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The infant gut microbiota develops remarkably predictably1–7, with pioneer species colonizing 
after birth, followed by an ordered succession of other microbes. This predictable assembly is 
vital to health8,9, yet the forces underlying it remain unknown. The environment, host and microbe-
microbe interactions are all likely to shape microbiota dynamics, but in such a complex 
ecosystem identifying the specific role of any individual factor has remained a major challenge10–

14. Here we use multi-kingdom absolute abundance quantitation, ecological modelling, and 
experimental validation to overcome this challenge. We quantify the absolute bacterial, fungal, 
and archaeal dynamics in a longitudinal cohort of 178 preterm infants. We uncover with exquisite 
precision microbial blooms and extinctions, and reveal an inverse correlation between bacterial 
and fungal loads the infant gut. We infer computationally then demonstrate experimentally in vitro 
and in vivo that predictable assembly dynamics are driven by directed, context-dependent 
interactions between microbes. Mirroring the dynamics of macroscopic ecosystems15–17, a late-
arriving member, Klebsiella, exploits the pioneer, Staphylococcus, to gain a foothold within the 
gut. Remarkably, we find that interactions between kingdoms drive assembly, with a single fungal 
species, Candida albicans, inhibiting multiple dominant gut bacteria. Our work unveils the 
centrality of simple microbe-microbe interactions in shaping host-associated microbiota, a 
critical step towards targeted microbiota engineering. 
 

Humans are colonized by vast communities of microbes, particularly within the gastrointestinal tracts, 

that play key roles in host health8,9. However, we do not start life with these microbiota. Instead, infants 

are generally born uninhabited and their gut microbiota gradually assembles after birth1–7. Remarkably, 

this developmental process occurs in a strikingly predictable manner, with specific bacterial taxa 

establishing at distinct points in infant life18–22. Establishing the pattern of early life microbiome 

development is critical to infant and later-life health, with disruptions to microbiota development linked to 

a range of disease outcomes, morbidity and mortality, particularly within vulnerable preterm infants1,23–27. 

Yet despite their apparent importance, we do not understand what drives these patterned progressions11–

13. Host physiology, diet, antibiotics, and the interactions between individual microbes are all likely to 

influence microbiota development. But with so many moving parts, the specific role of any individual 

factor has remained unclear. We do not know whether this predictable assembly simply reflects order of 

exposure, or changes in infant diet, or whether – as in macroscopic ecosystems – pairwise interactions 

between individual taxa integrate to shape the community as a whole15–17. Indeed, disentangling how and 

why microbial communities change over time remains a major challenge not just for the human 

microbiota, but for host-associated and environmental microbiomes more broadly. 
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Our ability to identify causal drivers of microbiota development has been held back not just by the 

intrinsic complexity of microbial ecosystems, but also by fundamental limitations in how we quantify 

community composition10–13. First, while next-generation sequencing (NGS) has provided a 

comprehensive map of bacterial diversity within the human gut28,29, we still know little of the other 

microorganisms, such as fungi and archaea, that colonize the infant microbiota30–32, constraining our 

ability to identify inter-kingdom microbial interactions that drive ecosystem dynamics33. Second, NGS 

data typically chart only the relative abundances of taxa – that is, they quantify the proportion of different 

microbes within a given community, but not their absolute amounts. If a species increases in relative 

abundance over time we cannot determine whether that species is blooming or simply others are dying 

out. The compositional nature of relative abundance data can thus mask true community dynamics (Fig 

1a), critically undermining our ability to identify the biotic and abiotic forces that shape microbiota 

change34–36. Here we used a scalable multi-kingdom quantitation method to map absolute microbiota 

dynamics in a longitudinal cohort of preterm infants. Remarkably, by fitting these data to a comprehensive 

ecological model we demonstrated that within and between-kingdom microbial competition and 

exploitation shape the predictability of early-life microbiome assembly. 

 

A scalable NGS pipeline to quantify multi-kingdom absolute abundances  
 To identify causal drivers of change within any microbial community one must quantify the 

absolute changes in the range of biotic community members over time. To achieve this, we developed a 

cell-based multiple kingdom spike-in method (MK-SpikeSeq) that quantifies the absolute abundances of 

bacteria, fungi and archaea simultaneously within any given microbiome (Fig 1b). Specifically, we add to 

each sample defined numbers of exogenous microbial cells of each kingdom and perform kingdom-

specific rDNA amplicon sequencing to obtain relative abundances in each kingdom. The spiked-in cells 

serve as internal controls for the entire sample processing, including DNA extraction and library 

preparation. As abundances of the spike-in cells are known, we can back-normalize and calculate 

absolute abundances of all community members, across all three kingdoms (Fig 1c). As our primary 

objective here is to study the mammalian microbiota, our spike-in contains the bacterium Salinibacter 

ruber37, the fungus Trichoderma reesei and the archaeon Haloarcula hispanica, each selected based on 

their absence or rarity in mammalian microbiomes (Supplemental Table 2). Crucially though, our method 

can be easily adapted via spike-in choice and abundance to target any host-associated or environmental 

microbiome, and can be combined with shotgun metagenomics to capture viral members and enable 

strain-level absolute quantification. 

 We tested the ability of MK-SpikeSeq to sensitively and specifically measure absolute 

abundances in comparison to existing methods35–38 for quantifying microbial loads in diverse 
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microbiomes. Total DNA quantification cannot distinguish between different microbial kingdoms 

(Supplemental Fig 1a). Similarly, cytometry-based imaging36 cannot readily distinguish archaea from 

bacteria, nor fungi from other eukaryotes (such as mammalian cells) due to similar scatter properties, as 

exemplified in samples that have high abundances of archaea, fungi, and intestinal epithelial cells 

(Supplemental Fig 1b). Quantitative PCR (qPCR) and DNA-based spike-in methods are able to target 

specific kingdoms38, but are vulnerable to underestimation of microbial abundances in samples with low 

microbial loads or high host cell contamination (Supplemental Fig 1c-e) – a particular problem when 

studying inflammatory diseases, where fecal samples can contain millions of inflammatory or epithelial 

cells per gram39. In contrast, MK-SpikeSeq can readily quantify each kingdom and is robust to variable 

DNA extraction efficiency (Supplemental Fig 1c-e). MK-SpikeSeq can, therefore, generate highly 

sensitive, robust and scalable absolute abundance measurements for individual taxa across multiple 

kingdoms within any given microbiome (Fig 1a, Supplemental Fig 2) – a key requisite for identifying true 

community dynamics in microbiota with unknown membership.  

