bioRxiv preprint doi: https://doi.org/10.1101/2020.02.29.969014; this version posted March 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 Integrated role of microRNA-30e-5p through targeting negative regulators of innate

2 immune pathways during HBV infection and SLE

3

4 Richa Mishra¹, Sanjana Bhattacharya¹, Bhupendra S Rawat², Ashish Kumar¹, Akhilesh Kumar¹,

5 Kavita Niraj³, Ajit Chande⁴, Puneet Gandhi³, Dheeraj Khetan⁵, Amita Aggarwal⁶, Seiichi Sato⁷,

6 Prafullakumar Tailor², Akinori Takaoka⁷, Himanshu Kumar^{1,8*}

7

8 Affiliations: 1. Department of Biological Sciences, Laboratory of Immunology and Infectious 9 Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal-10 462066, MP, India; 2. Laboratory of Innate Immunity, National Institute of Immunology (NII), New 11 Delhi-110067, India; 3. Department of Research (Medical Biotechnology), Bhopal Memorial 12 Hospital & Research Centre (BMHRC), Bhopal-462038, MP, India; 4. Department of Biological 13 Sciences, Molecular Virology Laboratory, Indian Institute of Science Education and Research 14 (IISER) Bhopal, Bhopal-462066, MP, India; 5. Department of Transfusion Medicine, Sanjay Gandhi 15 Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow-226014, UP, India; 6. 16 Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Post Graduate Institute of 17 Medical Sciences (SGPGIMS), Lucknow-226014, UP, India; 7. Division of Signaling in Cancer and 18 Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; 8. Laboratory of 19 Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka 5650871, 20 Japan.

21

*Corresponding author: H Kumar, Department of Biological Sciences, Laboratory of Immunology
and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal,
AB-3, Room No. 220, Bhopal By-pass Road, Bhauri, Bhopal 462066, MP, India. Tel: +91 755
6691413; Fax: +91 755 669 2392; E-mail: hkumar@iiserb.ac.in

1

26 Abstract

27 Precise regulation of innate immunity is crucial for the development of appropriate host 28 immunity against microbial infections and the maintenance of immune homeostasis. The 29 microRNAs are small non-coding RNA, post-transcriptional regulator of multiple genes and 30 act as a rheostat for protein expression. Here, we identified microRNA(miR)-30e-5p (miR-31 30e) induced by the hepatitis B virus (HBV) and other viruses that act as a master regulator 32 for innate immune responses. Moreover, pegylated type I interferons treatment to HBV 33 patients for viral reduction also reduces the miRNA. Additionally, we have also shown the 34 immuno-pathological effects of miR-30e in systemic lupus erythematous (SLE) patients and 35 SLE mouse model. Mechanistically, the miR-30e targets multiple negative regulators namely 36 TRIM38, TANK, ATG5, ATG12, BECN1, SOCS1, SOCS3 of innate immune signaling 37 pathways and enhances innate immune responses. Furthermore, sequestering of endogenous 38 miR-30e in PBMCs of SLE patients and SLE mouse model respectively by the introduction 39 of antagomir and locked nucleic acid based inhibitor significantly reduces type I interferon 40 and pro-inflammatory cytokines. Collectively, our study demonstrates the novel role of miR-41 30e in innate immunity and its prognostic and therapeutic potential in infectious and 42 autoimmune diseases.

- 43
- 44
- 45
- 46
- 47
- 48

49 Introduction

50 The host innate immunity is an evolutionarily conserved defense system against microbial 51 threats. These microbes express signature molecule known as pathogen-associated molecular 52 patterns (PAMPs) which are sensed by host's effectively conserved sensors known as 53 pattern-recognition receptors (PRRs) in various compartments of cells. The coordinated 54 interactions among them, activate a complex cascade of signaling pathways resulting in the 55 development of innate immune responses for the elimination of invading microbes, through 56 production of pro-inflammatory cytokines, type I and III interferons (IFNs) and chemokines, 57 recruitment of immune cells and trigger various types of cell death¹. These PRRs also interact 58 with some host endogenous molecules known as danger-associated molecular patterns 59 (DAMPs) and initiate innate immune responses without microbial infection and may 60 establish or trigger autoimmune diseases².

61 The micro RNA (miRNA) is a class of small non-coding RNA (18-22 nucleotide) that fine-62 tune protein expression through direct interaction with 3'UTR of the gene transcript³. 63 miRNA interacts with target transcript through base pairing and initiates degradation or 64 blocking of translation machinery via multiprotein complex known as RNA-induced 65 silencing complex (RISC)⁴. It has been reported that a single miRNA has multiple mRNA 66 targets and regulate cell signaling cascades and cellular responses during viral infections⁵. 67 Several viruses evade immunity and establish infection by perturbing the host cellular 68 miRNA expression or expressing viral(v)-miRNA upon infection⁶. In contrast, it has been 69 reported that several host miRNAs restrict viral replication by targeting viral genome or those 70 host genes which are essential for viral replication⁷,³⁰. In this study, we have identified miR-71 30e induced by DNA and RNA viruses such as Hepatitis B virus (HBV), Human 72 cytomegalovirus (HCMV), New Castle disease virus (NDV) and Sendai virus (SeV) in 73 primary cells such as human PBMCs and various mammalian cell lines. Notably, higher 74 miR-30e levels were also detected in the serum of therapy naive HBV patients. 75 Introduction of miR-30e into the cells promote production of pro-inflammatory cytokines, 76 type I/III IFNs and globally enhances the innate immunity and therefore reduces viral load. 77 However, HBV patients treated with pegylated type I IFNs present reduced HBV infection 78 in terms of viral load and disease pathology, and significant concomitant reduction in 79 miRNA30e levels, illuminating the correlation of innate immune responses and miR-30e 80 expression. We utilized bioinformatic tools and transcriptomic approaches to identify miR-81 30e targets negative regulators namely TRIM38, TANK, ATG5, ATG12, BECN1, SOCS1 and 82 SOCS3 of PRRs-mediated signaling pathways such as TLR, RLR and DNA sensing innate 83 immune signaling pathways^{8, 9}. Additionally, we showed miR-30e and 3'UTR of negative 84 regulator transcripts makes a complex with Argonaute 2 (Ago2) protein, a component of 85 RNA induced silencing complex (RISC), reduces transcript levels and subsequently protein 86 expression thereby enhances innate immune responses. In contrast, patients with Systemic 87 Lupus Erythematosus (SLE), a disease characterized by Type I IFN signature had higher expression of miR-30e^{10, 11}. Further, NZB/NZW F1 hybrid, an animal model of lupus³¹ also 88 89 showed increased expression of miR-30e. In connection, the introduction of miR-30e 90 antagomir into PBMCs of SLE patients and lock nucleic acid (LNA) inhibitor for miR-30e 91 through intra-orbital injection to the SLE mouse model significantly reduces type I IFNs and 92 proinflammatory cytokines and moderately enhances the innate negative regulation. In 93 conclusion, our study, proposes the novel role of miR-30e in innate immunity and its 94 prognostic and therapeutic potential in HBV and SLE.

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.29.969014; this version posted March 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

95 **Results**

96 miRNA-30e is induced upon viral infection and enhances innate antiviral responses to 97 inhibit viral replication.

98 To investigate the miRNAs involved in regulation of innate immune response during viral 99 infections, we performed unbiased data analyses on previously published reports and miRNA 100 microarray GEO datasets as shown in schematic workflow (Fig. S1A). In particular, the 101 miRNA reports in H5N1 or Epstein Barr virus were analyzed for upregulated miRNAs. 102 These upregulated miRNAs were compared to our previous miRNA profiling dataset from 103 NDV infection in HEK293T cells (GSE65694). Upon comparison with NDV infection we selected miR-30e-5p, miR-27a-3p and mir-181a/2-3p as the common miRNAs across 104 105 miRNA profiles related to viral diseases (Fig. S1B). Our analysis identified miR-30e as a 106 unique miRNA that was predicted to target various PRR-mediated signaling regulators 107 during negative regulation of innate immune responses (Fig. S1C) and was upregulated in 108 viral infections moreover its mature form was highly conserved among the wide range of 109 species (Fig. S1D). Additionally, datasets for H1N1 infection in mice (GSE69944), H5N1 110 infection in human lung carcinoma cells (A549 cells, GSE96857) and HBV infected liver 111 tissues of hepatitis patients (GSE21279) were also analyzed by GEO2R package for 112 upregulated miRNAs and among all upregulated miRNAs, miR-30e upregulation is 113 represented here (Fig. S1E). The expression of miR-30e was upregulated during viral 114 infections or stimulation with PAMPs in-vitro in various cell-lines (Fig. S2A-F). At the 115 transcriptional level, miR-30e promoter activity was moderately enhanced by NDV but was 116 unaffected by IFN β or TNF α stimulation which activated the ISRE and NF κ B promoters 117 respectively, suggesting that miR-30e expression might be induced by the viral infections

118 but not by the cytokines produced during infection (Fig. S2G-L). To understand the clinical 119 relevance, induction of miR-30e was tested in the cohort of 51 non-treated HBV patients 120 (demographic details mentioned in Table T1). To this end, the expression of miR-30e was 121 evaluated from serum samples of therapy naive chronic hepatitis B (CHB) patients in 122 comparison with healthy controls, and significantly elevated levels of miR-30e were detected 123 in HBV patients (Fig. 1A). Similar results were obtained with HepG2 cell line treated with 124 serum from HBV patients (HBV PS) for different time points, as shown (Fig. 1B), the 125 induction of miR-30e enhanced significantly at 1*dpi*, 2*dpi* and 3*dpi* (days post infection) with 126 maximum expression at 3dpi. Additionally, miR-30e mimic (miR-30e) inhibited HBV 127 infection in HepG2 cells treated with serum from HBV patients or HepG2215 cells, stably 128 expressing HBV replicon cells as compared to control miRNA (miR-NC1) treated cells as 129 tested by HBV-specific RNA and DNA (Fig. 1C and D) (Fig. S3A). Interestingly, ectopic 130 expression of miR-30e significantly reduced the HBV replication in HepG2-NTCP cells as 131 tested by HBV RNAs and HBV pgRNA (Fig. S3B). Notably, we found significant elevated 132 levels of HBV DNA and HBV covalently closed circular DNA in HBV patient serum 133 infected HepG2 cells and stably expressing HBV replicon HepG2215 cells compared to 134 uninfected HepG2 cells (Fig S3C) to show the infection in cells. On another hand, expression 135 of $IFN\lambda I$ and IFITI was enhanced in HepG2 and HepG2215 cells, respectively, in the 136 presence of miR-30e (Fig. 1C and D) (Fig. S4A). Similarly, HBV infection in HepG2-NTCP 137 cells (liver hepatoma cell line permissive for HBV infection) overexpressing miR-30e 138 (ectopic), elevated IFNλ1 transcript (Fig. S4B). To study whether miR-30e was involved in 139 controlling RNA virus infection, we infected human PBMCs (hPBMCs) with NDV to 140 quantify the expression of miR-30e. We found that NDV infection elevated the expression

141 of miR-30e in time-dependent manner (Fig. 1E). Additionally, PBMCs infected with NDV 142 in presence of miR-30e showed a significant reduction in NDV replication with a 143 concomitant elevation of *IL6* expression whereas miR-30e inhibitor (AmiR-30e) reversed 144 this phenomenon (Fig. 1F). Similar inhibition of viral replication was observed in multiple 145 cell lines infected with NDV in the presence of miR-30e or AmiR-30e (Fig. S3D-F). 146 Comparable results for antiviral responses were obtained after NDV infection in different 147 cell-types at transcript level and protein levels (Fig. S4C-I) in presences of miR-30e and it 148 also activate ISRE, IFN β and NF κ B promoters as tested by luciferase assay (Fig. S4J-L). 149 Furthermore, miR-30e presence reduces NDV replication in terms NDV protein as tested by 150 NDV-specific antibody estimated by western blot, microscopy and FACS analysis 151 respectively (Fig. 1G-H and S3G). To further validate the function of miR-30e in controlling 152 viral infections, we quantified the expression of miR-30e upon Sendai virus (SeV) infection 153 in A549 cells. SeV induced the expression of miR-30e (Fig.1I) and ectopic expression of 154 miR-30e (miR-30e mimic) inhibited the SeV replication as shown by qRT-PCR and FACS 155 analysis (Fig. 1J-K) through enhancing antiviral genes such as the expression of *IFIT1* (Fig. 156 1J).

Next, role of miR-30e on DNA virus replication was determined, to this end, HFF cells were
infected with DNA virus, HCMV, alone or along with miR-30e or miR-NC1. The viral
replication was significantly reduced in the presence of miR-30e compared to the miR-NC1
treated HFF cells as quantified by HCMV transcript encoding viral glycoprotein gene (Gly
B) by real-time PCR and analyzed by microscopy (Fig. S5A) and additionally the transcript
levels of *IL-6* was enhanced (Fig. S5B).

163 To investigate, how miR-30e influence antiviral responses upon treatment with pure viral 164 ligand such as poly IC and ssRNA, different cells including human PBMCs were stimulated 165 along with miR-30e. The expression of various cytokines and ISGs such as IFNB, IP-10, IL-166 6 and IFIT1 were elevated upon poly IC or ssRNA stimulation along with miR-30e 167 transfection and similar results were found for the promoter activity of *ISRE* and *IFN* β in 168 presence of miR-30e (Fig. S6A-H). Collectively, our results demonstrate that miR-30e is 169 upregulated in during virus infection and miR-30e inhibits viral replication by promoting the 170 expression of innate antiviral genes.

171

172 miR-30e globally enhances innate immune responses during virus infection.

173 To investigate the effect of miR-30e on innate immune responses interms of innate immune 174 immune genes upon virus infection, A549 cells were either mock transfected, or transfected 175 with miR-NC1 and miR-30e for 24 hours, followed by infection with NDV for 24 hours and 176 finally subjected to whole transcriptome sequencing using an illumina next-generation 177 sequencer (NGS) and analyzed for differentially expressed genes as shown in the schematic 178 (Fig. 2A, S7A). Notably, the transfection efficiency of miR-30e in both replicates was 179 confirmed by qRT-PCR using miR-30e-5p Taqman and reduction in viral infection was 180 confirmed by quantifying the NDV RNA in both the replicates to establish further analysis 181 as per our previous findings (Fig. 2B). Principal component analysis for the samples resulted 182 in formation of three distinct groups (miR-30e, miR-NC1 and uninfected) according to their 183 treatment (Fig. 2C). Additional analysis of transcriptomic data showed that 1179 genes were 184 significantly upregulated and 1206 genes were significantly downregulated upon miR-30e 185 transfection in comparison to miR-NC1 (Fig. 2D (represented in volcano plot) and Fig. S7B

186 (represented in MA plot and shown in Table T2). Moreover, KEGG pathway analysis of 187 significantly upregulated genes, upon miR-30e treatment and NDV infection indicated 188 enrichment of genes belonging to key cellular mechanisms namely: cell cycle, NOD-like 189 receptor signaling pathway, MAPK signaling pathway, TLR signaling pathway, RLR 190 signaling pathway, PI3K-AKT signaling pathway, cytokine-cytokine receptor interaction 191 pathway, NF-kappa B signaling pathways, TNF signaling pathway, etc. (Fig. 2E). Relative 192 expression levels of top genes involved in these pathways is represented by heat map (Fig. 193 S7C). Intriguingly, we noticed that a significant number of interferons stimulated genes 194 (ISGs) like IRF3, IRF7, CXCL10 (IP10), IFIT1, MX1, IL6, OAS1 among others were also 195 predominantly upregulated (Fig. 2F) that confirmed with the initial findings of the study. 196 Furthermore, our NGS results were verified by quantifying the expression level of type 1 197 interferon IFN β , interferon stimulated genes: IFIT1 and OAS1 and pro-inflammatory 198 cytokines: IL6 and IP10. These outcomes intricate strongly that miR-30e reduces the viral 199 replication by enhancing the innate immune responses upon activation of various signaling 200 cascades. Additionally, miR-30e impacts innate immune responses during viral infection, 201 prompted us to investigate transcriptome and gain mechanistic insight for the target of miR-202 30e.

203

204 miR-30e targets negative regulators of TLRs, RLRs, DNA sensing and interferon 205 signaling pathways

To investigate underlying molecular mechanism for the reduction of viral burden and enhanced antiviral innate immune responses by miR-30e, we conducted unbiased rigorous screening using various bioinformatic tools for the identification of innate immune genes.

