied to analyses that contrast it to a neutral condition, a loss condition, or 

even just baseline activity. Taking just the fMRI studies reviewed in Keren, O’Callaghan et al. (7) and Ng et al. 

(6) as examples, we found 22 different tasks, half of which have only been used once (Figure 2, Table S1). 

Across these tasks, at least 64 different task-contrast combinations were used, 50 of them only once. The 

most commonly reported was the gain anticipation versus neutral anticipation contrast for the MID task in 10 

studies. Given such a large space of potential tasks, contrasts, and analytical approaches, it is impossible to 

know if the contrasts and analyses used in any given paper are the only analyses done or if they are the 

result of searching that space for a significant finding. The rationale for these choices is often not stated, and 

when it is mentioned, there is no way of knowing if that justification is post-hoc. 

Cross-Sectional Association 

Association may not imply causation but, equally, two variables cannot be causally related unless they 

correlate with each other. Moreover, a predictor variable that is strongly associated with a clinical outcome is 

more likely to be suited for use as a diagnostic or prognostic tool. In this section, we critically review work that 

has summarized the association between depression and reward processing and evaluate the clinical 

relevance of that association. 
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Figure 3: Degree of overlap in the fMRI studies reviewed by Ng et al. (6), Keren, O’Callaghan et al. (7), and 
Zhang et al. (8). The consistency of striatal findings across these studies is encouraging given the divergence 
in included studies. 
 
fMRI 

Three meta-analyses have examined the association between depression and reward processing aberrations 

as measured using fMRI during a reward-related task, such as the MID. All three papers focused on 

cross-sectional differences in reward processing between healthy volunteers and individuals with depression 

or participants at high risk of depression and they identified reduced response to reward in the ventral 

striatum or caudate during reward prediction or experience (6–8). The results are encouraging in that they are 

attained with the inclusion of different studies (Figure 3). Yet, a major disadvantage of the activation likelihood 

estimation (ALE) approach that was used in these studies is that it does not provide an estimate of the 

strength of association (50) and that studies with null effects cannot be included, introducing the possibility of 

a positive bias. 

 

EEG 

Keren, O’Callaghan et al. (7) meta-analyzed 12 studies that have compared the feedback-related 

negativity/reward positivity (FRN/RewP) signal between depressed and healthy participants and found a 

mean effect size (Cohen’s d) of 0.38 (95% CI: [0.12, 0.64]) across age ranges and a mean effect size of 0.50 
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(95% CI: [0.15, 0.85]) in 6 studies on children and adolescents. However, this result is unlikely to be suitable 

for use as a diagnostic tool. In order to give a sense of the potential discriminative capability of this 

association, we calculated the Area Under the Curve (AUC) for this estimate (see Salgado et al. (51)) and 

find that it corresponds to an AUC of 0.64 (95% CI: [0.54, 0.72]). An AUC of 0.64 is fairly poor for 

differentiating between depressed and healthy participants (0.5 is chance performance and 1 would be 

perfect classification). This is particularly true given that brief screening questionnaires for detection of 

depression, such as the 2 item Patient Health Questionnaire, have AUCs of 0.90 or 0.88 in younger subjects 

(52). 

 

Longitudinal Association 

Reward processing aberrations should precede depression if they are to be a cause of it. Moreover, reward 

processing aberrations could be a prognostic biomarker if they predicted changes in symptoms. Here we 

conducted a set of pre-registered random effects meta-analyses of longitudinal studies 

((19,20,23,28,35,36,53–69); https://osf.io/be4nt, https://osf.io/mp49y, https://osf.io/3dz54 ; see supplemental 

materials) to quantify the correlation between neural signals of reward processing and subsequent changes 

in depression symptoms (see Table S2-S5 for information extracted from these papers). We accounted for 

non-significant unreported effects with the MetaNSUE (70). We took the most predictive striatal or reward 

positivity (RewP) signal from each study. For fMRI studies we included both ROI and voxel level results with a 

peak in the striatum. We found that striatal fMRI signals (r: -0.10, 95% CI: [-0.17, -0.03], p: 0.0067; Fig. 4) and 