 

Measuring multi-kingdom absolute abundances in the infant gut  
 Having developed and validated MK-SpikeSeq, we then built a high-resolution multi-kingdom 

picture of infant microbiota dynamics. Specifically, we assembled a prospective cohort of 178 preterm 

infants from a tertiary-care neonatal intensive care unit (NICU). We focused on preterm infants due to 

their clinical relevance and because they are amenable to high-frequency longitudinal sampling with 

readily available clinical and dietary metadata. These features render the preterm gut both an important 

and a tractable system for establishing a proof of principle understanding of microbiota assembly. We 

sampled each infant within our cohort on approximately their first, 14th, 28th, and 42nd day of life, and 

for 13 infants we gathered nearly-daily stools for their first 6 weeks of life (940 samples in total). Together, 

this cohort enabled us to build a high-resolution quantitative atlas of microbiota development within the 

preterm infant gut.  
Consistent with previous preterm gut studies18–23, we observed that preterm infant gut bacterial 

communities cluster primarily into four distinct community states. These community clusters were 

independent of diet or delivery mode (Supplemental Fig 3), and were characterized by the domination of 

one of four genera: Staphylococcus, Klebsiella, Escherichia or Enterococcus (Fig 2a). Importantly, the 

bacterial community within our preterm cohort, as observed in numerous cohorts across continents18–23, 

developed in a predictable and highly dynamic manner over time. Most infants were initially dominated 

by Staphylococcus, then transitioned to a state dominated by one of the other three genera as infants 

aged (Fig 2a, b, Supplemental Fig 3), with total bacterial load gradually increasing over time 

(Supplemental Fig 6a). Indeed, we saw a similar positive correlation between archaeal abundance and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2020. ; https://doi.org/10.1101/2020.03.02.970061doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.970061
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

infant age (Supplemental Fig 6b). Importantly, comparing the absolute and relative abundances of these 

dominant genera illustrated how compositional data can misattribute both how and when communities 

change. In one representative infant, relative abundances masked blooms of Klebsiella and Escherichia, 

and showed Staphylococcus and Enterococcus collapsing in the community when their abundances 

were, in fact, comparatively stable (Fig 2c).  
In contrast to the predictable dynamics of bacterial communities, we uncovered diverse but 

unpredictable fungal communities within the preterm infant gut. On average, the fungal dynamics were 

noisier and exhibited far less temporal structure than bacterial communities (Supplemental Figure 5), with 

no clear correlation between fungal community composition or load and infant age (Fig 2d, e, 

Supplemental Figs 4, 6c). As with bacterial communities, we also observed instances where MK-

SpikeSeq uncovered dramatic blooms and collapses in fungal genera masked by relative abundances 
(Figure 2c). However, though the fungal dynamics were themselves unpredictable, a linear mixed-effects 

model that accounted for infant age, antibacterials and antifungals, uncovered a significant negative 

correlation between bacterial and fungal loads (normalized effect size: -0.069, 95% CI: [-0.003, -0.134], 

Fig 2f). That is, when accounting for all clinical covariates, samples with higher fungal loads tended to 

have lower bacterial loads. This inverse relationship between bacterial and fungal communities 

suggested cross-kingdom interactions might be influencing preterm microbiota dynamics. 

 

Ecological inference reveals specific intra- and inter-kingdom interactions shaping infant 
microbiota assembly  

Having gathered a high-resolution multi-kingdom picture of infant microbiota assembly, we next 

sought to identify causative factors driving the predictable community dynamics observed. To achieve 

this, we used Bayesian regularized regression to fit our longitudinal data to an extended generalized 

Lotka-Volterra (gLV) model – an approach only possible with absolute abundances. The gLV model 

assumes that the growth rate of an individual taxon depends upon the taxon’s intrinsic growth rate and 

interaction with kin, the effect of any antimicrobials present, and interactions between the focal taxon and 

other community members (Fig 3a; SI)40–42. Specifically, the model assumes microbes may interact with 

one another in a number of different ways, from bidirectional competition (-/-) such as when microbes 

compete for nutrients, to exploitation (+/-) wherein one microbe takes advantage of another, or not 

interact at all (0/0). The model also assumes each antimicrobial agent may inhibit, promote or have no 

effect on each community member. Together this yields a highly parameterised model of community 

dynamics. By fitting this model to our data using a highly conservative regularization framework we are 

powered to identify any microbe-microbe or microbe-antibiotic interactions playing a strong and 

consistent role in shaping community dynamics. This model enabled us to disentangle the effects of 
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different biotic and abiotic interactions influencing microbiota assembly, independently of one another, 

missing community members (e.g. viruses), or any underlying host variability. 
 This ecological inference suggested that strong intra- and inter-kingdom microbe-microbe 

interactions play a pivotal role in shaping microbiota assembly, independently of antibiotic perturbations 

(Fig 3b, Supplemental Figure 7). Remarkably, we inferred that the early colonizing Staphylococcus 

enhanced the growth of Klebsiella within the infant gut but was itself inhibited by Klebsiella. Thus our 

model suggests the characteristic transition from Staphylococcus to Klebsiella domination observed in 

preterm infants (Fig 2a, b) is shaped, in part, by Klebsiella exploiting the early colonizer to dominate the 

gut. We also found that Klebsiella itself was inhibited by another dominant genus Enterococcus, 

suggesting the distinct domination states of these two genera may be partly driven by one excluding the 

other. Perhaps most strikingly, consistent with the inverse correlation between bacterial and fungal loads, 

our analyses suggested that between-kingdom interactions play a key role in community dynamics. 

Specifically, we inferred that the fungal genus Candida inhibited both Klebsiella and Escherichia, but was 

itself inhibited by Staphylococcus. These results suggested that not only do preterm infants harbor 

diverse fungal communities, but that members of these communities are critically influencing larger scale 

community dynamics. 