9

209 To filter the genes transcript targeted by miRNA, certain criteria for screening were applied. 210 First of all, common genes involved in innate immune regulation upon viral infections and 211 targeted by miR-30e were identified and subjected to KEGG pathway analysis. The analysis 212 revealed that majority of genes (TRIM38, TANK, ATG5, ATG12, BECN1, SOCS1, SOCS3, 213 TRIM13 and EPG5) were involved in negative/down regulation of pattern recognition 214 receptors (PRRs)-mediated signaling pathways (Fig. 3A). Additionally, our NGS analysis 215 demonstrated that expression of identified negative regulators during NDV infection were 216 reduced upon miR-30e treatment as compared to miR-NC1 group (Fig. 3B). This further 217 concludes that negative regulators were targeted by mir-30e. The binding efficiency for miR-218 30e and identified targets genes are significantly high to alter any physiological functions by 219 the miRNA that was tested by different *in-silico* tools such as miRanda, DIANA, targetscan, 220 miRDB and BiBiServ2 RNAhybrid as reported (Table T3). Although few targets of miR-221 30e are not negative regulators however, binding energy for those target transcript and 222 miRNA assembly are low (Fig. S8) and therefore, it may not significantly alter the cellular 223 function. To test specificity of miRNA with the 3'UTR of identified negative regulator genes, 224 the 3'UTR of the gene were cloned downstream of luciferase gene under the CMV promoter 225 and performed luciferase assy. It was found that miR-30e significantly reduced luciferase 226 activity of investigated genes compared to control miR (Fig. 3C). In contrast, introduction 227 of mutation in cloned 3'UTR by site directed mutagenesis (SDM) did not change the 228 luciferase activity in presence of miR-30e and it was comparable with miR-NC1 (Fig. S9A), 229 moreover, it could be noted here that, the target sequence in each negative regulator genes were same. Additionally, we knockdown these negative regulators in HEK-293T cells and 230 231 Infected them with NDV to further estimated the level of $IFN\beta$, which clearly elucidated 232 their inhibitory effect on the mRNA levels of $IFN\beta$ within a cell, this effect was found to be 233 significant with respect to the majority of the targets (Fig. 3D). And observed that the 234 production of $IFN\beta$ is comparable after knockdown of target genes and introduction of miR-235 30e into the cells during viral infection suggesting the pivotal role of miR-30e in suppression 236 of negative regulators transcripts. Furthermore, we scanned the 3'UTRs of identified 237 negative regulators for RNA binding site for Ago2 protein in CLIP database, which is a key 238 component of the miRNA-mediated silencing complex (RISC) and found that the miR-30e 239 strongly complexes with the target genes as shown in (Table T4). To validate, miR-30e and 240 negative regulator transcripts (TRIM38, TANK, ATG5, ATG12, BECN1, SOCS1 and SOCS3) 241 interaction, Ago2 pull-down assay was performed as shown in schematic diagram (Fig. 3E) 242 and found that introduction of miR-30e significantly enriches the transcript of negative 243 regulators compared to the NDV alone infection or NDV infection along with control 244 miRNA treated cells suggesting that miRNA directly interact with the transcript through the 245 formation of RISC.

246 Next, the expression of identified negative regulators were examined in A549 cells upon 247 NDV infection and found that at 12 hours there was increased in the expression of *TRIM38*, 248 TANK, ATG5, ATG12, BECN1, SOCS1 and SOCS3 transcript and it was reduced at 24 hours 249 due to induction of miR-30e as shown in left panel (Fig. S9B). Additionally, ectopic 250 expression of miR-30e reduced the expression level of these targets in A549 cells compared 251 to the control after NDV infection (Fig. S9C). Consistent with these results induction of 252 targets was also reduced in HBV-patient serum treated HepG2 cells, HepG2215 cells (stably expressing HBV replicon cells and HepG2-NTCP cells infected with HBV, in presences of 253 254 miR-30e compared to the control miRNA transfection (Fig. S10A-C), suggesting that miR-

255 30e targets these genes during HBV and NDV infection in HepG2, HepG2215, A549 cells, 256 respectively. Similar results were obtained due to miR-30e transfection in NDV infected and 257 poly IC treated HeLa cells (Fig. S10D-E). We not only confirmed the expression of negative 258 regulators by analyzing transcripts but also tested for protein expression using specific 259 antibodies by immunoblot analysis. The introduction of miR-30e significantly reduced the 260 expression of TRIM38, TANK, ATG12, BECN1, SOCS3 and SOCS1 as shown (Fig. 3F). 261 Therefore, our results strongly suggest that these key negative regulators of innate immunity 262 are targeted by miR-30e, which are induced during virus infection and resulting to enhanced 263 antiviral responses.

264

265 DAMPs induce miR-30e and enhance innate immune responses

266 Our observation for induction of miR-30e and subsequent heightened innate immune 267 responses upon viral infection or pure PAMP stimulation prompted us to investigate the 268 ability of host DAMPs for induction of miR-30e because sustained DAMPs production in 269 the host can lead to enhance sterile inflammation and subsequently it may establish 270 autoimmune disease³. To this end, ex-vivo experiment was performed using hPBMCs from 271 three healthy volunteers. The genomic DNA were extracted from a portion of hPBMCs and 272 sonicated to make small size (approx. 110-150 bps) for efficient transfection into the cells 273 (Fig. 4A). The cultured hPBMCs were stimulated with the extracted small size DNA and 274 tested for the induction of miR-30e and innate immune cytokines. The DAMP stimulation 275 significantly induces the miR-30e and expression of $IFN\alpha$, $IFN\beta$, IFIT1, IL6 genes in all 3 276 healthy volunteers (Fig. 4C-E). Next, to understand physiological significance of DAMP-277 induced innate immune cytokines, the DAMP-stimulated cells were infected by NDV and 278 NDV replication was measured. The dsDNA-stimulation significantly reduced the NDV 279 replication (Fig. 4F) suggesting that inflammatory cytokines and type I interferons induced 280 by dsDNA inhibited the viral replication. Although inhibition of viral replication could be 281 the collective results of both dsDNA and virus-mediated induction proinflammatory 282 cytokines, type I interferons and type I inducible genes. Finally, we examined the levels of 283 apoptosis induced by autologous dsDNA in hPBMCs by Annexin-PI assay using FACS 284 analysis as shown in Fig. S11A, dsDNA stimulation enhanced apoptosis compared to the 285 mock stimulation and it is comparable to the positive control treated cells, by Camptothecin. 286 Additionally, the levels of TLRs 3/7/9 was estimated upon dsDNA treatment as previously it has been reported that DAMPs enhance the levels of these TLRs. Consistent with previous 287 288 observation, we obtained similar results (Fig. S11B-D). Taken together, these results showed 289 that DAMPs/dsDNA enhances miR-30e, innate immune responses as well as promote 290 apoptosis and induce TLRs, the crucial characteristic features for the development of 291 autoimmune disorder in co-occurrence with DAMPs/dsDNA and miR-30e might play 292 pivotal role in autoimmune disease.

293

294 SLE patients and SLE mouse model show enhanced miR-30e expression

To investigate the role of miR-30e under physiological condition, an autoimmune disease, SLE was selected because SLE patients show enhanced inflammatory cytokines, type I interferons and type I interferon-inducible cytokines production¹⁰. The SLE patients also had elevated levels of several autoantibodies particularly antinuclear and anti-dsDNA antibodies. Therefore, PBMCs were isolated from clinically verified SLE patients (P: n=13) as shown (Table T5) and healthy controls (HC: n=13) and cultured for 48 hours, the expression levels 301 of $IFN\beta$, IFIT1 and IL6 were compared by qRT-PCR. As expected, we found that the 302 expression levels of $IFN\beta$, IFIT1 and IL6 were significantly enhanced in SLE patients 303 compared to healthy controls (Fig. 5A). The enhanced innate immune responses prompted 304 us to investigate the expression levels of miR-30e. Interestingly, the expression of miR-30e 305 is significantly enhanced (several fold) in patients (n=13) compared to healthy controls 306 (n=13). Further to confirm our observations in SLE patients, the SLE mouse model was used. 307 The New Zealand white/black (NZW/B) mice were extensively used for SLE studies. The 308 splenocytes from both parents NZB and/or NZW mice (n=7) mice and lupus prone F1 (F1: 309 NZW/B n=7) generation mice were tested for the expression levels of *Ip10*, *Tnfa* and *Il6* by 310 qRT-PCR (Fig. 5B). The F1 mice showed significantly high level of inflammatory responses 311 compared to non-SLE parent mice. Consistent with human SLE results, the expression of 312 miR-30e is enhanced manifold both in F1 mouse splenocytes and serum compared to the 313 parents. Additionally, GEO dataset: GSE79240 was utilized to observe the differential 314 expression of microRNAs during SLE, especially, miR-30e expression level, that further 315 revealed that expression of miR-30e modestly enhanced in dendritic cells of SLE patients 316 (n=5) compared to healthy controls (n=5) (Fig. S12A). To understand the relevance of miR-317 30e in another autoimmune disease, we reanalyzed the previously submitted GEO dataset 318 (GSE55099) for Type 1 Diabetes Mellitus patients. The reanalysis unveils that the expression 319 of miR-30e significantly enhanced in PBMCs of patients (n=12) compared to healthy 320 controls (n=10) (Fig. S12B). Collectively, these results suggest that enhanced innate immune 321 responses are strongly linked with miR-30e expression under physiological condition and it 322 might also play pivotal role in immune-pathogenesis of SLE in both human and mouse 323 model.

miR-30e targets negative regulators of PRR-mediated signaling pathway in SLE patients and SLE mouse model

326 The enhanced expression of inflammatory cytokines, type I IFNs and type I IFN-inducible 327 genes along with elevated miR-30e in SLE patients and SLE mouse model prompted us to 328 examine the levels of our previously identified negative regulators as shown (Fig. 3A-B). 329 Additionally, it has been reported that several negative regulators of innate immunity play a 330 crucial role in the development of autoimmune disease. As expected, the expression of 331 negative regulators of PRR-mediated signaling pathways namely TRIM38, TANK, SOCS1 332 and SOCS3 was significantly reduced in the PBMCs of SLE patients compared to healthy 333 controls (Fig. 6A). To support our observation, reanalysis of previously submitted GEO 334 dataset, GSE11909 for SLE patients (n=103) and healthy controls (n=12) in PBMCs reveal 335 that, in SLE, the identified negative regulators of innate immune signaling pathway maybe 336 targeted by miR-30e, were significantly reduced in patients (n=103) compared to healthy 337 controls (n=12) (Fig. S13). To confirm our observations, splenocytes from mouse model 338 were analyzed for identified negative regulators. Consistent with human result for the 339 expression of negative regulators, the expression of Atg5 and Atg12 were significantly 340 reduced whereas expression of Socs1 and Socs3 was moderately reduced in SLE mouse (F1-341 NZW/B mice: n=7) compared to parent mice (PM-NZW-NZB: n=7) (Fig. 6B). Collectively, 342 these results suggest that in SLE pathogenesis, in both human and mouse, enhanced 343 expression of miR-30e might play a crucial role, by suppressing the expression of negative 344 regulators of innate immune signaling pathway, which in turn enhance innate immune 345 cytokines and contribute in development or severity to the disease. Therefore, manipulation 346 of miR-30e expression might be key for the controlling SLE pathogenesis.

347

348 **Prognostic and Therapeutic potential of miR-30e**

349 To explore the prognostic and therapeutic potential of miR-30e, which modulate innate 350 immune responses during infection and autoimmune diseases, particularly HBV infection 351 and SLE, we tested prognostic potential of miR-30e. We validated the miR-30e expression 352 by comparing the serum levels in pre- and post six months therapy (pegylated type I 353 interferon) samples of HBV patients (demographic details mentioned in Table T6). 354 Strikingly, we found significant reduction of miR-30e expression after interferon therapy 355 (Fig. 7A), suggesting that, HBV infection triggers miR-30e over-expression in the host, to 356 combat the which otherwise ablates upon Peg-IFN treatment, a well-established therapy that 357 reduces the hepatitis B virus titer in patients. Additionally, GEO dataset GSE104126 358 supports the above finding in context to miR-30e expression level, as its reanalysis revealed, 359 that there was significant reduction in the level of miR-30e in pegylated type I interferons 360 treated and HBsAg-loss (reduction in viral titer) patients compared to pegylated type I 361 interferons treated and non-HBsAg loss (no change in viral titer) patients (Fig. S14).

362 Next, we investigated the therapeutic potential of miR-30e modulator and have shown the 363 importance of AmiR-30e (miR-30e inhibitor) that sequesters the activity of endogenous miR-364 30e. Our results showed that SLE patients and mouse model produce high inflammatory 365 responses in terms of innate cytokines and it is linked to the elevated miR-30e expression 366 (Fig. 5A) and contribute in reduction of negative regulators (Fig. 6A). Therefore, we 367 introduce AmiR-30e into SLE patient's PBMCs. Interestingly, we found that ectopic 368 expression of AmiR-30e sequester the expression of miR-30e in PBMCs of SLE patients and 369 reduces the IFN β expression as quantified by qRT-PCR (Fig. 7B). Next, we examined the 370 role of AmiR-30e in SLE mouse model, NZW/B. In ex-vivo experiment, transfection of 371 splenocytes derived from the F1 mice (NZW/B) with AmiR-30e significantly reduces the 372 expression levels of *Il6 and Tnfα* compared to the control AmiR-NC1 (Fig. 7C). Furthermore, 373 to show the stable and specific sequestering effects of microRNAs for therapeutic relevance, 374 previously it has been published that locked nucleic acid (LNA) based chemistry to design a 375 potent inhibitor against the microRNA has showed promising effects in *in-vivo* studies¹². 376 Therefore, finally, we performed *in-vivo* experiments to test the effects of LNA-anti-mir-377 30e-5p (LNA Amir-30e) on innate immune responses in SLE mice, two groups of mice each 378 consists of four mice were injected with LNA Amir-30e or LNA negative control (LNA NC) 379 through retro-orbital route thrice with one day interval to sequester the endogenous 380 expression of mir-30e to measure mir-30e and gene expression levels. The expression of mir-381 30e in serum and splenocytes of SLE induced F1 (NZW/B) mice was significantly reduced 382 compared to the LNA NC treated mice. Additionally, innate immune cytokines namely *Il6* 383 and *Ip10* significantly reduced in LNA Amir-30e treated mice compared to the LNA NC. In 384 contrast the expression of negative regulators, Socs1 and Socs3 significantly enhanced in 385 LNA Amir-30e treated mice compared to the LNA NC. (Fig. 7D). Taken together these 386 findings conclude that LNA Amir-30e found to be stable under in-vivo conditions and 387 significantly inhibits the activity of mir-30e in SLE mouse model, which further reduces the 388 inhibition/targeting of negative regulators, contributing towards controlling of SLE 389 phenomena.

390

391 Discussion

392 Innate immune responses to viral infection induces the production of pro-inflammatory 393 cytokines and type I Interferons (IFNs) through cascade of complex signaling pathways that 394 play critical roles in development of appropriate anti-viral immunity. In contrast, 395 dysregulation of these signaling pathway results to inefficient clearance of microbial 396 infection, immunopathology or autoimmune diseases^{1,3}. Therefore, the expression and 397 activation of signaling molecules in signaling pathways are tightly regulated at 398 transcriptional, post-transcriptional, translational and post-translational levels. The non-399 coding small (micro) RNAs play a pivotal role in fine tuning of protein coding genes through, 400 stability and translation of gene transcript. Here our study identifies a novel role of miR-30e 401 in regulation of innate immune signaling pathway during HBV infection and immuno-402 pathogenesis of SLE. We also demonstrated the therapeutic and prognostic potential of 403 AmiR-30e and miR-30e in SLE and HBV infection, respectively.

404 The miR-30e identified through unbiased *in-silico* screening using GEO datasets obtained 405 from cell lines, primary cells, mice or human patients challenged by different viruses. 406 Although, other miRNAs such as miR-27a-3p and miR-181a/2-3p are also induced, however, 407 their complementation potency towards mRNA-miRNA targets was manifolds lower than 408 miR-30e. The miR-30e has been reported to be associated with cancer¹³⁻¹⁵, cardiac dysfunction¹⁶, kidney malfunction¹⁷, fatty acid deregulation, as a biomarker for SLE¹⁸, a 409 410 dysregulated micro RNA during Zika virus infection¹⁹ and suppressor for Dengue virus²⁰. 411 However, its role in innate immune signaling pathway and innate immune responses during 412 virus infection and pathogenesis of autoimmune diseases such as SLE are not clear.

413 Our results show that miR-30e induced manifold in the serum of (n=51) therapy naive 414 chronic hepatitis B (CHB) patients compared to healthy control (n=24). This finding was 415 also supported by another DNA and RNA virus such as HCMV, NDV, and SeV infection or 416 stimulation with TLR or RLR viral PAMPs such as ssRNA and poly IC to various cell lines. 417 Ectopic expression of miR-30e in primary cells or cell lines upon subsequent DNA or RNA 418 virus infection significantly reduces the viral load through global enhancement of innate 419 immune responses in terms of pro-inflammatory cytokines, type I interferons and type I 420 interferons-inducible genes as shown by NGS data analysis. The enhanced miR-30e 421 expression in therapy naive HBV (CHB) patients might elevate innate immune responses to 422 combat HBV infection, however, it might be insufficient to control HBV infection. 423 Therefore, HBV patients receiving pegylated interferon were sampled post six months 424 therapy and were found to show significant reduction of viral load and miR-30e expression 425 highlighting the link between HBV, miR-30e and innate immune responses. To establish the 426 role of miR-30e under physiological condition, we selected SLE as a disease model. The 427 SLE patients show enhanced expression of miR-30e, pro-inflammatory cytokines, type I 428 interferons or type I interferons-inducible genes. Further to confirm our observations, we 429 exploited SLE mouse model (NZW/ NZB F1) and obtained similar results for the expression 430 of miR-30e that were consistent with SLE patients result suggesting the correlation of miR-431 30e with innate immune responses in SLE under physiological condition. 432 The transcriptomic analysis of our NGS data and GEO data sets using various bioinformatics

tools shows that miR-30e directly targets several signal transducers and the negative
regulators such as *TRIM38*²¹⁻²³, *TANK*²⁴, *ATG5*, *ATG12*^{25, 26}, *BECN1*²⁷, *SOCS1* and *SOCS3*²⁸.