RewP (r: -0.17, 95% CI: [-0.29, -0.04], p = 0.0041) are both inversely related with changes in depressive 

symptoms in observational studies (Table 1 , see Table S6 for results from treatment studies and Figures 

S2-S7 for additional forest plots). These estimates are upwardly biased estimates because we used the 

largest striatal or RewP effect from each study. We also tested a set of “global” hypotheses in which we took 

the strongest correlation across the entire brain from each study. We analyzed the absolute value of these 

correlations since we included activations, connectivity, and psychophysiological interactions. The purpose of 

these “global” hypotheses is to define the upper bounds of the relationship between neural reward processing 
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signals and changes in depression symptoms. Based on this, the upper bound for the relationship is 0.17 

(95% CI: [0.09, 0.24]) for observational fMRI studies, with predictions using EEG in a similar range (r: 0.20 

95% CI: [0.04, 0.34]). These associations are large enough to be of mechanistic interest, but correspond to 

AUCs of 0.60 (95% CI: [0.55, 0.64]) for fMRI and 0.61 (95% CI: [0.50, 0.70]) for EEG and are therefore 

unlikely to be useful for prognosis on their own. 

 

Modality Specificity Design N  r (95% CI) z p i2 Worst r Worst z Worst p 

fMRI Striatum Obs. 9 -0.10 [-0.17, -0.03] -2.75 0.0067 2.80% -0.08 -2.26 0.024 

EEG RewP Obs. 5 -0.17 [-0.29, -0.04] -2.63 0.0085 69.63% -0.11 -2.07 0.038 

fMRI Global Obs. 13 0.17 [0.09, 0.24] 4.30  47.86% 0.14 3.76  

EEG Global Obs. 5 0.20 [0.04, 0.34] 2.54  79.30% 0.12 2.16  

Table 1: Summary of predictive meta-analytic hypotheses. The “global” results are best-case analyses taking 
the absolute value of the strongest effect from any reward related analysis to define the upper bounds of the 
relationship between reward processing and future changes in depression. p-values are not given because 
significant difference from 0 is trivial after taking the absolute value. The least significant results from a 
leave-one-out analysis are shown in the “worst” columns. 
 

 
Figure 4: Forest plot for random effects meta-analysis of observational fmri studies reporting a striatal effect 
for the correlation with change in depressive symptoms. Across these studies (23,28,55,59,62,66,69), 
predominantly conducted in adolescents, we found that the mean of the distribution effects size for similar 
studies was -0.10 [-0.17, -0.03]. 1 indicates statistics reported for the entire study population, not for the 
subgroup upon which displayed prediction is based. 
 
Effect of measurement error on observed correlations 

Our meta-analytic estimates are limited by the error in measuring neural reward signals and depressive 

symptoms (71), so we estimated the magnitude of the “true” relationship in the absence of measurement 

error and examine the implications of that estimate for future studies. 
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There are varied estimates for the reliability of reward processing in task-based fMRI (72–75), but overall 

reliability of signals from task-based fMRI is poor (42). We conducted a random effects meta-analysis across 

the 9 reward related fMRI analyses from Elliot et al. (42) (Table S7) and found the test-retest reliability to be 

0.44 (95% CI: [0.28, 0.58]). Measures of depressive symptoms tend to have higher test-retest reliability. We 

conducted an informal review of the literature and estimated the test-retest correlation of depression 

measures to be 0.77 (95% CI: [0.67, 0.84]; Table S8). With some simplifying assumptions, we derived the 

algebraic relationship between these test-retest reliabilities (neural signals of reward processing: rNNm; 

depressive symptoms: rDDm), the measured relationship between neural reward signals and change in 

depression symptoms (rNmDm), and the “true” relationship between neural reward signals and change in 

depression symptoms (rND) (derivations in supplemental methods): 

 
Equation 1: rND = r NmDm / (r NNm * r DDm) 
 
In addition, we estimated the standard error of rND with the delta method (76). 