Notably, we discovered the overwhelming majority of interactions shaping preterm infant 

assembly are asymmetric, with commensalism (+/0), amensalism (-/0) and exploitation (+/-) together 

comprising over 80% of inferred microbe-microbe interactions (Supplemental Figure 7c). The importance 

of these directed, asymmetric interactions in shaping microbiota assembly not only sheds light on 

microbiota ecology – it also underlines the power of our absolute abundance-based inference to study 

microbiota communities. Without absolute abundances, ecological inferences are limited to correlational 

analyses. These analyses can identify positive or negative correlations between the frequency of taxa, 

but cannot determine directionally who is interacting with whom, nor identify asymmetric interactions34,43–

45. Indeed, when applied to our dataset, correlational relative abundance analyses (FastSpar46) 

erroneously inferred that Staphylococcus inhibited Klebsiella and promoted Candida (Supplemental Fig 

8). In other words, relative abundances and correlation analysis not only misrepresented the dynamics 

of infant microbiome assembly (Fig. 2), but also incorrectly misclassified the core ecological processes 

underlying these dynamics.  
 

In vitro and in vivo validation confirm microbial interactions shaping development 
 Our ecological inference indicated that microbe-microbe interactions are central to the predictable 

infant microbiome assembly. However, though we employed a highly conservative regularization 

framework to ensure robustness to spurious correlations, our predictions may still be vulnerable to 
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unobserved confounding factors not explicitly incorporated in the model, such as diet, viruses, or the host 

itself. Indeed, though a small but increasing number of studies have used similar modelling approaches 

to infer interactions, very few predictions have been experimentally validated40–42. We therefore sought 

to determine whether we could reproduce our inferred interactions in a reductionist experimental system, 

focusing first on our predicted within-kingdom interactions. Specifically, we isolated Staphylococcus, 

Klebsiella, Escherichia and Enterococcus strains from five infants in our cohort, capturing several distinct 

species of each genus. We then performed monoculture and pairwise co-culture of these strains and 

used colony forming unit (CFU) yields to determine the pairwise fitness effects of strains upon one 

another. Remarkably, we were able to reproduce in vitro all of the inhibitory interactions predicted by our 

model, with growth effects largely conserved at the genus level (Fig 3c). Klebsiella strongly inhibited 

Staphylococcus, reducing Staphylococcus yields by over 1000-fold, while Enterococcus variably but 

consistently inhibited Klebsiella growth (Fig 3c). Importantly, as predicted, Klebsiella showed no effect on 

Enterococcus growth, confirming this interaction is amensalism as opposed to bi-directional competition 

– validating the specificity and directionality of our inference.  

 In contrast to our predictions that Staphylococcus benefitted Klebsiella during infant microbiome 

assembly, we did not observe a positive effect of Staphylococcus on Klebsiella growth in vitro (Fig 3c). 

Given the strength of the predicted Klebsiella-Staphylococcus exploitation, we hypothesized that this 

interaction may be context dependent, i.e., Klebsiella only gains a benefit from Staphylococcus within the 

gut. To investigate this, we used two co-resident NICU isolates, Klebsiella pneumonia and 

Staphylococcus epidermidis, to test if Klebsiella benefited from the presence of Staphylococcus in vivo 

in the mammalian gut using a mouse model of intestinal colonization (Fig 3d). Specifically, we used MK-

SpikeSeq and CFU counts to measure the fitness of K. pneumoniae after gavage in mice pre-colonized 

with or without S. epidermidis (Fig 3d, Supplemental Fig 9a). Strikingly, we observed that, as predicted 

from our modelling, S. epidermidis significantly enhanced the ability of K. pneumoniae to colonize the 

mouse gut, with K. pneumoniae exhibiting faster colonization if the gut was pre-colonized with S. 

epidermidis (Fig. 3d). Moreover, mice colonized with K. pneumoniae had significantly reduced levels of 

S. epidermidis than those without K. pneumoniae, with S. epidermidis declining alongside the rise in K. 

pneumoniae (Fig 3d). These in vivo data recapitulated the dynamics observed in infant assembly (Fig 

2c) and demonstrated that the predictable patterns in infant microbiome assembly are due to exploitation 

of an early pioneer species by a late colonizer, establishing a striking parallel between human early-life 

microbiota development and macroscopic ecological succession. 

 Having validated our inferred within-kingdom interactions, we sought to validate the network of 

between-kingdom interactions predicted to influence preterm gut assembly (Fig 3e). Remarkably, each 

of our predicted between-kingdom interactions could also be reproduced within our in vitro system (Fig 
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3e). As predicted, Candida members caused on average a ~100-1000-fold inhibition of each 

Enterobacteriaceae and experienced a ~10-100-fold reduction in growth when co-cultured with 

Staphylococcus. Notably though, we observed a clear bimodal distribution in the strength of inhibition of 

different Candida isolates by Staphylococcus (Fig 3e), with the two levels corresponding to two Candida 

species, C. albicans and C. parapsilosis. Moreover, these two species also exerted differing inhibitory 

effects on Enterobacteriaceae, such that overall C. albicans both resisted Staphylococcus and inhibited 

Enterobacteriaceae more than C. parapsilosis (Fig 3e). To examine if this species-specific inhibition of 

Enterobacteriaceae by Candida occurred in vivo, we pre-colonized mice with either C. albicans, C. 

parapsilosis or vehicle control, then introduced K. pneumoniae and measured microbial colonization 

dynamics. We observed a significantly reduced colonization of K. pneumoniae in the presence of C. 

albicans, compared to vehicle-control or pre-colonization with C. parapsilosis, validating both the species-

specificity in the fungi-bacteria interaction and its occurrence within the mammalian gut (Fig 3f, 

Supplemental Fig 9b). Together, our data demonstrated a novel species-specific cross-kingdom 

interaction that shapes the preterm infant gut microbiota. 