435 The microRNA targeting reduces the expression negative regulators and enhance the innate

436 immune responses which play pivotal role in TLR, RLR, NLR, and type I interferon 437 signaling pathways. Although miR-30e also bind with few other gene transcripts which are 438 not negative regulator in the innate immune signaling pathway, however, the combined mean 439 free energy for these transcripts are lower than threshold binding energy necessary for 440 significant change in the expression of transcripts, for subsequently affecting the outcome of 441 signaling pathway. Notably, the expression of negative regulators such as TRIM38, TANK, 442 SOCS1 and SOCS3 in SLE patients are significantly reduced. Moreover, SLE mice also show 443 similar results for the expression of Socs1, Socs3, Atg5 and Atg12. Collectively, human and 444 mouse results illustrate that miR-30e targets negative regulators to elevate innate immune 445 responses and dysregulation of miR-30e expression may be one of factor for the 446 establishment of SLE or other autoimmune diseases.

447 Previously, it has been shown that SLE patients has reduced ability to degrade DNA and 448 cellular chromatin²⁹. Therefore, PBMCs from healthy donors were stimulated with partially 449 degraded self-DNA and these cells showed enhanced miR-30e and innate immune responses 450 suggesting the pathogenic role of miR-30e and suggested a link of self-DNA with the 451 pathogenesis of SLE. In contrast, sequestering endogenous miR-30e in PBMCs of SLE 452 patients by introducing antagomir/inhibitor significantly reduced the levels of miR-30e and 453 innate immune responses in terms of $IFN\beta$ production. Additionally, introduction of locked 454 nucleic acid (a stable form of antagomir) through retro-orbital route into SLE mice model 455 significantly reduced mir-30e and innate immune genes expression in splenocytes whereas 456 expression of negative regulators was enhanced, demonstrating the ability of mir-30e 457 antagomir to reduce innate immune responses under physiological condition. Finally, our 458 study identified miR-30e as a post-transcriptional regulator of negative regulation of PRR-

- 459 mediated innate immune signaling pathways and its diagnostic and prognostic potential
- 460 in HBV infection. Additionally, our study demonstrated the therapeutic implications of
- 461 miR-30e antagomir/inhibitor to immunologically complex autoimmune disease, SLE or
- 462 possibly other autoimmune diseases.
- 463

464 Materials and Methods

465 Ethical Statement. Experiments were performed after approval from the Institutional 466 Ethical Committee (IEC)-Indian Institute of Science Education and Research (IISER) 467 Bhopal: (IISERB/IEC/Certificate/2016-IV/03), Institute Biosafety Committee (IBSC) -468 IISER-Bhopal: (IBSC/IISERB/2018/Meeting II/08), Bhopal Memorial Hospital & Research 469 Centre Institutional Ethical Committee (IEC), BMHRC Research Projects/Clinical Studies 470 (IRB/18/Research/10), Institutional Animal Ethical Committee (IAEC)-Small and 471 Experimental Animal Facility National Institute of Immunology (NII): (IAEC#469/18) and 472 Institutional Ethical Committee (IEC)- Sanjay Gandhi Post Graduate Institute of Medical 473 Sciences (SGPGIMS): (2016-138-EMO-93).

474 Human blood samples. Blood samples from both healthy individuals and patients (HBV 475 and SLE) were collected according to the ethics protocol in the respective hospitals by health 476 professionals. Written informed consent was obtained from all patients and healthy 477 participants before inclusion into the study at Bhopal Memorial Hospital & Research Center 478 (BMHRC: for HBV samples: n = 51 Vs control samples: n = 24), Sanjay Gandhi Post 479 Graduate Institute of Medical Sciences (SGPGIMS: for SLE samples: n = 13 Vs control 480 samples: n = 13) and Institutional Ethical Committee (IEC)-Indian Institute of Science 481 Education and Research (IISER) Bhopal. Reagents used for transfection/electroporation 482 were Lipofectamine 2000, miRNA mimics, miRNA inhibitors, controls mimic/inhibitors and 483 for RNA isolation were Trizol/Trizol-LS. All reagents used were procured from 484 Ambion/Invitogen.

485 Mice. Systemic Lupus Erythematous (SLE) mouse model were procured from the Jackson
486 Laboratory, USA and further breeding was done in approved pathogen- free, small animal

22

487 facility of National Institute of Immunology (NII). SLE mouse strains were used as follows: 488 New Zealand White (NZW) and New Zealand Black (NZB) non-lupus bearing parent mice 489 crossed to generate NZW/B F1 progenies, lupus induced mice. All the mice used in the study 490 were from 6 to 12 weeks without any genders bias. Dendritic cell enriched low denisty 491 fraction of splenocytes were prepared as described earlier^{40,41}. Spleens were harvested and 492 single cell suspension of splenocytes were cultured in RPMI based media containing either 493 50nM of miR-30e antagomir and miR-NC1 antagomir (transfected through RNAimax 494 transfecting reagent) and plated in 24-well plate (3 x 10⁶ cells/well) maintained at 37°C+5% 495 CO₂. For the *in-vivo* experiments, four- 6 to 12 weeks old NZW/B F1 mice were randomly 496 assigned into two groups. The mice in each group received four consecutives intravenous 497 (retro-orbital) injections of either LNA antimiR-30e or LNA negative control (scrambled) 498 compounds, formulated in TE Buffer (10mM Tris (pH: 7.5), 0.01mM EDTA) as per 25 mg 499 LNA/kg mouse body weight on consecutive days as described previously. The mice were 500 sacrificed within 24 h after the last dose. At selected time points, cells were harvested and 501 relative abundances of miR-30e and other transcripts were quantified using qRT-PCR.

502 Cell lines, virus infections, transfection and reagents. A549 human alveolar basal 503 epithelial cells (Cell Repository, NCCS, India), HEK293T/HEK293 human embryonic 504 kidney cells (ATCC CRL-3216), Raw 264.7 (Cell Repository, NCCS, India), HeLa cervical 505 cancer cells (Cell Repository, NCCS, India), HepG2-NTCP cells (from Dr. Takaji Wakita 506 National Institute of Infectious Diseases Tokyo, Japan), HepG2 hepatoblastoma cells (from 507 Dr. Nirupma Trehanpati's Laboratory, Institute of Liver & Biliary Sciences ILBS, New 508 Delhi, India), HepG2215, HBV stably expressing hepatoblastoma cells (from Dr. Senthil 509 Kumar Venugopal's Lab, South Asian University, New Delhi, India) and HFFs (from 510 Professor. Wade Gibson's Lab, Johns Hopkins, School of Medicine) were cultured in 511 Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum 512 (FBS) and 1% Antibiotic-Antimycotic solution. HepG2-NTCP cells were infected with HBV 513 in Professor Akinori Takaoka's Laoboratoy as per the standard protocol. Human PBMCs 514 were isolated from whole blood and NDV LaSota viral stocks were accumulated as described 515 previously⁷. NDV-GFP was a kind gift from Professor Peter Palese, Icahn School of 516 Medicine at Mount Sinai. Sendai-RFP (SeV-RFP) were borrowed from Dr. Sunil Raghav, 517 ILS, Bhubaneshwar, India, A single virus stock was used for all experiments. The cells were 518 infected in serum-free DMEM with the NDV and SeV viruses at the MOIs indicated in the 519 figure legends. After 60 min, the cells were washed with phosphate-buffered saline (PBS) 520 and then were resuspended in DMEM, 1% FBS. HFFs were grown to full confluence and 521 infected with GFP tagged HCMV at the MOIs indicated in the figure legends. HBV-positive 522 sera were used to infect HepG2 cells as previously described⁴²⁻⁴⁶. HepG2 cells were made 523 permissive to HBV virus infection by adding 3% PEG (polyethylglycol) and 0.5% DMSO 524 (dimethylsulphoxide). The cells were infected in 1% FBS containing DMEM, 3% PEG and 525 0.5% DMSO with the HBV-positive sera. After 6-7 hours, the cells were washed with 526 phosphate-buffered saline (PBS) and then were resuspended in DMEM, 10% FBS, 3% PEG 527 and 0.5% DMSO. For electroporation of human PBMCs, 1 X 10⁶ cells were suspended in 528 Opti-MEM (Invitrogen) containing 50 nM mirVana miRNA mimics (Ambion). The cells 529 were pulsed twice with 1000 V for 0.5 ms with a pulse interval of 5 s with the Gene Pulser Xcell electroporation system. The cells were then transferred to RPMI supplemented with 530 531 10% FBS7. Transfection of cells with miRNA mimics, inhibitors and control 532 mimics/inhibitors and/or plasmids was performed with Lipofectamine 2000 or 3000

533 (Invitrogen) according to the manufacturer's protocol. Poly IC (Invivogen) was mixed with 534 Lipofectamine2000 before being used to transfect cells. ssRNA (Invitrogen) were used to 535 stimulate the cells as mentioned in the figure legends. DMEM, FBS, Opti-MEM, RPMI, and 536 Lipofectamine 2000/3000 were purchased from Invitrogen. The miR-30e mimic (miR-30e) 537 (Invitrogen) or a nonspecific miRNA negative control (miR-NC1) was used according to the 538 manufacturer's instructions (Applied Biosystems). The miR-30e inhibitor (AmiR-30e) 539 (Invitrogen) was used to inhibit miR-30e expression in transfected cells. The cDNA encoding 540 the 3'-UTR of negative regulators was retrieved from the UCSC gene sorter and was sub-541 cloned into the pMIR-REPORT luciferase vector. A total of 2.0 kb of sequence upstream of 542 the miR-30e gene was retrieved from the UCSC genome browser. This sequence was 543 amplified by PCR from genomic DNA and was subcloned into the pGL3 basic vector 544 between the KpnI and HindIII sites. Plasmids containing Firefly Luciferase gene under $IFN\beta$, 545 ISRE and NF KB promoters, were obtained from Professor Shizuo Akira's (Osaka University, 546 Japan), $rhIFN\beta$ (bei resources) and $rhTNF\alpha$ (R&D Systems). All sh- clones, were obtained 547 from the whole RNAi human library for shRNA mediating silencing (Sigma, Aldrich) 548 maintained at IISER, Bhopal, India. In-silico analysis for miRNA target gene prediction was 549 done as previously described⁷.

Quantitative real-time reverse transcription PCR. Total RNA was extracted with the Trizol reagent (Ambion/Invitrogen) and used to synthesize cDNA with the iScript cDNA Synthesis Kit (BioRad, Hercules, CA, USA) according to the manufacturer's protocol. Gene expression was measured by quantitative real-time PCR using gene-specific primers and SYBR Green (Biorad, Hercules, CA, USA). For quantification of the abundances of miR-30e, real-time PCR analysis was performed with the TaqMan Universal PCR Master Mix (Applied Biosystems) and the miR-30e-5p specific TaqMan miRNA assays. The Taqman
U6 assay was used as a reference control. Real time quantification was done using StepOne

558 Plus Real time PCR Systems by Applied BioSystems (Foster City, CA, USA). Primers used

559 for qRT-PCR were listed in Supplementary Table T7.

560 Luciferase Reporter assays. HEK 293T and HeLa cells (5 X 10⁴) were seeded into a 24-

well plate and transiently transfected with 25 nM of mimics, 50 ng of the transfection control

562 pRL-TK plasmid (Renilla luciferase containing plasmid) and 200 ng of the luciferase

563 reporter plasmid (*Firefly* luciferase containing plasmid) together with/without 300 ng of the

various expression plasmids or an empty plasmid as a control according to the respective experiments. The cells were lysed at 24 to 36 hours after transfection and/or infection or stimulations, and finally the luciferase activity in total cell lysates was measured with Glomax (Promega, Madison, WI, USA).

568 Enzyme-linked immunosorbent assay (ELISA). A549 and HeLa cells were transiently 569 transfected with miR-30e and miR-NC1 and then were infected NDV virus. The culture 570 media were harvested 36 to 40 hours after infection and were analyzed by specific ELISA 571 kits (Becton Dickinson) according to the manufacturer's instructions to determine the 572 amounts of *IP10* and *IL6* that were secreted by the cells.

RNA immunoprecipitations. RNA immunoprecipitations were performed as described previously^{47,48}. The pIRESneo-Flag/HA Ago2 plasmid was a gift from Professor T. Tuschl (Addgene plasmid #10822). Briefly, HEK 293T cells transfected with miRNA and infected with NDV were lysed in 0.5% NP-40, 150 mM KCl, 25 mM tris-glycine (pH 7.5) and incubated with M2 Flag affinity beads (Sigma) overnight. The lysate was then washed with 300 mM NaCl, 50 mM tris-glycine (pH 7.5), 5 mM MgCl₂, and 0.05% NP-40. The extraction of RNA from the immunoprecipitated RNPs was performed with the Trizol reagent (Ambion,

580 Invitrogen) according to the manufacturer's protocol.

581 Fluorescence-activated cell sorting (FACS) Cytometry Analysis. A549 and HeLa cells 582 were grown to 70-80% confluence, then treated with mimics and negative control reagents 583 and finally infected with SeV-RFP and NDV-GFP. After 24 hours of infection, cells were 584 trypsinized, harvested and then washed with PBS thrice and finally resuspended in PBS for 585 FACS analysis as described in figure legends. Human PBMCs were treated with DNA and 586 or camptothecin $(0.3\mu M)$ to estimate apoptosis levels. At desired time points, cells were 587 analyzed by staining with FITC-labeled Annexin V and propidium iodide (Becton 588 Dickinson, USA) as per manufacturer's instructions and stained cells were analyzed using a 589 FACS Aria III (Becton Dickinson) and data were analyzed by using FlowJo software 590 (FlowJo, Ashland, OR, USA).

591 Immunoblotting analysis. After cells were transfected with miRNA mimic and controls 592 then after infected with NDV and/or NDV-GFP (as indicated in figures), lysates were 593 collected and subjected to western blotting analysis as previously described^{7,49}. Cells were 594 harvested after 36 hours of infection with standard ice-cold cell lysis buffer supplemented 595 with 1 X protease inhibitor cocktail (obtained from Sigma, Aldrich). Immunoblotting were 596 done as previously described⁴⁹. Immunoblotted nitrocellulose membrane was imaged with 597 LI-COR system. Anti–GFP antibody was obtained from Sigma-Aldrich, anti-TRIM38 (from 598 ImmunoTag,), anti-TANK, SOCS3, BECN1 (from Cloud-Clone Corporation), anti-ATG12 599 (from Cell Signaling Technology), anti-SOCS1 (from Santa Cruz) and anti γ-Tubulin (from 600 Sigma, Aldrich). IR dye labeled anti-Rabbit and anti-Mouse IgG (secondary antibody), were 601 purchased from LI-COR.

602 Microscopy. HeLa cells were transfected with miRNA mimic and infected with NDV-GFP 603 were fixed with 4% PFA for 15 min at room temperature; permeabilized with 0.05% Triton 604 X-100 in 1 x PBS for 10 min at room temperature; blocked with bovine serum albumin (5 605 mg/ml) in PBS, 0.04% Tween 20 for 30 min and incubated for 1 hour with the relevant 606 primary antibodies diluted in blocking buffer. The cells were then washed three times with 607 PBS and incubated for 1 hour with the appropriate secondary antibodies at room temperature. 608 Nuclei were stained with DAPI, and the cells were then analyzed with an LSM 780 confocal 609 laser microscope (Carl Zeiss). The images were analyzed using ImageJ processing software. 610 HCMV infection (GFP fluorescence) in HFFs miRNA mimic and control mimic transfected 611 cells was visualized with Inverted microscope Vert.A1 (AXIO) by Zeiss.