 
Figure 5: Relationship between test-retest reliabilities of depression measures (Current rDDm), neural reward 
processing signals (Current rNNm), and the “true” correlation between neural reward signals and change in 
depression symptoms (rND) using our meta-analytic finding for the measured correlation between striatal fMRI 
reward signal and change in depression symptoms in observational studies (rNmDm) of -0.10. The estimate of 
the true effect depends on the estimates of the test-retest reliabilities, with our estimates (indicated by black 
lines) we find rND =-0.29 (95% CI: [-0.57,  0.0068]). Since our estimates come from informal reviews, we 
provide this visualization of the relationship given different values of these reliabilities. The white region 
indicates values of rNNm and rDDm incompatible with rNmDm = -0.10. 
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We estimated rND to be -0.29 (95% CI: [-0.57,  0.0068]), but as this is based on informal literature reviews for 

the test-retest reliabilities, Figure 5 shows this relationship for all values of rNNm and rDDm compatible with rNmDm 

= -0.10, which is what we found for the correlation between striatal fMRI reward signal and change in 

depression symptoms in observational studies. A correlation of -0.29 is strong enough that striatal fMRI 

reward signals may be a useful predictor of future symptoms, but we would only approach that power if the 

reliability can be improved. If we assume that  rND is -0.29, we can quantify the expected rNmDm in future 

studies using measures with different reliabilities (Figure 6). Additionally, it is important to keep in mind that 

this is an optimistic estimate of the correlation between neural reward processing signals and change in 

depressive symptoms, and that cross-validated predictive performance would likely be lower.  

 

 
Figure 6: Relationship between test-retest reliabilities of depression measures (Future rDDm), neural reward 
processing signals (Future rNNm), and the observed correlation between neural reward signals and change in 
depression symptoms (rNmDm) using our estimate for the true correlation (rND) of -0.29. We plot an illustrative 
example (black lines) for a hypothetical future study with rDDm = 0.9 and r NNm = 0.7, which gives an expected 
observed correlation of -0.18 (95% CI: [-0.34, 0.0043]). Researchers using our estimate in this way should 
keep in mind that our longitudinal meta-analysis took the best correlation between activations and depressive 
symptoms across the entire striatum and they should plan to account for multiple comparisons appropriately. 
 
As pre-registered, we conducted a review of the quality of the papers included in our meta-analysis on the 

basis of best practices for predictions based on neuroimaging data (10) and open science practices (77). 

Only two studies provided cross-validated metrics for prediction accuracy (Table S1). There were four studies 
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that referenced pre-registration (19,20,35,63), but none of these had in depth descriptions of analytical 

approaches. 

 

There is evidence that reward processing signals correlate with changes in depression symptoms. While only 

a modest correlation is observed (r = -0.10 [-0.17, -0.03]), more reliable measures may find a larger 

relationship--up to unknown limits of measurement reliability. On the other hand, if taken at face value, these 

modest observed correlations are consistent with the hypothesized mechanism of reward processing 

aberrations causing anhedonia and depression. In daily life we are constantly receiving rewards, a small 

difference in the processing of those rewards may accumulate over time to have a significant impact on 

clinical symptoms (78).  

 

 

Manipulability 

If reward processing abnormalities cause depression, then altering the reward processing network should 

alter the clinical phenotype and course of depression. Manipulating reward stimuli changes ventral striatum 

activity as well as subjective ratings of momentary mood (46,79). However, evidence that manipulating the 

reward processing system changes clinical symptoms of depression has been elusive. The ideal evidence 

would come from a randomized, placebo controlled trial, where the intervention would be shown to a) cause a 

change in reward processing; b) through that change in reward processing, cause a change in behavior. 

Statistically, this amounts to a mediation. Many interventions can perturb the reward system (80–89) and 

some have even shown that changes in this system correlate to changes in depressive symptoms 

(20,63,90–93). One study did find a significant mediation (20), so they provide some evidence for the 

manipulability of depression symptoms via manipulations of the reward processing system. 

 

Statistical power 
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Mediation designs are particularly demanding in terms of power. If we assume small effect sizes (βs around 

0.1) and only two measurements then 395 subjects would be needed for 80% power if a bootstrap test of 

mediation is used (94). Increasing the number of measurements to five reduces the required number of 

subjects to 253 and may give insights into mechanisms of long delays in treatment response and differential 

behavioral effects during the course of treatment (95). Only one of the six intervention studies mentioned 

above had the 55 participants needed for 80% power to detect even moderate effect sizes, that is βs around 

0.4. Please see Pan et al. (94) for details on determining sample size for mediation analyses.  

 
 

Challenge Recommendation 

Theoretical weaknesses ● Make strong theoretical predictions against alternative models 
e.g. reward anticipation vs reward learning in depression (47). 