 

The de novo assembly of the infant gut microbiome is remarkably ordered, with pioneer microbes 

colonizing first, followed by predictable waves of other microbes. To date, the forces driving these 

predictable transitions occur have remained elusive. Factors such as priority effects, diet and antibiotics, 

and the developing immune system are all thought to impact microbiota dynamics. However, with multiple 

interacting factors at play, disentangling the role of any individual process has remained a formidable 

task. Here we demonstrate the power of combining multi-kingdom absolute abundance quantitation, 

ecological modelling, and experimental validation to overcome this challenge. We have demonstrated 

that the predictable patterns of pre-term infant gut assembly are driven by direct, context-independent 

interactions between microbes. Just as in macroscopic ecosystems15–17, microbes exploit one another to 

establish within the infant gut, and direct interactions between kingdoms play a central role. The 

reducibility of gut microbiota assembly to simple, pair-wise interactions has profound implications for 

understanding and ultimately manipulating gut microbial ecosystems in health and disease.  

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2020. ; https://doi.org/10.1101/2020.03.02.970061doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.970061
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

Materials and Methods (Supplemental information) 
 
Section 1 – MK-SpikeSeq development and validation 
MK-SpikeSeq development 
The backbone of MK-SpikeSeq is the addition of a defined number of bacterial, fungal and archaeal cells to the 

sample of interest. These cells serve as internal controls for sample processing and subsequent normalization. In 

this work we developed the MK-SpikeSeq method primarily for use on mammalian stool samples, however, our 

method can easily be adjusted for other samples types by changing the spike-in taxa and the quantity added. The 
criteria for spike-in usage are:  

1) The spike-in taxa should absent in the sample  

2) Once added, the spike-in should account for 0.1%~10% of the sample quantity (assuming the 

sequencing depth is >10K per sample; higher depth of sequencing could yield broader range of 

detection).  

 

To test these qualifications, multiple representative test samples (ideally covering both upper and lower bounds of 
absolute abundance) should be used for preliminary DNA extraction. The targeted ribosomal DNA (rDNA, e.g., 

16S) of these test samples should be quantified using rDNA-specific quantitative PCR (qPCR, Supplemental 

Table 1) and literature reviewed (or empirically sequenced) to confirm the absence of the selected spike-in taxa. 

To identify an appropriate quantity of spike-in cells, 10-fold serial dilutions of a defined number of spike-in cells 

should be DNA extracted and qPCR quantified in the same way as the test samples to identify the dilution of 

spike-in that meets the 0.1%~10% abundance requirement for most test samples (see the stool example below). 

 

For human and mouse stool samples, we selected Salinibacter ruber DSM 13855, Haloarcula hispanica ATCC 
33960 and Trichoderma reesei ATCC 13631 to use as spike-in taxa for bacteria, archaea and fungi, respectively. 

These taxa we chosen based on their absence/rarity in a systematic screen of several major public depositories 

of host-associated microbiome data (Supplemental Table 2). They also have the advantage of being publicly 

available and having completed genomes. Spike-in cells were grown according to supplier’s instructions: S. ruber 

and H. hispanica were cultured in ATCC medium 1270 and T. reesei was grown on Potato Dextrose Agar 

medium. These bacterial cells and fungal spores were harvested and homogenized in DNA-free PBS, passed 

through 70 um cell strainers and quantified based on optical density unit (ODU) at 600nm. We empirically 

determined to spike in 10^-2 ODU S. ruber, 10^-5 ODU H. hispanica and 10^-4 ODU T. reesei to each 100 mg 
human stool or 10 mg mouse stool based on:  

1) 10^-2 ODU S. ruber accounted for on average ~1% of the bacterial 16S abundances of stool samples, 

and  
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2) 10^-5 ODU H. hispanica and 10^-4 ODU T. reesei were low enough to complement the usually low 

archaeal and fungal signal in stools, but high enough for robust pipetting of consistent cells numbers 

(>10^3 cells).  

 
To implement our spike-in protocol, stool samples were first weighed and aliquoted into bead-beating DNA 

extraction tubes. Total amounts of spike-in cells were adjusted as per weight of samples, and the spike-in 

volumes to be added into the samples prior to DNA extraction were calculated based on the measured densities 

of spike-in cells. We used ZymoBIOMICS DNA extraction kit (Zymo Research, Irvine, California) for DNA 

extraction and performed standard two-step PCR amplification to construct rDNA amplicon libraries for Illumina 

sequencing. We empirically determined the rDNA abundance of each spike-in at the pre-determined level, using 

rDNA-specific qPCR against plasmid DNA standards that were constructed to contain tandem single copy of each 

rDNA. We measured the 10^-2/10^-5/10^-4 ODU multi-kingdom spike-in as: bac16S_Srub : arch16S_Hhis : 
ITS1_Tree ~ 10,000,000 : 50,000 : 20,000. Note that these cross-kingdom ratios were experimentally quantified 

but the exact numbers were arbitrary; as practically DNA extraction is not 100% efficient, the exact rDNA copy 

number per sample is less meaningful than the relative changes between samples in one study. These spike-in 

rDNA abundances were used as scaling factors in the later cross-kingdom normalization: Normalized OTU 

abundance = OTU read count / Spike-in read count * kingdom-specific scaling factor. See 

https://github.com/katcoyte/MK-SpikeSeq for our detailed MK-SpikeSeq protocol. 

MK-SpikeSeq validation 

We validated our MK-SpikeSeq method in two ways: 1) comparison with other existing approaches for absolute 

quantification, and 2) benchmarking using a series of defined mock samples. 

 

To compare MK-SpikeSeq with other methods, namely total DNA yield, flow cytometric cell counting and rDNA-

specific qPCR, we assembled a set of 40 test samples including human stools and soil samples (Supplemental 

Table 3). Each sample was homogenised (each 100 mg sample in 1 mL sterile PBS) by vortexing for 5 min, 
passed through 70 um cell strainers and then divided equally into three aliquots for independent use in flow 

cytometric cell counting, DNA extraction without spike-in and MK-SpikeSeq. For cell counting, we diluted samples 

further by 10 fold in 2% paraformaldehyde. We used the Bacteria Counting Kit (Invitrogen, Cat B7277) for cell 

staining and enumeration on a LSRFortessa 3-laser cell analyzer (BD Biosciences, San Jose, CA), and applied 

different flow settings and FSC/FITC gating strategies for prokaryotes and fungi, pre-determined using axenic 

bacterial and fungal cultures as positive controls. While prokaryotic gating was relatively robust against 

background noise, we found it was difficult to identify a gating specific for fungi against background (e.g., food 
debris and host cells). As a result, fungal cell counts were consistently over-estimated using three different gating 

strategies (Supplemental Table 3). For total DNA quantification, we performed technical duplicates for each 

sample using Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, Cat P7589) and excluded samples with 

concentration near or below detection limit (0.1 ng/ul) for correlational analysis (Supplemental Table 3). For 
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qPCR, we performed technical triplicates for each sample and excluded samples with Ct > 30 or high variation (Ct 