612 **RNA-Sequencing data analysis.** Trizol reagent (Ambion, Invitrogen) was used to isolate 613 total RNA that was processed to prepare cDNA libraries using TruSeq technology according 614 to the manufacturer's instructions protocol (Illumina, San Diego, CA). Libraries were 615 sequenced using Illumina NovaSeq 6000, with a read length of 101 bp, by Bencos Research 616 Solutions Pvt. Ltd., Bangalore, India. FastQC (0.11.5) was used to access the read quality of 617 the raw data. Trimmomatic was used to remove Illumina adaptors and sliding-window 618 approach was used for the quality filtering of reads. Approximately 20 million cleaned pair-619 end sequencing reads from each sample were uploaded to the Galaxy web platform and were 620 analyzed at https://usegalaxy.org. HISAT2 was used to map the reads with the reference 621 human genome (hg38). StringTie was used to assemble the aligned RNA-Seq reads into 622 transcripts and estimate the abundance of the assembled transcripts. DESeq2 was used for differential expression analysis of genes between groups³⁰. Various R packages were used to 623 624 visualize the expression and differential expression outcomes. Gene ontology (GO) analysis

was done using the web-based Gene Set Analysis toolkit, and analysis of upregulated KEGG
pathways was done using Enrichr. Cluster 3.0 and TreeView 1.1.6 were used for making heat
maps. All the addressed analysis were demonstrated as described previously⁵⁰.

Statistical analysis. All experiments were carried out along with the appropriate controls, indicated as untreated/untransfected cells (Ctrl) or transfected with the transfection reagent alone (Mock). Experiments were performed in duplicates or triplicates for at least two or three times independently. GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA, USA) was used for statistical analysis. The differences between two groups were compared by using an unpaired two-tailed Student's t-test and/or Mann Whitney test additionally the paired data was analyzed using paired t-test and/or Wilcoxon sign rank test. While the differences between three groups or more were compared by using analysis of variance (ANOVA) with Tukey test. Differences were considered to be statistically significant when P < 0.05. Statistical significance in the figures is indicated as follows: ***P < 0.001, **P < 0.001, ** 0.01, *P < 0.05; ns, not significant.

648		
649		
650	Re	ferences
651		
652	1.	Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124,
653		783-801 (2006).
654	2.	Alvarez, K. & Vasquez, G. Damage-associated molecular patterns and their role as initiators
655		of inflammatory and auto-immune signals in systemic lupus erythematosus. International
656		reviews of immunology 36, 259-270 (2017).
657	3.	He, L. & Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nature
658		reviews. Genetics 5, 522-531 (2004).
659	4.	Treiber, T., Treiber, N. & Meister, G. Regulation of microRNA biogenesis and its crosstalk
660		with other cellular pathways. Nature reviews. Molecular cell biology 20, 5-20 (2019).
661	5.	Li, C. et al. Competitive virus and host RNAs: the interplay of a hidden virus and host
662		interaction. <i>Protein & cell</i> 5, 348-356 (2014).
663	6.	Zheng, Z. et al. Human microRNA hsa-miR-296-5p suppresses enterovirus 71 replication by
664	_	targeting the viral genome. Journal of virology 87, 5645-5656 (2013).
665	7.	Ingle, H. et al. The microRNA miR-485 targets host and influenza virus transcripts to
666	0	regulate antiviral immunity and restrict viral replication. <i>Science signaling</i> 8, ra126 (2015).
667	8.	Porritt, R.A. & Hertzog, P.J. Dynamic control of type I IFN signalling by an integrated
668	0	network of negative regulators. Trends in immunology 36, 150-160 (2015).
669	9.	Kondo, I., Kawai, I. & Akira, S. Dissecting negative regulation of Toll-like receptor
0/0 671	10	signaling. Trends in immunology 33, 449-458 (2012).
0/1	10.	Moulton, V.K. <i>et al.</i> Pathogenesis of Human Systemic Lupus Erythematosus: A Cellular
072 673	11	Perspective. Trends in molecular medicine 25, 015-055 (2017).
67A	11.	systemic lunus erythematosus nothogenesis Nature regulators Phaumatology 8, 701,700
675		(2012)
676	12	Garchow B.G. et al Silencing of microRNA-21 in vivo ameliorates autoimmune
677	12.	splenomegaly in lupus mice. EMBO molecular medicine 3, 605-615 (2011).
678	13	Ning Z.O. et al. MicroRNA-30e reduces cell growth and enhances drug sensitivity to
679	10.	gefitinib in lung carcinoma. <i>Oncotarget</i> 8, 4572-4581 (2017).
680	14.	Feng, G.X. <i>et al.</i> Hepatitis B virus X protein promotes the development of liver fibrosis and
681		hepatoma through downregulation of miR-30e targeting P4HA2 mRNA. Oncogene 36,
682		6895-6905 (2017).
683	15.	Liu, M.M. et al. MiR-30e inhibits tumor growth and chemoresistance via targeting IRS1 in
684		Breast Cancer. Scientific reports 7, 15929 (2017).
685	16.	Su, Q., Ye, Z., Sun, Y., Yang, H. & Li, L. Relationship between circulating miRNA-30e and
686		no-reflow phenomenon in STEMI patients undergoing primary coronary intervention.
687		Scandinavian journal of clinical and laboratory investigation 78, 318-324 (2018).
688	17.	. Wu, J. et al. MicroRNA-30 family members regulate calcium/calcineurin signaling in
689		podocytes. The Journal of clinical investigation 125, 4091-4106 (2015).
690	18.	Kim, B.S., Jung, J.Y., Jeon, J.Y., Kim, H.A. & Suh, C.H. Circulating hsa-miR-30e-5p, hsa-
691 (02		miR-92a-3p, and hsa-miR-223-3p may be novel biomarkers in systemic lupus
692	10	erythematosus. <i>HIa</i> 88, 187-193 (2016).
693	19.	Kozak, R.A. <i>et al.</i> MicroRNA and mRNA Dysregulation in Astrocytes Infected with Zika
094 605	20	Virus. Viruses 9 (2017).
093 604	20.	Lange An en dant JEN meduation DL - Charles dengue Virus replication by promoting NF-
090		kappad-ucpendent IFIN production. FLOS neglected tropical diseases 8, e5088 (2014).

697	21.	Versteeg, G.A., Benke, S., Garcia-Sastre, A. & Rajsbaum, R. InTRIMsic immunity: Positive
698		and negative regulation of immune signaling by tripartite motif proteins. Cytokine & growth
699		factor reviews 25, 563-576 (2014).
700	22.	Zhao, W., Wang, L., Zhang, M., Yuan, C. & Gao, C. E3 ubiquitin ligase tripartite motif 38
701		negatively regulates TLR-mediated immune responses by proteasomal degradation of TNF
702		receptor-associated factor 6 in macrophages. J Immunol 188, 2567-2574 (2012).
703	23.	Hu, M.M. et al. TRIM38 inhibits TNFalpha- and IL-1beta-triggered NF-kappaB activation
704		by mediating lysosome-dependent degradation of TAB2/3. Proceedings of the National
705		Academy of Sciences of the United States of America 111, 1509-1514 (2014).
706	24.	Kawagoe, T. et al. TANK is a negative regulator of Toll-like receptor signaling and is critical
707		for the prevention of autoimmune nephritis. <i>Nature immunology</i> 10, 965-972 (2009).
708	25.	Li, M. et al. Respiratory Syncytial Virus Replication Is Promoted by Autophagy-Mediated
709		Inhibition of Apoptosis. Journal of virology 92 (2018).
710	26.	Jounai, N. et al. The Atg5 Atg12 conjugate associates with innate antiviral immune
711		responses. Proceedings of the National Academy of Sciences of the United States of America
712		104, 14050-14055 (2007).
713	27.	Cui, J., Jin, S. & Wang, R.F. The BECN1-USP19 axis plays a role in the crosstalk between
714		autophagy and antiviral immune responses. Autophagy 12, 1210-1211 (2016).
715	28.	Pothlichet, J., Chignard, M. & Si-Tahar, M. Cutting edge: innate immune response triggered
716		by influenza A virus is negatively regulated by SOCS1 and SOCS3 through a RIG-
717		I/IFNAR1-dependent pathway. J Immunol 180, 2034-2038 (2008).
718	29.	Gheita, T.A. et al. Anti-dsDNA titre in female systemic lupus erythematosus patients:
719		relation to disease manifestations, damage and antiphospholipid antibodies. Lupus 27, 1081-
720		1087 (2018).
721	30.	Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
722		for RNA-seq data with DESeq2. Genome Biology, 15, 550 (2014).
723	31.	Morel, L. Genetics of SLE: evidence from mouse models. <i>Nature reviews. Rheumatology</i> 6.
724		348-357 (2010).
725	32.	Vela, E.M. et al. MicroRNA expression in mice infected with seasonal H1N1, swine H1N1
726		or highly pathogenic H5N1. Journal of medical microbiology 63, 1131-1142 (2014).
727	33.	Gao, L. et al. Dynamic expression of viral and cellular microRNAs in infectious
728		mononucleosis caused by primary Epstein-Barr virus infection in children. Virology journal
729		12, 208 (2015).
730	34.	Wang, Y. et al. Elevated expression of miR-142-3p is related to the pro-inflammatory
731		function of monocyte-derived dendritic cells in SLE. Arthritis research & therapy 18, 263
732		(2016).
733	35.	Chaussabel, D. <i>et al.</i> A modular analysis framework for blood genomics studies: application
734		to systemic lupus erythematosus. <i>Immunity</i> 29, 150-164 (2008).
735	36.	Yang, Y. et al. Pretreatment microRNA levels can predict HBsAg clearance in CHB patients
736		treated with pegylated interferon alpha-2a. Virology journal 15, 73 (2018).
737	37.	Wang, Y. et al. TRIM35 negatively regulates TLR7- and TLR9-mediated type I interferon
738	- , .	production by targeting IRF7. <i>FEBS letters</i> 589, 1322-1330 (2015).
739	38.	Narayan, K. <i>et al.</i> TRIM13 is a negative regulator of MDA5-mediated type I interferon
740	200	production Journal of virology 88, 10748-10757 (2014)
741	39	Lu, O, et al. Homeostatic Control of Innate Lung Inflammation by Vici Syndrome Gene
742	57.	Eng5 and Additional Autophagy Genes Promotes Influenza Pathogenesis. <i>Cell host &</i>
743		microhe 19 102-113 (2016)
744	40	Aliberti, J. <i>et al.</i> Essential role for ICSBP in the in vivo development of murine $CD8\alpha^+$ dendritic
745	10.	cells, <i>Blood</i> 101, 305-310 (2003).
746	41	Tamura, T. et al. IFN Regulatory Factor-4 and -8 Govern Dendritic Cell Subset Development and
747		Their Functional Diversity. <i>Journal of Immunology</i> 175 (5), 2573-2581 (2005).

748	42.	Paran, N., Geiger, B. & Shaul, Y. HBV infection of cell culture: evidence for multivalent
/49 750	12	and cooperative attachment. The EMBO journal 20, 4443-4453 (2001). Babini B. Canal E. Daugust C. Dubanabat S. & Patit M.A. In vitro infaction of human
751	43.	hepatoma (HepG2) cells with hepatitis B virus <i>Journal of virology</i> 64, 3025-3032 (1990)
752	44.	Gripon, P. <i>et al.</i> Hepatitis B virus infection of adult human hepatocytes cultured in the
753		presence of dimethyl sulfoxide. Journal of virology 62, 4136-4143 (1988).
754	45.	Vivekanandan, P., Daniel, H.D., Kannangai, R., Martinez-Murillo, F. & Torbenson, M.
755		Hepatitis B virus replication induces methylation of both host and viral DNA. Journal of
756		<i>virology</i> 84, 4321-4329 (2010).
757	46.	Zhu, X. et al. TMEM2 inhibits hepatitis B virus infection in HepG2 and HepG2.2.15 cells
750 750	17	by activating the JAK-STAT signaling pathway. Cell death & disease 1, e2239 (2016). Meister G et al Human Argonaute? mediates RNA cleavage targeted by miRNAs and
760	4/.	siRNAs Molecular cell 15 185-197 (2004).
761	48.	Beitzinger, M. & Meister, G. Experimental identification of microRNA targets by
762		immunoprecipitation of Argonaute protein complexes. Methods Mol Biol 732, 153-167
763		(2011).
764	49.	Kumar, S. et al. IPS-1 differentially induces TRAIL, BCL2, BIRC3 and PRKCE in type I
765		interferons-dependent and -independent anticancer activity. <i>Cell death & disease</i> 6, e1758
/00 767	50	(2013). Kumar A at al MicroPNA has miP 324 5n Summasses H5N1 Virus Panlication hu
768	50.	Targeting the Viral PB1 and Host CUEDC2 Journal of virology 92 (2018)
769		
770		
//1		
772		
773		
774		
//4		
775		
776		
777		
778		
779		
780		
781		
782		
783		
784		
785		
105		

786

787 Figure Legends

788 Figure 1 - Viral infection induces miRNA-30e that inhibits virus replication by promoting innate 789 immunity: (A) Quantification (as determined by qRT-PCR analysis) of the fold changes in the abundances of 790 miR-30e as indicated, in the serum collected from hepatitis B patients (n=51) compared to healthy controls 791 (n=24). (B-F; I and J) Quantification of the fold changes in the relative abundances of miR-30e, viral transcripts 792 and respective innate immune transcripts (IFNA1, IL6 and IFIT1) at the indicated times after treatment or 793 infection with (B) HBV patient's serum (HBV PS) in HepG2 cells, (C) HepG2 cells were transfected with miR-794 30e (50 nM) or miR-NC1 (50 nM) prior to infection (D) HepG2215 cells, stably expressing HBV replicon 795 HepG2 cells transfected with miR-30e or miR-NC1, (E) NDV (MOI 5) in human PBMCs, (F) hPBMCs 796 transfected with miR-30e or AmiR-30e (50 nM) prior to infection and (I) SeV (MOI 5) in A549 cells (J) A549 797 cells transfected with miR-30e or AmiR-30e prior to infection. (G, H and K) Quantification of viral infection 798 as indicated in (G) HEK293 cells (transfected with miR-30e or AmiR-30e for 24 hours then infected with GFP-799 tagged NDV (NDV-GFP) (MOI 5) for 36 hours and subjected to immunoblot analysis using antibodies specific 800 for GFP (anti-GFP antibody) and γ -tubulin (used as a loading control), (H) HeLa cells transfected with miR-801 30e or infected with NDV-GFP and subsequently subjected to confocal microscopic analysis for NDV particles 802 with anti-GFP antibody (green) and, nuclei were visualized with 4',6-diamidino-2-phenylindole (DAPI; blue) 803 and (K) A549 cells were transfected with miR-30e or AmiR-30e for 24 hours then infected with RFP tagged 804 SeV (MOI 5) for 24 hours and analyzed by flow cytometery. Ctrl represents control untreated sample, D; 805 represents number of days, dpi; represents days post infection and hpi; represents hours post infection. Data are 806 mean +/- SEM of triplicate samples from single experiment and are representative of three (A-C, E, F, I, J) two 807 (D, G, H, K) independent experiments. ***P < 0.001, **P < 0.01 and *P < 0.05 by one-way ANOVA Tukey test, 808 Mann-Whitney test and unpaired t-test.

809 Figure 2 - Transcriptomic analysis shows miR-30e enhances innate immune responses during NDV

infection: (A) Schematic outline of transfection with control (miR-NC1) or miR-30e and NDV infection (MOI
5) in A549 cells at indicated time and subjected to whole transcriptome sequencing and gene analysis (Inf:
infected and Un-inf: uninfected). (B) Quantification of the fold changes in the abundances of miR-30e is
measured by qRT-PCR and normalized by U6 control and NDV viral transcripts in both the replicate samples

814 used for transcriptome sequencing and analysis. (C) Plot showing first two components from principal 815 component analysis of all the 6 samples, distance between samples indicate how different they are from each 816 other in terms of gene expression. (D) Volcano plot represents differential expression of genes between two 817 groups of samples (miR-30e and miR-NC1 overexpression) during NDV infection in A549 cells. For each 818 gene: P-value is plotted against fold change (miR-30e vs miR-NC1). Genes significantly changed (>1.5-fold) 819 are colored in red (upregulated) and blue (downregulated). (E) KEGG pathway analysis of upregulated genes, 820 outer circle indicates top upregulated pathways and the inner circle represents corresponding combined score 821 (a derivative of *P-value* and Z-score). (F) Heat map represents relative abundance of top upregulated interferon 822 stimulated genes across different samples. (G) Quantification (measured by qRT-PCR) of the fold changes in 823 the abundances of type 1 interferon and pro-inflammatory cytokines in the samples, A549 cells transfected with 824 miR-NC1 or miR-30e and infected with NDV as indicated (NDV+NC1) and (NDV+30e), analyzed by RNA-825 Sequencing.