● Specify potential causal pathways in the relationship between 
parameters of reward processing and depression e.g. conduct a 
highly sampled longitudinal assessment of reward processing and 
depression. Cross-lagged analysis of the relationship between 
reward processing and depression will allow separation of 
time-varying (state) and time-invariant (trait) components. 

● If focusing on predictive utility, use up-to-date methodology, 
including cross-validation (as in the responder classification 
analysis here (56)) or out-of-sample validation, sample sizes of at 
least several hundred observations, provide multiple measures of 
prediction accuracy, use sum-of-squares formulation for , 
k-fold cross-validation with k between 5 and 10, and sharing of 
data sets and code (10,14,77).  

Developmental moderation ● Spell out developmental theory of reward in relation to depression 
and build clear expectations on that basis.  

● Use a study that spans development at least in accelerated 
design (96) or better in longitudinal design sensitive to 
developmental stages (97,98). 

● Use well-powered study with explicit calculations for any higher 
order interactions, e.g. between reward processing and pubertal 
stage or timing.  

● Include biological samples relevant to development, including sex 
hormones. 

Cross-sectional association Employ and facilitate more powerful meta-analytic techniques: 
● Apply meta-analysis that are sensitive to direction and magnitude 

of effect (such as in Albajes-Eizagirre et al. (70)). 
● Share statistical maps on platforms such as NeuroVault.org. This 

would allow use of more powerful image based meta-analysis 
techniques (99). 
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Manipulability Design studies to explore treatment and mediation effects: 
● Include behavioral and or clinical outcomes in treatment studies, 

even acute treatments (100). 
● Make clear predictions about mediation effect (e.g. of reward 

processing parameter) and power study accordingly.  
● Use multiple assessments as this allows for better estimation of 

timing of change and increases power. See Pan et al. (94) for 
details. 

Table 2: General recommendations for best practices 
 
 
 

Challenge Recommendation 

Specificity ● Compare theory of global reward processing deficit (“analogy to 
physical illness”) with context-specific anhedonia (27).  

● Assess idiosyncratic effects on reward anticipation and 
experience and how these vary.  

● Build and test theories about differential pathways to anhedonia, 
e.g. compare anhedonia in psychosis to classical depressive 
anhedonia (101).  

● Use well-powered samples and designs.  
● Consider hetero-typic continuities (e.g. social phobia to social 

anhedonia to depression). 

Difficulty measuring anhedonic 
symptoms and reward 
processing aberrations 
 

Develop a reward processing task, anhedonic symptom questionnaire, 
and generative computational model in concert. These should: 

● Be developed collaboratively (similar to the model used in the 
development of BIDS (102)) to promote use and adoption. 

● Behavioral tasks of anhedonia/motivation should be geared 
towards capturing intra-individual change with good test-retest 
reliability (41). 

● Measure all or many phases of reward processing in tandem 
(103), ideally one that is also easy to use developmentally. 

● Measure multiple aspects of anhedonia, ideally in a 
non-retrospective or vicarious way, to disentangle recall of reward 
from actual anticipation or experience of reward. 

● Tasks should ideally have animal analogues to facilitate more 
direct translation between humans and model organisms. 

● Explicitly link reward processing parameters with symptoms as 
measured by questionnaires so that theoretical links between task 
performance and symptoms are explicit where feasible. 

● Be amenable to repeated administration for use in longitudinal 
studies. 

Table 3: Specific experimental recommendations 
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Conclusion 

Neural reward processing abnormalities are currently unsuited for use as clinical predictors of depression, but 

improved measures of neural signals of reward processing and multivariate analyses may change this in the 

near future. There is evidence to support a causal relationship between reward processing abnormalities, with 

weak temporal association and evidence for manipulability. We have made general recommendations for 

best practices (Table 2) and specific experimental recommendations (Table 3) for addressing some of the 

challenges we observed in the literature. Not all of these recommendations are applicable to every study of 

reward processing and depression, but we hope that they will be a useful guide to the design of future 

studies. 
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