SD > 0.05 * Ct Mean) for correlational analysis (Supplemental Table 3d). For MK-SpikeSeq, we used 10^-3 ODU 

S. ruber, 10^-5 ODU H. hispanica and 10^-4 ODU T. reesei for each 100 mg sample (lower S. ruber to 

accommodate to the lower bacterial density in soil samples). Systematic comparisons between these methods 
suggested that MK-SpikeSeq outperformed others in cross-kingdom sensitivity and specificity (see main text and 

Supplemental Fig 1a-c). We also performed rDNA amplicon sequencing of samples without spike-in, and 

demonstrated that exogenous spike-in did not alter rDNA relative abundance profiles of the communities 

(Supplemental Figure 1f).  

 

To determine the sensitivity, robustness and accuracy of MK-SpikeSeq, we further generated multiple sets of 

defined mock samples. We first tested the limit of bacterial and fungal detection using serial dilutions of 

Escherichia coli (10^9 to 10^1 colony forming units CFU) and Candida albicans (10^7 to 10^1 CFU) axenic 
cultures, respectively. Because the range of detection using SpikeSeq is limited to the depth of sequencing, we 

examined two levels of spike-in: high spike-in (10^-3 ODU S. ruber, 10^-2 ODU T. reesei) targets high abundance 

samples, and low spike-in (10^-5 ODU S. ruber, 10^-4 ODU T. reesei) targets low abundance samples 

(Supplemental Table 4). We found that both spike-in levels could reliably detect a range of at least 6 orders of 

magnitude, and the low spike-in could successfully detected as low as 10 bacterial CFU within a sample 

(Supplemental Table 4, Supplemental Fig 1d). As a comparison, qPCR, the second-best method we 

benchmarked, failed to distinguish samples below 10^4 bacterial CFU (Supplemental Table 4, Supplemental Fig 

1d).  
 

We next determined the robustness of our method against background cells (e.g. host cells) using a set of 

samples with fixed amounts of E. coli and C. albicans (10^6 and 10^4 CFU, respectively) but variable amounts of 

host Caco-2 cells (up to 10^6 cells) in order to model conditions where > 10 million colonic cells are contained per 

gram stool. Using SpikeSeq we detected relatively consistent (<=2 fold difference) abundances of bacteria and 

fungi; however, qPCR undermeasured both bacteria and fungi by > 3 deltaCt (~10 fold) under the high host cell 

background (Supplemental Table 5, Supplemental Fig 1e).  
 

Finally, we systematically examined the accuracy of MK-SpikeSeq in capturing community changes, using 

multiple series of defined mock communities (Supplemental Table 6). In the first two sample sets, we assembled 

single-kingdom communities composed of either ten bacteria or ten fungi, with fixed proportions of each 

community member. We then generated 10 instances of each community type with varying total abundances by 

serial dilutions. Our MK-SpikeSeq method reliably recapitulated the expected total abundances and compositions 

of each of these samples (Supplemental Fig 2a,b). In the third sample set, we mixed our defined bacterial and 

fungal communities in different ratios. Using MK-SpikeSeq, we correctly captured the bacteria-fungi ratios in these 
cross-kingdom samples (Supplemental Fig 2c). In the last two sample sets, we simulated a “true” and a “false” 

negative interaction between one focal bacterium (Lactobacillus rhamnosus) and one focal fungus (C. albicans), 
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by changing the abundances of either these focal members or the abundances of other background members. 

Using relative abundance data, these two focal members showed undistinguishable inverse relationships in both 

sets; in contrast, absolute abundance data generated by MK-SpikeSeq faithfully disentangled these two 

fundamentally different relationships (Fig. 1c). Collectively, these data demonstrate that MK-SpikeSeq is sensitive 
for low-microbial abundance samples, robust to host cell background and accurate in revealing true cross-

kingdom absolute abundances. 

 

Section 2 – Infant cohort: selection and analysis 

Premature infant fecal sample biorepository 

Study subjects and corresponding fecal samples were selected from a cohort of premature infants less than 33 

weeks of gestation enrolled in the Infant Health Research Program at Beth Israel Deaconess Medical Center 

(BIDMC), Boston, MA from 2009 - 2013. The BIDMC Institutional Review Board (IRB) approved the collection of 

discarded specimens for the clinical biorepository after verbal consent from the infant’s parent(s) (IRB protocol 

number 2009P-000014). IRB approval was obtained for the analyses of these samples for this study under 

protocol 2017P-000632. All data were de-identified and available on request. 

 

Infant were enrolled soon after admission to the neonatal intensive care unit (NICU) and every fecal sample was 
collected until six weeks postnatal age. All soiled diapers were placed in a 4 degree refrigerator. Fecal samples 

from all diapers representing a 24 hour period were sterilely scraped from the diapers, placed in a sterile cup, and 

homogenized by hand. Samples were then aliquoted in 1.9 mL cryovials and placed in a -80 degree freezer until 

sample analysis.  

 

Maternal and infant clinical data were abstracted from the electronic medical record. The final cohort used for 

analysis was roughly equally split between male and female (92:86, M:F) and the average gestational age of each 

infant at birth was 29.6+2.5 weeks. The majority of infants within the cohort were born via Caesarean-section 
(131/178).   