826 Figure 3 - miR-30e targets 3'UTR of negative regulators of innate immune signaling pathways: (A) 827 Screening pipeline used for identification of miR-30e target genes based on the indicated schematic workflow, 828 final hits 09 genes corresponds to negative regulators targeted by miRNA-30e. (B) Reanalysis of previous 829 transcriptome data for identification of negative regulators (targeted by miR-30e) upon miR-30e transfection 830 and NDV infection (MOI 5) compared to miR-NC1 in two replicate samples. (C) HEK293 cells were 831 transfected with 50 ng of pRL-TK and 300ng of 3'UTR WT (of indicated genes) together with 25 nM miR-832 30e or miR-NC1, 24 hours after transfection, the cell was lysed and subjected to luciferase assay. (D) HEK293T 833 cells were transiently transfected with 1.5µg of sh-clones of indicated genes or scrambled control for 48 hours 834 then infected with NDV (MOI 5) for 24 hours and subjected to the quantification of the indicated transcripts or 835 genes and IFNB. (E) Schematic for RNA-immunoprecipitation assay. HEK293 cells were transfected with 836 plasmid encoding Flag-Ago2 in presence of miR-30e (50 nM) and miR-NC1 (50 nM) and then infected with 837 NDV (MOI 5). 24 hours after transfection cells were subjected to RNA immunoprecipitation with ant-Flag 838 antibody and quantified for TRIM38, TANK, ATG5, ATG12, BECN1, SOCS1 and SOCS3 transcripts. (F) A549 839 cells were transfected with miR-30e or miR-NC1 mimic and then infected with NDV (MOI 5) for 36 hours 840 before being subjected to immunoblot analysis with antibodies specific for indicated protein or γ -tubulin (used 841 as a loading control). Data are mean +/- SEM of triplicate samples from single experiment and are

representative of three (C) two (D, E, F) independent experiments. ***P < 0.001, **P < 0.01 and *P < 0.05 by one-way ANOVA Tukey test and unpaired t-test.

844

845 Figure 4 - Human PBMCs stimulated with DAMPs induce miRNA-30e and enhance innate immune 846 responses: PBMCs from three healthy individuals were transfected with their own genomic DNA (ds DNA). 847 (A) Isolated genomic DNA sonicated into small fragments of dsDNA of approximately 100-150 bps each (as 848 shown) and transfected using Lipofectamine 2000. (B-F) Quantification (by qRT-PCR analysis) of the fold 849 changes in the relative abundances of (B) miR-30e, (C-E) respective innate immune transcripts (IFNa, IFNb, 850 IFIT1 and IL6) in all individuals and (F) NDV viral transcript (shown as per schematic workflow). Data are 851 mean +/- SEM of triplicate samples from single experiment and are representative of three independent 852 experiments in three different individuals. ***P<0.001, **P<0.01 and *P<0.05 by one-way ANOVA Tukey 853 test and unpaired t-test, N.D. correspond to not detected.

854

855 Figure 5 - SLE patients and mouse model show enhanced innate immune responses: (A-C) Quantification 856 of the fold changes by qRT-PCR analysis of indicated transcripts $IFN\beta$, IFIT1 and IL6 (in SLE patients) and 857 Ip10, $Inf\alpha$ and Il6 (in SLE mice) and miR-30e at indicated times as represented in the schematic workflow in, 858 (A) PBMCs from SLE diagnosed patients (P) (n=13) and healthy controls (HC) (n=13), (B) Splenocytes from 859 parent (New Zealand White and Black-NZW and NZB) (PM) (n=7) and lupus induced mice (NZW/B -F1 860 progeny) (F1) (n=7) and (C) Splenocytes from PM (n=9) and F1 (n=12) and serum from PM (n=16) and F1 861 (n=21). Data are mean +/- SEM of triplicate samples from single experiment (A) and are representative of two 862 independent experiments (B and C). ***P<0.001, **P<0.01 and *P<0.05 by unpaired t-test and Mann-863 Whitney test.

864

865 Figure 6 - Enhanced miRNA-30e suppresses negative regulators in SLE patients and mouse model: (A-

- 866 B) Schematic representation of the workflow for quantification of the fold changes by qRT-PCR analysis of
- 867 indicated transcripts in (A) PBMCs of SLE patients (*TRIM38, TANK, SOCS1* and *SOCS3*) and (B) Splenocytes
- 868 of SLE mice (Socs1, Socs3, Atg5 and Atg12). Data are mean +/- SEM of triplicate samples from single

869 experiment (A) and are representative of two independent experiments (B). ***P < 0.001, **P < 0.01 and

870 *P < 0.05 by unpaired t-test.

871 Figure 7 - Prognostic and therapeutic potential of miR-30e: (A) Schematic representation of the workflow 872 for quantification of the fold changes by qRT-PCR analysis of miR-30e as indicated, in the serum collected 873 from hepatitis B (HBV) naive patients (n=7) compared to HBV treated (with pegylated IFNs) patients (n=7). 874 (B) Schematic representation of workflow for quantification of the fold changes in the relative abundances of 875 miR-30e and $IFN\beta$ as indicated, in the PBMCs from SLE patients treated with/without AmiR-30e (miR-30e 876 inhibitor). (C) Schematic representation of the ex-vivo experiment workflow for quantification of the fold 877 changes in the relative abundances of *ll6* and $Tnf\alpha$ as indicated, in the splenocytes from SLE mice model (as 878 described previously) treated with AmiR-30e (miR-30e inhibitor) and AmiR-NC1. (D) Schematic 879 representation of the *in-vivo* experiment workflow for quantification of the fold changes of miR-30e, *1l6*, *Ip10*, 880 Socs1 and Socs3 as indicated, in the splenocytes and serum from SLE mice model (as described previously); 881 four mice distributed in each group were subjected to LNA-miR-30e-antagomir (LNA Amir-30e) and LNA-882 negative control antagomir (LNA NC) treatment (explained in materials and methods). Data are mean +/- SEM 883 of triplicate samples from single experiment (A-B and D) and are representative of two independent 884 experiments (C). All the *P*-values/***P<0.001 defined by paired t-test. 885

Figure 8 – Regulation of innate immune responses by miRNA-30e during virus infection and SLE: 886 PAMPs (green) and DAMPs (red) sensed by Pattern recognition receptors (PRRs) to activate cascade of innate 887 immune signaling pathways to induce pro-inflammatory cytokines (yellow), type I and type III interferons 888 (blue) and miRNA-30e (purple). miRNA-30e regulates both PAMPs and DAMPs induced immune responses 889 by targeting the 3'-UTR of negative regulators (dark blue) of innate immune signaling pathways and reducing 890 the expression of these negative regulators (grey). During viral infection, miR-30e is induced which reduces 891 the cellular abundance of negative regulators to enhance innate immune responses and facilitate viral clearance. 892 The endogenous host DNA induces miR-30e and subsequently enhances innate immune responses for the 893 development of autoimmune disease, SLE.

894
895 Supplementary Figure Legends

896 Figure S1 - miRNA-30e induced during viral infection: (A) Schematic representation for the selection and 897 screening pipeline of common miRNAs during viral infections. (B) Table and Venn diagram represent miR-898 30e, miR-27a and miR-181a as commonly upregulated miRNAs during indicated infections. Abundance of 899 miR-30e-5p as log fold change (Log FC) and transcripts per million (TPM) in indicated infections, (C) Log FC 900 (fold change) of the selected miRNAs and efficiency (represented by [*] asterisk) by which they target the 901 negative regulation of innate immune signaling pathways as per indicated GEO dataset (GSE65694) and 902 algorithms. (D) miR-30e is conserved among the wide range of species (green); has, Homo sapiens (Human); 903 mmu, Mus musculus (Mouse); rno, Rattus norvegicus (Norway Rat); mml, Macaca mulatta (Rhesus monkey); 904 gga, Gallus gallus (chicken); chi, Capra hircus (Goat); dre, Danio rerio (Zebrafish) and bta, Bos Taurus (Cattle). 905 Figure S2 - Induction of miRNA-30e in different cells by DNA, RNA virus and viral PAMPs: (A-E) 906 Quantification of the fold changes by qRT-PCR in the abundances of miR-30e (at the indicated times and cells) 907 after indicated viral infections and viral PAMPs treatment (A and B) NDV (MOI 5) in A549 and Raw 264.7 908 cells respectively, (C) HCMV-GFP (MOI 5) in HFF. (D and E) indicated synthetic PAMPs [poly IC (10µg/ml) 909 {stimulation (S) and transfection (T)}; ssRNA (2µg/ml)] in (D) HeLa and (E) Raw 264.7 cells. (F) Schematic 910 representation of workflow for quantification of miR-30e promoter activity and ISRE/IFNB/NFKB promoter 911 activity by luciferase assay as indicated in (G, I-K) HEK293 cells and (H) HeLa cells. Data are mean +/- SEM 912 of triplicate samples from single experiment and are representative of three (A-C, I-M) two (D-G) independent 913 experiments. ***P < 0.001, **P < 0.01 and *P < 0.05 by one-way ANOVA Tukey test and unpaired t-test. 914 Figure S3 - miR-30e inhibits viral replication: (A-F) Quantification of the fold changes in the relative 915 abundances of viral transcripts measured by qRT-PCR after treatment or infection in indicated cells with (A) 916 HepG2215 cells were transfected with/without miR-30e as described previously, (B) HepG2-NTCP cells 917 transfected with miR-30e and miR-NC1 to quantify relative expression (RE) of HBV viral transcripts (HBV 918 RNA and pgRNA), (C) HBV patient serum in HepG2 compared with HepG2215 cells as indicated. (D-F) NDV 919 (MOI 5) in HeLa, A549 and Raw264.7 cells respectively transfected with miR-NC1 or miR-30e prior to 920 infection as described previously. (G) Quantification of NDV viral signals detected by flow cytometery in HeLa

921 cells mock transfected or transfected with miR-30e for 24 hours then subjected to NDV (GFP tagged) infection

922 (MOI 5) for 24 hours. HBV DNA, HBV cccDNA and HBV copy number represent different primers set used

923 to measure HBV viral transcripts. Data are mean +/- SEM of triplicate samples from single experiment and are 924 representative of three (D-F) two (A, B,C and G) independent experiments. ***P<0.001 and **P<0.01 by one-925 way ANOVA Tukey test and unpaired t-test.

926 Figure S4 - miR-30e enhances innate immune responses during viral infection (A-F) Quantification of the 927 fold changes in the relative abundances of indicated genes and cells measured by qRT-PCR after viral infection 928 and transfection with/without miR-30e as described previously. (G-I) A549 and HeLa cells were mock 929 transfected, transfected with miR-30e or miR-NC1 mimics and then infected with NDV (MOI 5), 24 hours after 930 infection, the amounts of IP10 and IL6 protein secreted into the cell culture supernatant were measured by 931 enzyme-linked immunosorbent assay (ELISA). (J-L) Schematic representation of workflow for quantification 932 of ISRE/IFNβ/NFκB promoter activity by luciferase assay as indicated in (I-K) HEK293 cells. Data are mean 933 +/- SEM of triplicate samples from single experiment and are representative of two (A-B) and three (C-L)

934 independent experiments. ***P < 0.001, **P < 0.01 and *P < 0.05 by one-way ANOVA Tukey test.

Figure S5 - miR-30e inhibits DNA virus replication: HFF (Human foreskin fibroblast) cells were cultured in DMEM and transfected with miR-30e or miR-NC1 mimics then infected with HCMV-GFP virus (MOI = 5) and RNA were isolated to quantify the (A) HCMV transcript (Glycoprotein B) by using qRT-PCR and GFP signals (of HCMV-GFP tagged virus) by microscopy, (B) *IL6* transcript in indicated transfected groups and compared with control. Data are mean +/- SEM of triplicate samples from single experiment and are representative of two independent experiments. ****P*<0.001 and ***P*<0.01 by one-way ANOVA Tukey test.

941 Figure S6 - miR-30e enhances innate immune responses upon viral PAMPs stimulation: (A-F) 942 Quantification of indicated transcripts in indicated cells (measured by qRT-pCR) transfected with mir-30e or 943 miR-NC1 for 24 hours and then stimulated with (A-D) poly IC (10µg/ml) and (E-F) ssRNA (2µg/ml) treatment 944 respectively. (G, H) HEK 293T cells transfected with miR-30e (25 nM) or miR-NC1 (25 nM) mimics, pRL-945 TK (50 ng) and indicated luciferase reporters for ISRE/IFNβ (200 ng) then stimulated with poly IC for 24 946 hours. Cells were then lysed to analyze the promoter activity by luciferase assay. Data are mean +/- SEM of 947 triplicate samples from single experiment and are representative of three independent experiments. 948 ****P*<0.001, ***P*<0.01 and **P*<0.05 by one-way ANOVA Tukey test.

949

950

951 Figure S7 – miR-30e differentially expressed genes during NDV infection: (A) Workflow for the analysis 952 of RNA-Sequencing data from raw sequencing reads to expression profiles of differentially expressed genes 953 represented through different plots and heat maps. (B) MA (M=log ratio and A=mean average) plot for 954 differential expression of genes, indicating upregulated (in red) and downregulated (in green) genes. (C) Heat 955 map representing relative abundance of genes involved in top enriched KEGG pathways in figure 2E.

956 Figure S8 – Minimum free energy (mfe) for binding efficiency of miR-30e to negative regulators:

957 Representative of minimum free energy diagrams for negative regulators (TRIM38, TRIM13, TANK, ATG5,

958 *ATG12, BECN1, EPG5, SOCS1* and *SOCS3*) and positive regulators (*JAK1* and *STAT1*) targeted by miR-30e.

959 Figure S9 – Quantification of innate immune negative regulators in presence of miR-30e: (A) HEK293 960 cells were transfected with miR-30e (25nM) mimic and 50 ng of pRL-TK along with 300ng of 3'UTR WT or 961 300ng of 3'UTR MUT for 24 hours, the cell was lysed and subjected to luciferase assay. 3'-UTRs of all 962 selected target genes having binding sites for seed sequence in miR-30e were conserved throughout (shown in 963 red). (B and C) Quantification of the fold changes by qRT-PCR analysis in the relative abundances of miR-30e 964 (at the indicated times), and negative regulator transcripts (TRIM38, TANK, ATG5, ATG12, BECN1, SOCS1 965 and SOCS3) after infection of (B) NDV (MOI = 5) in A549 cells and (C) NDV (MOI = 5) for 24 hours in A549 966 cells remain untransfected, transfected with miR-30e or miR-NC1 as indicated. Data are mean +/- SEM of 967 triplicate samples from single experiment and are representative of two independent experiments. ***P < 0.001, 968 **P < 0.01 and *P < 0.05 by one-way ANOVA Tukey test.

969 Figure S10 – Quantification of innate immune negative regulators in presence of miR-30e: (A-D) 970 Quantification of the fold changes by qRT-PCR analysis in the relative abundances of negative regulator 971 transcripts (TRIM38, TANK, ATG5, ATG12, BECN1, SOCS1 and SOCS3) in (A) HepG2 cells remain 972 untransfecd, transfected with miR-30e, AmiR-30e or miR-NC1 for 48 hours then treated with HBV-PS for 973 HBV infection, (B) HepG2215 cells transfected as described previously, (C) HepG2-NTCP cells transfected 974 with miR-30e and miR-NC1 for 48 hours then infected with HBV infection. (D-E) HeLa cells remain 975 untransfeed, transfected with miR-30e, AmiR-30e or miR-NC1 for 24 hours then (D) infected with NDV (MOI 976 = 5) or (E) treated with poly IC for 24 hours. D; represents number of days, dpi; days post infection and hpi; 977 hours post infection. Data are mean +/- SEM of triplicate samples from single experiment and are representative 978 of two independent experiments. ***P < 0.001, **P < 0.01 and *P < 0.05 by one-way ANOVA Tukey test.

979Figure S11 – DAMPs induce apoptosis and TLR 3/7/9: (A) Human PBMCs remain untreated or treated with980camptothecin, dsDNA separately from two different individuals (as indicated 1 and 2) and subjected to Annexin981PI assay to detect the apoptosis level within the PBMCs using flow cytometery. (B-D) Quantification of the982fold changes by qRT-PCR analysis in the relative abundances of respective transcripts (*TLR3, TLR7* and *TLR9*)983in all individuals. Data is the representative of three independent experiments. Data are mean +/- SEM of984triplicate samples from single experiment and are representative of three independent experiments. ***P<0.001</td>985and **P<0.01 by unpaired t-test.</td>

986 Figure S12 – GEO Datasets re-analyzed to demonstrate the expression level of miR-30e in autoimmune

987 disorder: (A) SLE (GSE79240) - Non-coding RNA profiling by microarray in dendritic cells of SLE patients

988 (P) compared to healthy controls (HC). Data points include fold change of miR-30e among 5 patients. (B) Type

- 989 1 Diabetes Mellitus (GSE55099) Non-coding RNA profiling by microarray in PBMCs of patients (P)
- 990 compared to healthy controls (HC). Data points include fold change of miR-30e among 12 patients compared
- 991 to 10 healthy controls (P-value = 0.0086).
- 992 Figure S13 GEO Dataset-GSE11909 re-analyzed to demonstrate the transcript levels of innate negative

993 regulators in SLE: (A) Expression profiling by microarray to estimate the log fold change of following innate

994 negative regulators during SLE pathogenesis in patients (P) compared to healthy controls (HC); ATG5, ATG12,

- BECN1, TANK, SOCS1, SOCS3, TRIM13 and TRIM38.
- 996 Figure S14 GEO Dataset-GSE104126 re-analyzed to demonstrate the expression level of miR-30e: (A)
- 997 Non-coding RNA profiling by microarray in PBMCs of two types of chronic hepatitis B (CHB) patients
- 998 (HBsAg loss and non-HBsAg loss) after treatment with pegylated interferon (peg-IFNα2a). Data points include
- 999 fold change of miR-30e among 10 patients.
- 1000
- 1001

1002	Supplementary Tables
1003	Table T1: Demographic data of chronic hepatitis B (CHB) cohort and controls
1004	Table T2: Differentially expressed genes by RNA sequencing analysis
1005	Table T3: In-silico analysis of miR-30e targets using indicated algorithms
1006	Table T4: CLIP database analysis for miR-30e targets
1007	Table T5: SLE patients details used in the study
1008	Table T6: Demographic data of chronic hepatitis B (CHB) patients after Peg-interferon treatment
1009	Table T7: List of primers used in the study
1010	
1011	
1012	
1013	
1014	
1015	
1016	
1017	
1018	
1019	
1020	
1021	
1022	
1023	
1024	
1025	
1026	

1028	Acknowledgments: We acknowledge Professor Akinori Takaoka for valuable discussions.
1029	We thank Dr. Takaji Wakita for providing the HepG2-NTCP cell lines. We thank Dr.
1030	Nirupma Trehanpati and Dr. Senthil Kumar Venugopal for providing the HepG2 and
1031	HepG2215 cell lines. We thank Dr. Sunil Raghav for providing Sendai-RFP, Professor. Peter
1032	Palese for providing NDV-GFP and Professor. Wade Gibson for providing HCMV-GFP and
1033	HFFs. We thank Professor. T. Tuschl for providing the Ago2-Flag construct through
1034	Addgene and BEI Resources for providing human rIFN β . We are grateful to Indian Institute
1035	of Science Education and Research (IISER) Bhopal for providing the Central
1036	Instrumentation Facility. We also thank all members of the laboratory for helpful
1037	discussions. Finally, we are eternally grateful to all the patients and healthy donors for
1038	proving their blood samples for the study.
1039	
1040	
1041	
1042	
1043	
1044	
1045	
1046	
1047	
1048	
1049	
1050	
1051	
1052	
1053	
1054	
1055	
1056	
1057	

1058 **Funding:** This work was partially supported by IISER Bhopal–IGM Hokkaido University

- 1059 Grant for General Joint Research Program of the Institute for Genetic Medicine, Hokkaido
- 1060 University, Japan and by an Intramural Research Grant of IISER, Bhopal, India, to H.K.
- 1061 Start-up grant, IISER Bhopal to A.C. R.M. is supported by the IISER Bhopal institutional
- 1062 fellowship.

1063 Author contributions: R.M. and H.K. conceptualized the study and designed the 1064 experiments; R.M. performed the experiments; S.B. and D.K. performed the mutation 1065 experiments; R.M., A.K. and H.K. analyzed the data; R.M., P.G. and H.K. designed the HBV 1066 experiments; P.G. provided the HBV patients samples; R.M., K.N. and P.G. performed the 1067 HBV experiments; R.M., A.A., P.T. and H.K. designed the SLE experiments; A.A. provided 1068 the SLE patients samples and executed SLE patient samples experiments; R.M. and A.K. 1069 performed the SLE in-vitro experiments; B.S.R., R.M. and P.T. performed the SLE mice 1070 related experiments; A.C. helped in procuring critical reagents; R.M. and H.K. wrote the 1071 manuscript; and H.K. supervised the entire project. 1072 1073 1074 Conflict of interests: The authors declare no conflict of interests. 1075 1076 1077 Data and materials availability: The NGS (RNA-Sequencing) data for expression profiling 1078 reported in this paper have been deposited in the GenBank database (accession no. 1079 GSE130005).

● NZW-B (Parent Mice=PM) ■ NZW/B-F1 (Lupus Induced Mice=F1) NZW-B (Parent Mice=PM)
NZW/B-F1 (Lupus Induced Mice=F1)

(negative regulation of innate immune responses)

S.No.	Viral Infection	Model or Cell line	Upregulated miRs	Reference			H5N1 51	
1.	H5N1	Mice	51	(31)	Common microRNAs	11	3	7
2.	EBV	Patients (IM)	84	(32)	miR-30e-5p	EBV 84	13	NDV 209
3.	NDV	HEK-293	209	(7)	miR-27a-3p			200

С

miRNA	Log FC during NDV Infection GSE65694	Significantly Target Negative Regulation Of Innate Immune Responses (miRanda, DIANA, TargetScan, miRDB, RNA hybrid)		
miR-30e-5p	1.69	**** (majority of targets with high binding efficiency towards miRNAs)		
miR-27a-3p	1.54	*		
miR-181a/2-3p	1.5	*		
		Common		

D

5		3′
hsa-miR-30e-5p	UGUAAACAUCCU	U
mmu-miR-30e-5p	UGUAAACAUCCU	J
rno-miR-30e-5p	UGUAAACAUCCU	J
mml-miR-30e-5p	UGUAAACAUCCU	J
gga-miR-30e-5p	UGUAAACAUCCU	U
chi-miR-30e-5p	UGUAAACAUCCU	U
dre-miR-30e-5p	UGUAAACAUCCU	U
bta-miR-30e-5p	UGUAAACAUCCU	U

microRNA

miR-30e-5p

Figure. S3

D

Е

F

Figure. S4

+ + + -- +

+

В

Top genes involved in KEGG Pathway Enrichment

2.01 3.02

mfe: -19.8 kcal/mol

D

mRNA (fold)/18S

Figure. S14

А

non-HBsAg loss

	Therapy naive CHB	Control (n=24)	p-value
	(n=51)		
Median age (range)	48(19-68)	31(23-55)	
Male/Female	36/15	10/14	
AST	37(18-166)	24(16-42)	
(reference range: 10 - 40 U/L)			
ALT	36(15-130)	23.5(12-48)	
(reference range:7-56U/L)			
HBsAg	Positive	Negative	
Anti-HBclgM	Negative		
HbeAg	16 positive		
HBV DNA Load log10	5.03(1.36-9.2)		
(IU/mL)			
hsa-miR-30e-5p	18.2(0.63-269.12)	1.01(0.712-1.92)	0.0023***
(fold change/U6)			

Data expressed as median (range); CHB (Chronic Hepatitis B); AST (aspartate transaminase); ALT (alanine transaminase); HBsAg (Hepatitis B surface Antigen); Anti-HBclgM (IgM antibody to hepatitis B core antigen); HBeAg (Hepatitis B e-Antigen); hsa-miR-30e-5p (Human Micro(mi)-RNA-30e).

NBPF19 CYP4F11 DIABLO TWF1 NT5E HDAC5 AXIN2 UPK1B ALPL HOXB8 SLC38A6 RARS2 PRR5L AC027698.1 LINC00707 PRRG1 OR2B6 CD99 **SEMA3E** ST3GAL5 SNX29 STC2 CD9 SPOCK3 DLEU1 TBPL1 PADI3 HOXB8 PTPRH PTGFRN AC130456.3 STEAP1 LNPK COPZ2 AC092608.1 MEX3B GOLGA7B AC084871.1 C9orf72 RAB32 GM2A AP4B1 NT5E ZDHHC8P1 GALNT9 **TMEM158** AC106820.5 F8 UPK1B P4HA2 BORCS7-ASMT FOXD3 AC093677.2 FAM110B SLC5A4-AS1 MIR210HG FBXO48 AVEN GNG10 C12orf66 TSEN15 SLC19A3 CREG1 TMEM87B WNT7B ZDHHC20 TCP11L2 ACSL1 MORN4 TMED10 TM6SF2 NEIL2 CLEC2D AC243964.2 TRAPPC2 AP4B1-AS1 TSEN15 VPS26B STK39 EVA1A LRRC27 TWF1P1 CPT1C CDK5R2 AC016042.1 ST3GAL5 AC072022.1 B4GALT5 CORO2A PDIK1L RTN4R ACVRL1 PADI2 AC008537.2 PORCN NEIL2 IDH1 AC005606.2 WISP2 CRTAC1 AC005726.4 SLC6A6 RNA5SP39 ТМСО3 AL390879.1 FAM81A GALNT7 LPXN ZFP90 ABHD6 CREG1 SMIM20 JAK3 SMPDL3A PPP1R18 APLP1 GFOD1 NEU1 AC021733.1 KCNC3 MAP3K7CL RTN4R HMGB2 SFXN3 **TMEM156** ABHD14B AL445483.1 NAGPA PAX6 HERC2P4 DHRS2 MAP1LC3B BCHE ACHE AC027097.1 SEL1L3 ATP6V0E2-AS1 TTC21A AC138466.4 UPRT STAG1 AL136084.2 ATP6V1B2 CFDP1 PCBD2 AC099489.1 DUSP28 EXOC4 RNU6-527P ARID5B FADS2 CAMK2N1 EFCAB13 SNAI3-AS1 ADAT1 AC010655.4 CKAP4 KLHL20 SCARA5 **CD70** STX3 KIAA2012 GATA2 FUCA1 ATP8B1 AC011120.1 DESI2 TFAP4 IDH1 CTHRC1 MALL VIM S100A2 FRRS1 AL049780.2 SEMA3F PPIL3 BX088651.4 UGT2B26P AC008676.3 FOXD1 B4GALT4-AS1 PSMD10 TNFSF13B SH3PXD2A FO393400.1 LNPK RARG RUNX2 ENO2 REEP2 NIPAL4 AC093388.1 PPFIA4 GNAI2 SAR1AP2 FTH1P8 B3GNT5 C17orf75 ABCA7 PIP4K2A ARID5B TFPI ASTE1 MALL PHOSPHO1 RNU6-1333P ADAM19 VAV3 RF00019 LPIN1 ACKR3 SEC23A-AS1 AC007790.1 TIMP2 VWA8 MYO15B SFRP5 LMBR1L TWF1 NPC1 CCNF METTL2B FOXD1-AS1 AC097467.3 NOV **ZNF34** СТН UAP1L1 C11orf45 **B3GNT5** CD70 METTL8 **CCDC184** FBXO32 TRAF3IP2-AS1 SPP1 MINPP1 TTLL12 AC007319.1 LRRK2 ALDOC AC116634.1 B3GALT4 MPHOSPH6 BNIP3L STX7 UBE2V2 NBPF19 AC132872.1 CAPS2 SLC20A1 CEACAM6 RAB32 AL121929.2 PPP1R18 PIGC C3orf18 SAP30 FUCA1 P4HA2-AS1 PTGES RNA5SP118 UAP1L1 NIPAL2 ACACA CAPN5 GSTM4 AC243967.2 PIK3IP1-AS1 GALNT1 ABCG2 ZNF77 GNAI2 NTNG2 IGFL4 DSG2 ITPK1-AS1 RNA5SP55 E2F7 WNT7B MID2 TRIB3 CRCP ABCG2 PRDM13 SEC22C RN7SL798P LYN CNTNAP3C SEC23A CDKN2D **GNPDA1** STK39 AC106801.1 LSS TNFSF12 GGT8P AC092570.1 AC099489.1 RASGEF1A ABCA5 ABCA17P ARPC5 GM2A AP3S1 PADI2 ENDOD1 TMEM205 AC002996.1 ALG1 PQLC3 MMP16 TWF1P1 RARG TTLL7 ENO2 AC100788.1 BEGAIN ANKRD29 AC107373.2 RGS11 MMP23A TMEM59L DLK2 RMC1 DGKA EIF4EP1 MLIP TMEM59L HSD17B7 HILPDA BAIAP2-DT RRAD **TMEM156** AL357673.1 THCAT158 SLC35C1 CAPN5 TBC1D2 TRIB3 AP2A1 PTPN13 ANXA10 CD99 AC069113 2 VGF DNAJC25 KI K10 FBXO45 SPP1 RAB7A SETDB2 PIP4K2A SLC35C1 TEX2 LCLAT1 IRAK4 DBF4 MRPL46 NEFL ITPK1 RTN2 CPLANE2 GSDME ADAM12 CAMKK1 CA12 SFRP5 SCML1 AMPD3 F12 ATP8B2 STX4 SLC35D1 MTDH SYNGR3 AC098582.1 AL360081.1 SLC20A1 LRRC75B ATP8B2 RAD23B DPY19L1

RRAD

GDPD5

SPATC1L

PPP2R5B

MINCR

AP3S1

VIM-AS1

GNPDA1

AC007406.4

RN7SL462P

SDAD1P1

B4GALNT4

CAMKK1

TMEM158

ENDOD1

SOGA1

RAD23B

TMEM231

RHEBL1

CYFIP2

ATP6V1B2

SOGA1

HYAL3

PDP2

Down Regulated genes

Table 2

CLIP2	UBAC1	PLPPR2	HK1	SPINT1	NINJ2	AP000487.1	MST1L
ELF3	WDR54	LDHAP4	DHCR7	STK31	PAFAH1B3	ATRNL1	NRG1
JCAD	NEU1	ACVR1	RAP2B	STXBP1	PTGR1	ATRNL1	PARD6G-AS1
FAM162A	AC027682.5	AC010531.3	JMJD1C	TRIM69	SAP30L-AS1	C3orf20	PRKCH
CNTN1	UPRT	SERINC3	AC020907.6	TRPV3	SPAG4	CRISPLD2	PROSER3
SLC6A15	TM4SF1	ARPC5	AOC2	ENPEP	AK3	DICER1-AS1	PRRT2
GABRA5	RF00019	ITGB3BP	CERKL	GPR135	CC2D1B	GPLD1	RAB30-AS1
DPY19L1	AL163636.1	PFKFB4	MYH7B	MSC-AS1	FAM95C	GRASP	RAB40A
GPI	PGM1	NSMAF	FAM129A	PRKAR2B	LINC00539	LINC01091	RAD51B
SLC8B1	MARK2P8	VAMP3	PLA2R1	RRN3P2	MAP7D2	MPRIP	RBM4
HK2	HAGH	AL031714.1	ARFGEF3	ZNF574	SLC9B2	SLIT3	RN7SL644P
GLI2	AC079203.2	LAMA3	IGDCC4	ARHGEF26	ZFHX3	STIM1	SORCS2
PHOSPHO1	TLCD2	AC005253.1	RAB30-AS1	AC131097.3	AC006486.1	TBX19	SPDYE18
STXBP5-AS1	RPA2	INSIG2	AC058822.1	ACBD5	AC068234.1	TPCN2	STXBP5-AS1
FUZ	TTLL12	KCNAB2	PTPRCAP	ENSA	AC133552.2	ZBED5	TLN2
ESCO1	CNTN1	OLFML2A	RAD51B	GPR135	AC242426.2	ZNF511-PRAP1	ТХК
							URGCP-
NCAPH	MYDGF	AC090541.1	MCOLN3	LINC02585	ALS2CL	ZNF708	MRPS24
YWHAZ	FAM102A	CDCA2	STXBP1	MAPK6-DT	ARHGEF6	ZNF800	ZBTB7C
SNX30	GJA1	TM4SF1-AS1	IFNA1	PDE11A	C17orf75	AC007000.3	ZFPM2-AS1
BMP6	OGFRL1	AC010260.1	ERMP1	PHKG1	C1QTNF6	AC007318.2	ARHGAP23P1
DSG2-AS1	CAT	IRF2BP2	SERPINE3	ZAN	DCHS1	AC007785.1	MIR100HG
VAMP3	CDCA2	AL160408.2	TMC5	RNH1	FAM86HP	AC008663.2	SLC16A8
DLG4	TMEM170A	AC027319.1	HIVEP2	VPS25	INSL3	AC011481.1	SLC5A11
CSTB	TMEM106B	GLYCTK-AS1	VILL	CDH23	KATNBL1	AC015687.1	SNX24
B4GALT5	HMOX1	SPOCK1	DLEU2	RAB3B	KLHL30	AC040174.1	AC003002.1
ELF3	AL354740.1	CARS-AS1	PLEKHM3	SPRED3	KPNA7	ADAMTS6	ACAD9
AP4E1	SPAST	FTH1P7	GREB1L	SPTBN4	MED12	ANKRD24	ADAMTS14
SYT5	LIMA1	AL445488.1	POLN	AC022893.1	MIATNB	APIP	AL683807.2
PTGES	MBNL1	CCDC97	ZNF678	AC139149.1	MUC6	ARMH3	BAIAP3
STXBP1	CBX2	CBFB	CEMIP	ANKRD34A	PELI2	ATF3	C2
TRAPPC9	GSKIP	KNSTRN	AC026464.1	CATSPER3	PRCC	BACH1	CCDC88B
HK1	FER1L4	SUCLG2-AS1	ERV3-1	LGI3	SGSM1	BACH1-IT1	CD55
LINC00472	UCP2	HMOX1	ISM2	RCOR2	STARD7-AS1	CAPN12	CDH16
KDELC2	STEAP1	ZNRF1	ITFG2	TTN	STXBP1	CTR9	CMPK2
GJA1	KXD1	PLBD2	TET1	TANK	TRIOBP	CYP2F1	DLEU1
AMZ2	WDR82	KRIT1	MORC4	AC138150.1	ZDHHC8P1	DNHD1	DYRK4
SLC6A15	TLE1	GNA13	RNF187	LRRFIP2	ZNF346	DYNLRB2	EIF1B-AS1
AC113386 1	TRAF3IP2	DI GAP5	SNAP25-AS1	APOBEC3A	ZNF398	FFCAB13	FXOG
NDFI 1	Al 845552 2	SEBINC5	FFCAB13	AC073107 1	ZNE503	FIK4	FRMD8
YWHAZ	AC037487 2	KI F13	SPG7	AC244230 2	AC009690 1	FRMPD2B	FRMPD2B
AGEG2	CBEB	NPTXB	TRIM13		CACNA1A	GBEB1I	GATD1
STXBP5	KCNAB2	AP001469 1	AC087482 1	KREMEN2	DUBB	HACD4	HS1BP3
PPP3CA	DHRS3	XPB1	AC106869 1		ENSA		
HR	BPA2	RRM2	BOBCS7-ASMT		BAB27A		
TKO						KNDC1	
BAGALTA				AL 032910 2			
ClorfE ^Q					AC127026 1		
					AU13/330.1		
rling	FLPPK2	GAT	SALL4	LHIVIDA	APUUU487.1	WIRLE I / BHG	INALON