Sample collection and processing 

We applied MK-SpikeSeq to the NICU cohort in two phases. To build a broad picture of preterm microbiota 

development during the first six weeks of life, we first collected a coarse timeseries of samples from 178 infants, 

sampling on approximately days 0, 14, 28, 42 of life. Overall, in this phase we collected 3.6±0.8 fecal samples per 

infant, yielding 631 samples in total. To build a higher resolution picture of microbiota development, we next 

selected 13 C-section infants (6 male, 7 female) for whom we collected every possible stool sample for the first 

six weeks of life, generating a total of 309 samples (on average 23.7±7.4 samples per infant). All samples were 

collected as raw stools and stored at -80C.  
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Following our established MK-SpikeSeq protocol (see earlier), we aliquoted ~50 mg of each stool sample into a 

bead-beating tube, added spike-in cells adjusted to the sample weight, then performed standard DNA extraction 

and amplicon library preparation in the 96-well format. We then sequenced samples, employing a different 

sequencing strategy in each phase. In the first phase, we performed Illumina Nextseq sequencing, featured by its 
shorter read (300-cycle, with read 1 extended to 200nt) but higher throughput (> 300M reads), to simultaneously 

profile bacterial (universal 16SV4), archaeal (archaeal-specific 16S) and fungal (ITS1) communities at (mostly) 

the family level in the 631 stool samples (Supplemental Tables 7-10). In the second phase, we took advantage of 

the long-read (600-cycle, 300PE) Miseq sequencing to obtain (mostly) genus level resolution of bacterial 

(16SV3V4) and fungal (ITS1) communities (after establishing the rarity of archaea in preterm infants) in the 309 

stool samples (Supplemental Tables 7, 11-12).  

 

To derive the OTU table for microbiota analyses, the obtained Illumina raw reads were demultiplexed, paired-end 
joined (only for Miseq 300PE reads), adapter trimmed, quality filtered (trimmed uniform to 100 nt for Nextseq 

reads only), dereplicated, denoised, and sequences mapped against public rDNA databases SILVA and UNITE. 

See https://github.com/katcoyte/MK-SpikeSeq for scripts used for Nextseq and Miseq data. Amplicon samples 

with < 1K total read counts or < 10 spike-in counts were excluded from further analyses (dropping 3 bacterial, 57 

archaeal and 157 fungal samples in the Nextseq data, and 28 fungal samples in the Miseq data). For the archaeal 

OTU table, spurious bacterial OTUs based on taxonomic annotations were removed. Counts of spike-in OTUs 

(g__Salinibacter, g__Haloarcula, g__Trichoderma) were used in normalization for other taxa as described above. 

 
All Illumina sequencing raw read, including cohort samples and validation samples, have been deposited at the 

European Nucleotide Archive (ENA) under study accession no. PRJEB36435. 

Microbiota analyses and visualization 

All data analyses and visualization were carried out in Python 3.7 or R. To visualize microbiota dynamics and 

group samples based on similarity we calculated the Bray-Curtis distance between each sample at the level of 
genus (sklearn.metrics.pairwise.pairwise_distances(X, metric='braycurtis')) then used multi-dimensional scaling to 

reduce our data to two dimensions (manifold.MDS(n_components=2, eps=1e-12, dissimilarity="precomputed", 

max_iter=5000)). We then identified clusters of similar samples using DBSCAN (sklearn.cluster.DBSCAN(eps = 

0.05, min_samples = 3)). To determine whether microbiota clusters were associated with infant age, we 

performed a kruskal-wallis test on infant ages within clusters using the kruskal function from the agricolae 

package in R, with a bonferroni adjustment for multiple hypotheses. For all taxonomy-based visualization, 

following Taur et al, samples were classified as being “diverse” if they had an inverse simpson index > 4, and 
colored white. If not, samples were colored according to the dominant genus present.   

 

For statistical analyses of total bacterial load, we combined our two sample groups to build a dataset of 169 

unique infants for whom we had 770 total observations where both fungal and bacterial loads were accurately 
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measured (170 samples from our original 940 were excluded due to either fungal or bacterial amplicon 

sequencing not achieving the requirement of a least 1K total read counts and 10 spike-in counts). We matched 

each sample to the number of antibiotic agents administered on the day of sampling, excluding any topical 

antibiotics (Bacitracin, Gentamycin Ophthalmic etc). We then fit a linear mixed effects model with baby ID as a 
random intercept, defined by the Wilkinson notation: 

 

Y ~ day + total_antibacterials + total_antifungals + total_fungal_load + (1|baby_id), 

 

Where Y was the dependent variable, log10(total bacterial load) and the fixed effects covariates were day of life, 

the number of unique antibacterials or antifungals administered on each day, and log10(total fungal load). Notably, 

in any cases where total bacterial or fungal loads were measured as zero, we replaced these values with 103 or 1 

respectively. These values were our limits of detection for bacteria and fungi, with this change implemented to 
avoid underestimating loads when they fell below our detection window. 

 

To calculate the noise profiles of bacterial and fungal dynamics, following Faust et al, we used the R package 

seqtime to first fit a spline to each ASV’s dynamics then quantify the noise profile for each prevalent ASV within 

each baby, using the function identifyNoiseTypes. We then compared the average proportion of black, brown, 

pink and white noise across babies for each kingdom, with black / brown noise indicating strong temporal 

structure and white noise indicated no temporal structure.  

 
Section 3 – Identifying drivers of microbiota development 
 
To identify microbe-microbe and microbe-antimicrobial interactions shaping community dynamics we fit our data 

to an extended generalized Lotka-Volterra model  (gLV) that accounts for antibiotic and antifungal usage. Under 

this framework, the growth rate of each microbial taxon i is expressed as, 

 

dX#
dt   =  X# 'r#  +  *α#,X,

-

,./

  +  *ϵ#1𝐸3

4

1./

 5, 

 

Where 𝑋8 is the abundance of taxon i and 𝑟8 is its intrinsic growth rate. 𝛼8; denotes the effect of taxa j on taxa i, 

while 𝜖83 denotes the effect of antimicrobial k on taxon i and 𝐸3 is a binary variable denoting whether antibiotic k 

was administered at time t. 

 

The signs of α8; and α8; together define the nature of the interaction between each pair of taxa i and j. Specifically, 

when both terms are positive (+/+) the interaction is mutualistic and when both are negative (-/-) the interaction is 

competitive. When one taxa gains a benefit at the expense of the other (+/-) we term the interaction exploitative, 
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when one taxa benefits while the other is unaffected the interaction is commensal (+/0), and when one taxa is 

harmed while the other is unaffected the interaction is amensal (-/0). 