NFATC2	ZBTB20-AS5	AC009133.2	DNAJA3	PRB1	ZNF674	DSCAML1	SLC4A3
POLR2J4	AC009065.4	AC009404.1	DNM1P47	PSMB5	ZNF718	EPHX3	SLCO1B3
PTOV1-AS1	AC025048.4	AC009690.1	DOP1A	PUM3	AC011466.1	FGF12	SNHG28
PXDNL	AC104389.4	AC009690.2	DPY19L1P1	PYCR3	AC073569.2	GGA3	TRIM66
RAB3GAP1	AC145285.3	AC021660.3	DPY19L2P2	RAD51B	AC124944.3	GLRA3	ZNF620
RAD51B	ADAMTS14	AC026412.3	DRAM1	RAD9A	AC138150.1	GRTP1	CPLX2
RBM45	ADRA1D	AC068205.2	ENSA	RALGAPA2	AL391684.1	INSL6	RPL39P40
RCOR2	AK9	AC068533.4	EXD3	RBFOX3	BCL2L13	KCNIP2	MFSD2A
RCOR3	AL049629.1	AC079447.1	EXO1	RDH16	CCDC162P	KIF9	LSMEM1
RIF1	APLF	AC079781.5	FAM45A	RETREG1	COA5	KIF9-AS1	AL356489.2
RMI2	ATF3	AC091045.1	FAXDC2	RFX3-AS1	DACT3-AS1	L3MBTL4	GNG13
RPH3A	BMPER	AC099508.2	FAXDC2	RNF224	DDX50P2	LINC02381	HOXB7
SPDYA	CAPN12	AC114956.1	FBXO43	RNF4	EPHA5	LSAMP-AS1	HOXC5
SPESP1	CEMIP	AC245297.1	FSD1L	RPS23P1	FBXO9	MAGI1	DBP
THCAT158	CISD1	ACTG1	FTX	RSPH9	FCF1	MAP3K8	AC012531.2
TSEN2	CLBA1	AL031599.1	GAS2	RSRP1	LGR6	MEG9	AC099489.1
AC007388 1	CB381670 1	AI 117190 1	GIPC3	SCN8A	LINC01534	MIB4500HG	AC007906 2
AC011921 1	FLANE	AL 121820 1	GUCY1B2	SCNN1D	LINC02048	MTHED2I	AC026471 4
AC120114 1	EPHA5	AI 139289 2	H1FX-AS1	SDK2	MAGI1	MZT1P2	CGN
AL121776.1	H2AFJ	AL157882.1	HAGH	SDK2	NNT-AS1 P2BX5-	OTUD3	IQCH-AS1
AL133410.1	HAND2-AS1	AL450992.1	HCG27	SGCE	TAX1BP3	PATL2	NALCN
AL138752.2	HOXB7	AL592078.1	IFRD1	SGK3	PDZD4	PPWD1	SLC9C2
AL355303.1	IL1B	AL603839.3	ITGAD	SLC13A3	SLC6A8	RB1CC1	RF00019
AL512353.2	ITGB3BP	ALS2CL	KIAA1755	SLMAP	TCF12	RBMS3	HELLS
ASB4	KCNIP2	ANKRD36	KIF26A	SNAP25-AS1		BHOXE1-AS1	AL 353692 1
BACE2	LINC01376	ARHGAP22	KNDC1	SPATA17	AC007786.1	RNF20	C3orf20
C1orf54	MAP1A	ARMCX4	I AMA2	SPNS2	AC008267.3	BPS27I	HELLS
COI 17A1	MFD12I	BACH1		SPRY4-AS1	AC009041 1	SERINC5	POL B1B
CB392039 3	MSS51	BCAB3	LEKR1	SUCI G2-AS1	AC055713 1	SI C16A1-AS1	SMOX
CVP4E11	MYO16	BTBD8			AC068707 2	SI C2A1	AC000480 1
CVP4E25P	RAB30	C5orf66			AC078881 1	SI C35E3	FRMPD2B
	SAP301-AS1			TBC1D25	AC078027 1	SPON2	AC013470.2
	SI C3743			TBC1DZ		SREEP1	TSC22D1-AS1
	STVBD1	CCDC150			AL 127145 2		
	TEV52				AL137145.2	TOPU	
		CCDC191			AL 107247.1		
		CCDC7					AC106002.1
		CD55		TPTE2P5	ANKRD20A2TP	ZINF529	RF00003
LINCU1572		CD55	MRPL23	TRIBZ	AP002992.1		50053
MAS14	IPTE2P5	CD55	MRPL37	TRIM23	ATE1-AS1	BECN1	
MEG9	ATG5	CEP162	MSANTD4	TTC28	ATXN3	AP001767.3	TOEVO
NFA15	AIG!2	CES4A	MSANTD4	EPG5	BNC2	ARAP2	TREX2
PIGZ	WDR78	CHMP7	MSC-AS1	UBE2Q2P1	BZW1	CAPS2	ULK4P1
PLK3	Z84485.1	CMSS1	MUC13	UCP3	C2orf48	CBLB	AL355303.1
PTPN2	ZNF767P	CNKSR2	NAA15	WDR66	C9orf43	ELL3	TXNRD3
RAB30-AS1	ABCA12	CRYGS	NMUR1	WDR82	CAB39L	FBN2	
SLC25A41	AC005020.2	CSNK1D	NPSR1-AS1	WDR86-AS1	CACNA1B	GOLGA6L10	
SPACA6P-AS	AC006001.3	DENND3	PALLD	WNT2B	CCDC174	LINC00174	
SUCLG2-AS1	AC007000.3	DENND4A	PAX8-AS1	ZDHHC8P1	CLCN6	MAP3K13	
TLR1	AC007220.1	DGKH	PDE4D	ZNF239	COPS2	RAB27A	
UBE2Q2P1	AC007406.3	DHX15	PDE5A	ZNF483	CYB5B	RABGAP1L	
Z94721.1	AC008397.2	DNAH14	PLCG1-AS1	ZNF596	DLEU2	SGPP2	

			Up-regulated ge	nes			
BRD9	POLR3A	AC027808.1	ZNF699	PKLR	TGS1	ZNRF2P2	CCDC91
TSPAN12	SCUBE2	AC114490.3	ADARB1	PRDM2	TMSB15B-AS1	HRASLS2	CD5L
CCNY	TBX18	AC114947.1	CEL	SCAF11	ZBTB20	TNF	CDHR3
CHMP6	TTC28	ADGRL2	COX10-AS1	SORBS1	ZBTB37	IFNA13	CDYL2
BAG1	WDR41	ANK1	ITGB1-DT	STK11	ZFAND4	AC007240.1	CEP152
EDIL3	ADGRB1	ARF1	LRP2BP	VARS2	ZKSCAN2	AC012651.1	CEP57L1
TTC33	ASH2L	ARNTL2-AS1	PARP10	WDR82	ZNF518A	AC016205.1	CGNL1
ATAD5	LINC00982	ATP2A1	PDZD4	ZNF391	ZNF800	AC027288.1	COBL
ULK4	LINC01232	CARD8	PHKG1	ZNF586	ZNF850	AC044860.1	CROCC
WDR60	RNU6-1310P	CC2D1B	TAB2	ZNF883	ZNF43	AC064871.1	DLEC1
BRINP1	SDK1	CCNC	TFPI	ZSWIM7	BNIP3P27	AC068533.3	DLEU2
SPON1	AC078927.1	CEMIP	AL365273.2	ABHD18	AC124319.2	AC091551.1	DNAH1
RAB30	AC110769.2	DPY19L2P2	AL512428.1	ABHD5	KBTBD11-OT1	AC098864.1	DUBR
AP000808.1	ANKRD44	ENO4	AP000808.1	AC007388.1	SORCS2	AC106795.3	EML5
PDE6G	C5orf66	FAM166A	C12orf60	AC011726.1	ZNHIT6	AC116609.2	ENSA
AC091551.1	FGF7P3	FLRT2	CASC2	AC013652.1	AC021180.1	AC132153.1	ENTPD1
AC245748.2	GTF2IP12	GPATCH2L	CCR7	AC114781.2	AC053527.1	ADAMTS1	EVI5
PKD1L2	LINC01237	GUCY2EP	EFCAB13	AIPL1	AC073254.1	ADAMTS4	EXOSC1
PRR5-ARHGAP8	3 MXD1	IGDCC4	EXOC3L1	AL590560.1	AC093734.1	ADAMTS7	FAM173B
RANBP17	PCAT1	KCNIP2	GLI3	AL592295.3	AC233280.2	AGBL5	FCN3
VOPP1	STX18-AS1	LINC01322	LARP1B	AP000640.2	AL035413.1	AKR1B1	FGF19
ZNF248	TBC1D7	LMBRD2	MMP20	BASP1	IRF2	AKR1C4	FMNL3
AC012441.1	YTHDF3	LRIG1	PABPC1	BCLAF3	IFNL1	AL023653.1	GHRLOS
GNAL	ZBTB20	MAJIN	SRMS	C1QTNF6	AL592429.2	AL121820.1	GREB1L
HERC2P5	AC007000.3	MEIS1	TMTC1	CDH4	AL592431.1	AL122010.1	GRM4
LINC01004	AC013714.1	MIR100HG	TNXB	CR392039.3	ARHGEF4	AL136038.4	GZF1
SLCO5A1	AL117336.3	MYLK2	TPRG1	SEC16B	C1orf35	AL136164.2	HCG27
BACH1	AI 442647 1	NFIB	WDB66	DBNI	C2orf48	AI 359915 2	HIST1H3J
AC245748.1	AP003900.1	NREP	SECTM1	GCKR	CAPS2	IFNA1	HMCN1
AP001462 1	FAM155A	POLK	IFIH1	HAGH	CCDC162P	IFIT1	HOXD10
CCB7	IFT22	PSMF1	P2BY6	HDAC9	CHMP6	LY6F	HPRT1
LINC00470	PKP2	PTDSS2	116	II 31BA	CHRM3		HSF2BP
ZNE549	BABIE	RBFOX3	IBF3	KI F3-AS1	CLDN10	ALG1L6P	ICA1I
AC083837 2	SEMA3D	SDCBP2	AP002373 1	LCA5	CYP2U1	ANKRD26	ICAM5
Al 136164 2	TMFM266	SEC31B	CCDC32	L RP2	FAM189A1	ANKRD36	INTS6-AS1
CACNA1D	TTC39C	SI C22A11		LUCAT1	GHITM	ANKRD55	ISI B
MIR137HG	ZNF883	SI C35F3	CLEC4A	MEEV	HS6ST2	ANO4	ITGAD
BBM43	AC026785 3	SI CO4C1	FOMES	NPRI 3	INTS6-AS1	AP4S1	ITGB3
SLC2A1	AC005943.1	SPRY3	FAM57A	NSL1	KCNT2	ATP6AP1L	KANTR
BAB3B	MGAT3	STARD9	ENDC5	PBKG1	LINC00824	ATXN3	KCNV2
ABCB7	NOSIP	TENM4	GIPC2	RGMA	LINC01359	BACH1	KIAA1109
AC097634 4	TRIM36	TEX52	GPI D1	RNF4	LINC02202	BEST3	KIF9
AC104447 1	TRIM5	TTYH1	GUCY1B2	ROPN1I	PSMB2	C17orf75	KBBOX4
CCDC153	AP001783 1	UNC5D	HBAT92	SDB16C5	BNF224	C1OTNE3	I HX4
CYP4F26P	HOXB-AS4	UNC79	KCNH1	SGK3	SI C4A2	CARD8	LINC00511
DPF2	SDCBP2-AS1	IFNA8	KDM4D	SMUG1	SNHG14	CARD9	LINC00910
FI FN2	SNHG14	IBF1	KRTAP5-AS1	SNX24	SNX8	CARD9	
ENPEP	LINC00641	ZFPM2-AS1	LRRC69	SPECC1P1	TEX19	CATSPER3	LRBC32
 ING5	AC006001.3	ZNF131	MIR29B2CHG	SPEE2	TRDMT1	CCDC181	L BBC56
KLF15	AC009061 2	ZNF565	PKD1L2	TBX18	WNK2	CCDC91	LTC4S

LY96	SMIM8	AC090539.1	INTS6-AS1	ZNF704	C1GALT1C1L	ANKRD1	PLSCR4
MAP1A	SRMS	AC108062.1	JMJD6	ZNF706	DAAM1	CCDC28B	GYG2
MAPK10	SRP14-AS1	AC112722.1	KIAA0825	ZNF718	GABBR1	DIO2	UBB
MCMBP	STARD9	AC136475.5	KIF1C	AC090061.1	ZNRF2P2	RNU6-8	HMGA2
MED12L	STK3	ADAMTS20	KLF13	AC244230.2	NCALD	IRF8	VANGL2
MEP1B	STK33	AF121898.1	KRBA1	BTN2A3P	SEMA7A	ADCY1	TNFSF15
MFSD2B	SUCLA2	AFG3L1P	LINC00240	CYP4F26P	EVI5L	LINC02081	E2F2
MIR137HG	TCF12	AL109936.6	LINC00858	DDC	LINC00630	SNRPFP4	DHRS11
MIR222HG	TET1	AL135937.1	LINC02381	GPR78	LARP1B	SYNGR4	CXCL10
MIR34AHG	TFCP2L1	AP000721.1	LPAL2	INSL6	PCAT19	SNCG	IGFBPL1
MIS18A-AS1	TMEM164	AP003049.2	MAP3K15	KNDC1	SERPINA3	FAM171A2	AC005544.1
MLANA	TMEM266	ARHGAP22	MGC32805	LINC01004	OR2I1P	MMS22L	AQP3
MRAP	TPTE2P5	ARR3	MIRLET7BHG	SLC27A4	RN7SL5P	SDS	MYLK-AS1
MRNIP	TRIOBP	ASPDH	MTBP	FTLP2	RPL7AP6	CYR61	CHSY3
MROH2A	TRIOBP	ATF6B	MYO15B	VIM	HBQ1	TMEM150C	ZNF138
MYO1F	TSG101	ATL1	NALCN	AC026785.3	ATAT1	DTX4	APOH
NOL6	TTC28	ATRNL1	NEMP1	DNM1P35	FABP6	PDGFB	C5
NPC1L1	TTC36	AZU1	NRG1	GGA2	AC074138.1	NAT8	ZNF280D
OSBPL10	UBE2F-SCLY	BMP7	NRG1	BANK1	AC110285.1	AUNIP	SPINK4
PCAT1	USP6	C3orf38	PELI2	ATL1	LINC01322	NAT8	ZNF92
PCBD2	VAV1	CCNT2-AS1	PPA1 PBB5-	STX18-AS1	ZNF658B	AMBP	F2RL2
PDE5A	VOPP1	CD55	ARHGAP8 PBB5-	AC084262.2	PLIN1	HEATR5B	ADCY9
PELI2	WDR88	CFAP52	ARHGAP8	ATL1	C2orf70	OLFM2	C3orf52
PIGQ	WSB1	CHAF1B	PRSS36	GGA2	AC068533.3	AC090673.1	NKX3-2
PIK3C2A	ZBTB20	CLDN14	PSMD6-AS2	AL157871.3	NINJ2	CDC25A	IRF8
PLOD2	ZC3H12D	COLEC11	PTPRN2	TRIM66	TFF1	CYP26B1	IFNB1
PMFBP1	ZFP37	COX7A2L	RBM26-AS1	PDE6G	OTULINL	C2CD2	CYP1B1
PPCS	ZNF131	CYP27C1	RIPOR3	BANK1	TNFRSF1B	IL12A	ZDHHC23
PPFIA4	ZNF3	DNAH14	RIPOR3	MYO1F	TSPAN2	CLDN2	GATA3
PPM1L	ZNF397	DPY19L2P2	SETD7	EXOC8	TFF1	ICK	BIN1
PPP1CA	ZNF718	DRG1	SETD7	PDGFRA	PARP8	ANKRD46	TESC
PPP2CB	ZNRF2P2	ELMO2	SNHG5	MYO1F	AL353743.1	DMRTA2	WTIP
PREP	AC007128.1	ENSA	SPACA6P-AS	DPYSL4	INTU	RPL7AP10	RTKN2
PSMA4	CCDC136	ENTPD8	STAG3L4	ALMS1P1	SYNGR4	TNK2	ERFE
RAB30	MED19	FAM155A	SYCP2L	SDHAF2	AC055764.1	FAM222A-AS1	NACA
RAPGEF4	PHYHIP	FAM21EP	TBC1D8	DGCR9	LINC01273	CLDN2	AC007608.1
RBM4	WDR18	FAM83E	TBL1X	ALDH1L1-AS1	OLFM2	F2	TESC
RGS20	AC004865.2	FGFR3	TIA1	DOCK7	IL11	MTTP	KRT80
RUFY4	AC009301.1	FKRP	TLR1	U2AF1L5	ISM1	REL	HYAL4
RUNDC3A	AC010754.1	FLVCR1-DT	TMEM139	EIF3CL	LTB	LINC01836	SLC35G1
SAP30L-AS1	AC012651.1	GNAL	TMEM52	U2AF1L5	NEK10	GYG2	PKD1L2
SCGB2B2	CXCL10	GPATCH2L	TRABD2B	AC138894.3	PPIAP31	ZNF273	FAM222A
SELENOS	RSAD2	GPR20	VPS54	ZNF268	SMOC1	CMTM8	PDCD1LG2
SETBP1	AC025164.1	GREB1	WBP2NL	CU633967.1	CKMT2-AS1	MPP2	LYPD3
SETD7	AC026803.2	GRIN2C	WDR86	SEMA7A	CD74	KRT80	ARID3B
SETD7	AC058822.1	GRTP1	ZNF136	BCL2L14	CD83	NEXN	AL031590.1
SHANK2	AC068305 2	HPS5	ZNF331	ZBED9	RASSF5	CXCL10	CISH
SLC25A53	AC068389.1	IDI2-AS1	ZNF586	CD74	PARD6G	RPL34P18	RIC3
SLC44A5	AC079447 1	IL31RA	ZNF616	C17orf75	AQP1	AKNA	SGK1
SLC49A3	AC080013.1	INTS4P2	ZNF620	CD22	SMOC1	U62317 1	NAV2
-			-				
Table 2. Continued