 

This gLV model can further be discretized and linearized such that it is equivalent to, 

	

�̇�#? = 	
Δ ln𝑋8(𝑡?)

Δ𝑡?
= 𝑟8 +*𝛼8;𝑋;(𝑡?) +*𝜖83𝐸3(𝑡?)

F

3./

G

;./

. 

 

Where Xj(tl) now represents the geometric mean of taxon j across the time window l. In this linear form, we can 

now fit each of the parameters 𝑟, 𝛼, and 𝜖 using simple linear regression. 

 

To avoid overfitting, and ensure we focused on those interactions that play the most significant role in shaping 

community dynamics we used a conservative form of variable selection. Specifically, we implemented a Bayesian 

spike-and-slab regression procedure, which forced the majority of our interaction parameters to zero. We 

constructed this by setting the prior for each interaction parameter to have a point mass at zero combined with a 

half-Cauchy random variable. We allowed the microbe-microbe and drug-microbe interactions to regularize 

separately. In practice, our regression model was thus defined as, 
 

�̇�#?~𝑁𝑜𝑟𝑚𝑎𝑙 '𝑟8 +*𝛼8;𝑋;(𝑡?) +*𝜖83𝐸(𝑡?)
F

3./

G

;./

, 		σ8P5 

 

Dropping the subscript i for ease of reading, our spike-and-slab regularization procedure for each taxon, i, was 
implemented using the following hierarchical priors,  

 

𝛼; 	= 	 ξ;	. 𝑍;	

ξ;	~	BernoulliS,/T𝑝;V 

𝑍	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, τY	Σ) 

τY~	half-Cauchy(1) 

 

𝜖3 = ξ3	. 𝑍3	

ξ3	~	BernoulliS,/(𝑝3) 

𝑍	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, τ\	Σ) 

τ\~	half-Cauchy(1) 

 

Where Σ was a Zellner prior, Σ= ]/
P
𝑋^𝑋	 +	/

P
	𝑑𝑖𝑎𝑔(𝑋^𝑋)b

c/
, adapted to ensure invertibility. Notably though, we 

inferred similar results instead simply using the identity matrix. 
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Following Bucci et al, to enforce non-negative growth rates, we assumed a truncated Normal prior on the intrinsic 

growth rate of each taxon,   

	

𝑟		~		𝑁d(𝜃fg, 𝑣𝑎𝑟(𝜃f)	. 10P) 
 

with the hyperparameters calculated from the pseudoinverse solution to the linear regression �̇� 	= 	𝑿𝜃, ie by 

solving 𝜃f 	= 	 �̇�	𝑿d. Finally, again following Bucci et al, we allowed a taxon-specific variance, σ8P, set simply as an 

inflated half-normal distribution. 
 

To reduce the complexity of our model, before fitting we filtered our data to only include those taxa that reached 

1% of the total population in at least 10% of samples. We also removed any drugs that were administered on 

fewer than five days across the entire 13 infant cohort. To ensure we did not bias our fits against low abundance 

taxa, we normalized our independent variables to each have zero mean and standard deviation of one. We then 

solved the above model using the Python package pymc3, drawing 10,000 samples after a burn in of 2500. 

Finally, we further filtered our results by discounting any normalized parameters whose magnitude fell below 0.01.  
 

Section 4 – Validation of microbe-microbe interactions 

Strain isolation 

We used selective agar media to isolate microbes of targeted taxa. To isolate Candida, we used Yeast Extract–

Peptone–Dextrose (YPD) supplemented with antibacterial cocktail (64 ug/mL aztreonam and 5 ug/mL vancomycin 

final concentration). To isolate Klebsiella and Escherichia, we used MacConkey supplemented with antifungal 
cocktail (0.05 ug/mL micafungin and 50ug/mL cycloheximide final concentration). To isolate Staphylococcus and 

Enterococcus, we used Brain Heart Infusion (BHI) supplemented with aztreonam and antifungal cocktail. We 

selected stool samples from 5 NICU subjects (NICU_073, 091, 175, 203 and 260), homogenized samples in 

sterile PBS and plated out dilutions on each of these media. After 1~2 day incubation aerobic at 37C, colonies of 

representative morphologies were selected for full-length 16S PCR amplification and Sanger sequencing. The 

full-length 16S sequences were blasted to identify species-level taxonomies and the chromatogram data were 

used to map back to the Miseq OTU sequences (Supplemental Table 13). Non-redundant strains were saved in 
glycerol stocks and recovered on BHI agar media before use. 

In vitro co-culture validation 

To facilitate co-culture of taxonomically diverse bacteria and fungi in a nutrient tractable condition, we developed 

a common defined medium YNBGS based on Yeast Nitrogen Base (YNB): 5.0 g/L glucose, 2.0 g/L Casamino 

acids, 0.1 g/L L-tryptophan, 20 mg/L adenine and 20 mg/L guanine were supplemented to 6.7 g/L YNB (Millipore 
Sigma, Cat Y1250), suspended in water and filter sterilized. All co-culture experiments were done in the YNBGS 
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broth at 37C static, under aerobic conditions for 24 hours unless otherwise stated (we used aerobic conditions as 

the neonatal gut is known to be relatively aerobic). Recovered bacteria and fungi were suspended directly in 

YNBGS and diluted to OD 10^-3, before mixing with each other. Note that because Candida replicated slower and 

cell counts per OD were lower than the bacteria, when testing the effect of Candida on others we first cultured 

Candida in YNB starting from OD 0.1 at 37C for 24 hours (final OD 0.5~0.7), before mixing 1:1 (volume ratio) with 

bacterial suspension. We spotted 2.5 uL of 10-fold serial dilutions of the cultures, either inoculation inputs or 

mono-/co-culture outputs, onto the aforementioned selective media, and used the CFU counts to quantify growth 

fitness effects. Each in vitro result shown (Fig. 3d, f, Supplemental Figure 9, Supplemental Table 14) was 

representative of at least two independent experiments.   

In vivo co-colonization validation 

We used specific pathogen free (SPF) 6~8 weeks old female mice (Jackson Laboratory, Bar Harbor, Maine) for in 

vivo validation under the animal protocol 18-02-3637R, approved by the Institutional Animal Care and Use 

Committee at Boston Children’s Hospital. Five mice per group were co-housed and tail marked before 

colonization. To facilitate colonization of exogenous bacteria and fungi of interest in the mouse gut, we applied a 

3-day antibiotics treatment (vancoymin+metronidazole+ampicillin cocktail, 1 g/L each in drinking water) prior to 

the 1st oral gavage, and maintained ampicillin drinking water (replaced fresh every 3 days) afterwards during the 

whole experiment. In Fig. 3, we used K. pneumoniae, S. epidermidis and C. albicans strains all isolated from 
infant NICU_203 and C. parapsilosis from infant NICU_091 (all clones were confirmed to be resistant to at least 

100 ug/mL ampicillin). We cultured bacteria and fungi in BHI broth shaking overnight at 37C, concentrated in 200 

uL sterile PBS for oral gavage into each mouse. Note that a lower inoculation was used for K. pneumoniae than 

others as this bacterium more readily and rapidly established colonization in the mouse gut; and for S. 

epidermidis pre-treatment colonization only, we performed a reinforcement gavage of S. epidermidis, as we 

noticed inconsistent levels of S. epidermidis in the stool samples 1-day after the 1st gavage (Supplemental Table 

15). Daily stool samples before, at and after gavage were collected for each mouse (a 12-hr time point was also 

collected for Fig. 3e). To evaluate the colonization level of targeted strains, collected stool samples were 
suspended in sterile PBS (100 uL per 1 mg stool) by vortexing for > 5 min, and 10-fold serial dilutions were plated 

onto the aforementioned selective media for CFU counting. We corroborated our CFU data by using MK-

SpikeSeq on the collected stool samples, focusing on taxa of the gavaged bacteria and fungi (Supplemental 

Figure 10, Supplemental Table 15). 
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Figures and legends 
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Figure 1. Multiple Kingdom SpikeSeq enables robust and reliable quantitation of absolute 
abundances. a, Absolute abundance data disentangle two distinct mock ecological dynamics. Two 
sets of defined consortia were assembled to simulate a “true” (left) and a “false” (right) negative 
interaction between one focal bacterium and one focal fungus, by varying the abundances of either 
these focal species or other background members. The quantitation of focal species highlights the 
distinct patterns and conclusions of cross-kingdom interaction derived using relative versus absolute 
abundance data. b, Overview of the multi-kingdom quantitation pipeline to deconstruct mechanisms of 
microbiome dynamics. Prior to DNA extraction, defined amounts of multi-kingdom spike-in cells are 
added to human or environmental longitudinal samples as internal controls. Absolute abundance-based 
multi-kingdom dynamics are then characterized through standard rDNA amplicon sequencing. Further 
statistical modelling of these dynamics and relevant metadata predicts underlying microbe-microbe and 
microbe-host/environment interactions. c, Schematic example of MK-SpikeSeq. Two hypothetical 
samples with known abundances of each taxon are subjected to MK-SpikeSeq to generate cross-
kingdom community profiles. The size factors used in back-normalization are derived by the known 
abundances of spike-in species. The relative abundance profiles without normalization give different 
and misleading conclusions compared with the calibrated absolute abundance profiles. MK-SpikeSeq 
provides extra information to compare across kingdoms in each sample.  
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Figure 2. The preterm infant gut exhibits rich bacterial and fungal community dynamics. a. 
Principle Coordinate Analysis (PCoA) plot of Bray-Curtis dissimilarities between bacterial samples at 
the genus level. Each dot represents a sample, colored by the dominant genus present or white if 
diversity was high (Inverse Simpson index > 4). b. The same PCoA as panel a with samples instead 
colored by infant day of life, illustrating how bacterial community composition changes predictably over 
time. c. Microbiota dynamics of a single representative infant, highlighting the importance of gathering 
absolute abundances when studying microbiome ecology. Stacked bars represent total community 
composition (for full color schemes, see Supplemental Figs 3, 4). Line plots illustrate the relative 
(colored) and absolute (grey) abundances of individual genera. d-e. PCoA plots of fungal community 
composition colored by dominant genus (d) or infant age (e), indicating fungal community composition 
does not correlate with infant age. f. Effects of clinical and microbial factors on total bacterial load, 
quantified by a linear mixed effects model, suggesting a potential relationship between kingdoms within 
the preterm infant gut (error bars represent 95% confidence intervals). For panels a/b, number of 
samples n = 934, for d/e n=772, for f n=770. 
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Figure 3. Pairwise intra- and inter-kingdom interactions drive predictable patterns of infant 
microbiome assembly. a, Schematic illustrating the generalized Lotka-Volterra (gLV) model used to 
identify causative drivers of microbiota dynamics. This model assumes the growth rate of each taxon, \jk

\l
 

is determined by its own intrinsic growth rate 𝑟8, its interaction with other members of the community 
𝑎8;𝑋;, and any environmental perturbation 𝜖83𝐸3. b, The gLV model identified a network of within- and 
cross-kingdom interactions occurring between dominant members of the preterm infant gut that are 
predicted to affect microbiota dynamics. c, in vitro growth effects of infant isolates upon one another 
using monoculture and pairwise co-culture, testing predicted within-kingdom interactions. d, CFU counts 
quantifying microbial fitness in vivo in a specific pathogen free (SPF) mouse model, reproducing the 
predicted exploitation of Staphylococcus by Klebsiella. e, in vitro growth of infant isolates when growing 
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alone and in pairwise co-cultures, testing predicted cross-kingdom interactions.  Black dots indicate co-
cultures with C. albicans, grey dots indicate co-cultures with C. parapsilosis. f, CFU counts quantifying 
microbial fitness in vivo in a SPF mouse model, reproducing the species-specific differences in the cross-
kingdom inhibition observed in vitro. For panels c/e, each data point denotes one unique pair of strains 
of indicated genera. For panels d/f: Klebsiella was undetected at time 0 upon gavage; n=5 per group, 
error bars denote the standard error of the mean (SEM); * p<0.05, ** p<0.01, ns not significant, by 
student’s t test. For panel f, t test between C. albicans and C. parapsilosis groups. 
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