PLIN1	ASS1	DGCR6L	IL32	RPL30	LBR	EHD1	UHRF1
ASMTL	CTU1	RPL18AP3	PKMYT1	ZFP36	CTSO	ASF1B	ARL5B
PTK7	AL591767.2	PNKD	RND1	KITLG	RPL31P58	NXN	RARRES3
CYR61	HSPA2	SLC19A2	RHOU	ZNF267	MCM6	PROSER2	TTLL4
FUT10	SMCO4	AC106820.2	IRF2BPL	ZNF367	DTL	MGMT	AP003721.1
TNF	ZBP1	KCNJ15	TCIM	ANKRD52	SNX4	RPF2	TSC22D2
RASAL2	ZBTB49	CCDC88C	TMEM160	FOS	AL133481.1	OOEP	SOCS5
NR4A3	PTHLH	PHLDB1	LBH	AC078929.1	SOWAHC	IGF2BP1	PNRC2
AC137936.2	ZC3HAV1L	MSX1	DDX39B	CD274	SIK1B	SERPINB9	MCM6
FAM135A	DANCR	FGFR4	MAMLD1	EXO1	RHOU	AC124784.1	FERMT2
ZBTB47	ZBTB34	RF00100	FGFR4	AC034105.3	DNPH1	CYTH1	CSRNP1
PKDCC	IGFBPL1	COL7A1	DNAH14	AKNA	COL6A2	CXCL11	AREG
CEP135	MIDN	B3GNT7	SHISAL1	ZFP36	FAM3C	RPL21P23	ARHGEF18
DNAJC6	IRF8	FOSB	AMER1	AC007686.3	LSM5	SDF2L1	AL109613.1
EIF4EBP2	GSDMB	AC016739.1	ELOA-AS1	CD274	IRGM	KCTD11	IFITM2
FBLN5	IRF7	FBLN5	AC009630.1	NUAK2	SNHG6	ELF4	TMEM184A
TGFB2-AS1	IFNL4	RNF216P1	HRASLS2	MCRIP1	SPRY4	TRIB1	ISG20
MICB	MAP3K14-AS1	ZBTB47	NR4A3	RPL34	AC068620.2	GINS1	IFIT5
KCNF1	NAPRT	WDR76	TNFRSF12A	KMT5C	CTU1	ZBTB5	MX1
ZNF283	ZNF235	GATA3	RBAK	ETS1	CLDN23	RNU6ATAC9P	
RNF38	ACSL5	VGLL3	ODC1	ZBTB5	SCAMP5	RAB5IF	HCP5
PARP8	CRY2	CX3CL1	MICALL2	MSX1	GNGT1	RPL21	SP140
AQP3	WT1	WEE1	TUSC2	AL163192.1	SERPINB9	LIAS	GTPBP2
KCNF1	ISG15	Z82188.2	LIME1	TMEM109	MED28	TRAPPC6A	GLI3
SDF2L1	C11orf86	RASSF8 IQCJ-SCHIP1-	GNG4	RPAP1	ZNF274	DUSP5	ANKS1B
ZNF428	DUSP1	AS1	AC073130.2	COL1A1	SCARA3	COL5A1	XDH
EIF4EBP2	GEMIN2	VASH2	CLASP2	TCIM	ZNF274	IFNAR2	FAM106A
AC117383.1	GRAMD4	IGFBP3	SFRP1	DUSP16	RPSAP58	RPS29P2	IFIT2
FO393422.1	EFNA1	Z84485.1	AC016739.1	EDRF1-AS1	PROSER2-AS1	IGF2BP2	NEDD4
TNFRSF1B	C3orf52	AMBP	E2F1	GADD45B	AL365226.1	HGSNAT	KBTBD8
P2RY6	AC099560.2	RPL27A	AC091045.1	PRR5	TRAPPC6A	YPEL2	RGS22
ZNF117	ZNF92	SRD5A1	DICER1	TUFT1	ISOC1	TUFT1	TRIM69
SMAD7	SNHG8	KCNC4	RPL39	ATF7IP	SOCS2	CXCL8	FAM3C
ELOVL2-AS1	ODC1	RPS7P10	TGFB2	MCM3	BARD1	CDC6	PAK3
RND1	XKR8	AL355032.1	SCARA3	C21orf91	CCDC12	ATL1	SLC15A3
AL139294.1	PLPPR3	MORF4L1P3	BARX1	CCNE1	AC010618.3	MAFB	

Table T3

Negative Regulator	hsa-miR-30e Binding site	miRanda	DIANA	Target Scan	miRDB
TLR pathway		miRSVR Score	Pred.Score	Context++ Score	Target Score
TRIM 38	one site: 1157	-1.0306		-0.13	
TANK	one site: 238	-1.0396		-0.29(highly conserved)	
TRIM 35 (37)	one site: 281	-0.5210	0.756	-0.07	
RIGI/MDA5 pathway					
ATG5	one site at:511	-1.2012		-0.44(highly conserved)	88
ATG12	two sites: 370, 388	-1.029 & -0.4650	Low score	-0.39	98
TRIM 13 (38)	two sites: 2740,3856	-0.1131 & -0.4454			64
TRIM 38	one site: 1157	-1.0306		-0.13	
SOCS1	one site at:271	-1.2111	1.000		78
SOCS3	one site at:1411	-1.2147	0.998		85
BECN1	one site at:84	-1.3155	0.863		88
Inflammatory pathway/ Virus Reserves or Reactivation pathway					
EPG5 (39)	one site at:24	-0.4449	0.984	-0.25(highly conserved)	
BECN 1	one site at:84	-1.3155	0.863		88
ATG5	one site at:511	-1.2012		-0.44(highly conserved)	88
DNA sensing pathway					
BECN1	one site at:84	-1.3155	0.863		88

TRIM 38

- •Gene ID: ENSG00000112343
- •Gene Name: TRIM38
- •RBP:AGO2
- Sample ID:GSE44404-
- GSM1084065
- Method: HITS-CLIP
- Chromosome:chr6
- Strand :+
- •Binding site start:25974460
- •Binding site end:25974480
- •Binding signal:14
- •P-value:0.00319213
- Genomic position: intron

ATG 12

- •Gene ID: ENSG00000145782
- Gene Name: ATG12
- •RBP:<u>AGO2</u>
- •Sample ID:GSE42701-GSM1048187
- •Method: HITS-CLIP
- Chromosome:chr5
- Strand :-
- •Binding site start:115167220
- •Binding site end:115167240
- Binding signal:18
- •P-value:0.00794433
- Genomic position:3'UTR

SOCS3

- •Gene ID: ENSG00000184557
- •Gene Name: SOCS3
- •RBP:AGO2
- ·Sample ID:GSE42701-
- GSM1048188
- •Method: HITS-CLIP
- Chromosome:chr17
- Strand :-
- •Binding site start:76352920
- •Binding site end:76352940
- •Binding signal:62
- •P-value:4.01318e-06
- Genomic position:3'UTR

TANK

- •Gene ID:<u>ENSG00000136560</u> •Gene Name: TANK •RBP:<u>AGO2</u> •Sample ID:GSE41437-GSM1020022 •Method: PAR-CLIP •Chromosome:chr2 •Strand :+ •Binding site start:162092600 •Binding site end:162092620 •Binding signal:22 •P-value:8.88536e-07 •Genomic position:3'UTR
- •

BECN1

•Gene ID:<u>ENSG00000126581</u> •Gene Name: BECN1 •RBP:<u>AGO2</u> •Sample ID:GSE28865-GSM714644 •Method: PAR-CLIP •Chromosome:chr17 •Strand :-•Binding site start:40962420 •Binding signal:29 •P-value:2.98304e-08 •Genomic position:3'UTR

TRIM13

- •Gene ID: ENSG0000204977
- •Gene Name: TRIM13
- •RBP:AGO2
- •Sample ID:GSE44404-GSM1084044
- Method: HITS-CLIP
- Chromosome:chr13
- Strand :+
- •Binding site start:50591100
- •Binding site end:50591120
- ·Binding signal:9
- •P-value:0.00312875
- •Genomic position: 3'UTR

ATG 5

- •Gene ID:ENSG0000057663
- •Gene Name: ATG5
- •RBP:<u>AGO2</u>
- •Sample ID:GSE44404-GSM1084068
- •Method: HITS-CLIP
- •Chromosome:chr6
- •Strand : -
- •Binding site start:106632780
- •Binding site end:106632800
- •Binding signal:15
- •P-value:0.00079613
- •Genomic position:3'UTR

SOCS1

- •Gene ID:ENSG00000185338
- Gene Name: SOCS1
- •RBP:<u>AGO2</u>
- •Sample ID:GSE28865-GSM714644
- •Method: PAR-CLIP
- Chromosome:chr16
- •Strand :-
- •Binding site start:11348400
- •Binding site end:11348420
- •Binding signal:25
- •P-value:2.5004e-07
- •Genomic position:3'UTR

EPG5

- •Gene ID: ENSG00000152223
- Gene Name: EPG5
- •RBP:AGO2
- •Sample ID:GSE44404-GSM1084047
- •Method: HITS-CLIP
- Chromosome:chr18
- Strand :-
- Binding site start:43432360
- •Binding site end:43432380
- ·Binding signal:9
- •P-value:0.000552801
- Genomic position:3'UTR

S. No.	Age	Gender	Duration of disease (years)	Disease activity (SLEDAI)	Drugs	Serum complement level	Anti- nuclear antibody	Anti- dsDNA (IU)	Major oragn involved
1	23	Female	7	20	Pred, HCQS,	Low	Positive	212.3	Nephritis, gangrene
2	26	Female	5	24	Pred, HCQS	Low	Positive	>300	Nephritis
3	10	Female	0.3	6	Pred, HCQS	Low	Positive	>300	None
4	29	Female	7	2	Pred, HCQs,	Normal	Positive	>300	Interstitial lung disease
5	35	Female	0.5	13	Pred, HCQs, Thyroxin	low	Positive	>300	Nephritis, hemolytic anemia
6	25	Female	3	12	Pred, HCQS,	low	Positive	>300	Nephritis with renal failure
7	32	Female	4	8	Pred, HCQS,	Low	Positive	>300	Nephritis
8	27	Female	0.45	25	Pred, HCQs,	Low	Positive	>300	Nephritis
9	33	Female	8	0	Pred	not available	Positive	<10	Momoneuritis
10	20	Female	1	8	Pred, HCQS,	Low	Positive	88.6	Nephritis
11.	55	Female	7	12	Pred, HCQS,	Low	Positive	>300	Nephritis
12.	40	Female	0.5	6	Pred, MMF, Tac, HCQS	Low	Positive	130.2	Nephritis
13.	22	Female	6	4	none	Low	Positive	<10	None

Pred: Prednisolone, MMF: Mycophenolate mofetil, Tac: Tacrolimus, HCQS: Hydroxychloroquine

	Baseline	Post-treatment	p-value
	(n=7)	(n=7)	
Median age (range)	32(23-60)	-	
Male	7	-	
AST	48.28(24.02-111.31)	41.57(25.28-91.2)	
(reference range: 10 - 40 U/L)			
ALT	27.27(19-47.6)	21.81(16.36-	
(reference range:7-56U/L)		57.27)	
HbeAg	4 positive	4 positive	
HBV DNA Load log10	6.55(3.5-7.56)	3.2(1.28-3.94)	
(IU/mL)			
hsa-miR-30e-5p	1.179(0.83-1.42)	0.199(0.046-1.34)	0.0313*
(fold change/U6)			

Data expressed as median (range); Baseline (before treatment); AST (aspartate transaminase); ALT (alanine transaminase); HBsAg (Hepatitis B surface Antigen); Anti-HBclgM (IgM antibody to hepatitis B core antigen); HBeAg (Hepatitis B e-Antigen); hsa-miR-30e-5p (Human Micro(mi)-RNA-30e).

Re	eal Time PCR primers		5'sequence3'
	5'sequence3'	ATG12_Rv	AGAAGTGGGCAGTAGAGCGA
		BECN1_Fw	TGTCTCTCGCAGATTCATCC
		BECN1_Rv	ACGTTGAGCTGAGTGTCCAG
18S_Fw	CTGCTTTCCTCAACACCACA	SOCS1_Fw	CACATGGTTCCAGGCAAGTA
18S_Rv	ATCCCTGAAAAGTTCCAGCA	SOCS1_Rv	CTACCTGAGCTCCTTCCCCT
HBV RNA_Fw	GCACTTCGCTTCACCTCTGC	SOCS3_Fw	TCCCCCCAGAAGAGAGCCTATTAC
HBV RNA_Rv	CTCAAGGTCGGTCGTTGACA	SOCS3_Rv	TCCGACAGAGATGCTGAACCATCC
HBVcccDNA_Fw	GGACTTGAATGTACGTTGGGG	TANK_Fw	CCTCTTCGTCCTGTAGCATCA
HBVcccDNA_Rv	GGACTTGAATGTACGTTGGG	TANK_Rv	GCATTGTTAGAGCCTGTGGA
HBV DNA_Fw	ATGGAGAACACAACATCAGG	TRIM38_Fw	GAAGACGTATGCCAGGGCTAC
HBV DNA_RV	GAGGCATAGCAGCAGGATG	TRIM38_Rv	GGAGATTCTTAAAGTCAGACCGG
NDV_Fw	GGAGGATGTTGGCAGCATT	m18S_Fw	GTAACCCGTTGAACCCCATT
NDV_Rv	GTCAACATATACACCTCATC	m18S_Rv	CCATCCAATCGGTAGTAGCG
SeV_Fw	CAGAGGAGCACAGTCTCAGTGTTC	matg5_Fw	GACAAAGATGTGCTTCGAGATGTG
SeV_Rv	TCTCTGAGAGTGCTGCTTATCTGTGT	matg5_Rv	GTAGCTCAGATGCTCGCTCAG
HCMV_GLYB_Fw	AAGTACCCCTATCGCGTGTG	matg12_ Fw	TGGCCTCGGAACAGTTGTTTA
HCMV_GLYB_Rv	ATGATGCCCTCATCCAAGTC	matg12 _Rv	GGGCAAAGGACTGATTCACAT
IFIT1_Fw	TCAGGTCAAGGATAGTCTGGAG	msocs1_Fw	TCCGATTACCGGCGCATCACG
IFIT1_Rv	AGGTTGTGTATTCCCACACTGTA	msocs1_Rv	CTCCAGCAGCTCGAAAAGGCA
IFNa_Fw	TGCTTTACTGATGGTCCTGGT	msocs3_Fw	CACAGCAAGTTTCCCGCCGCC
IFNa_Rv	TCATGTCTGTCCATCAGACAG	msocs3_Rv	GTGCACCAGCTTGAGTACACA
IFNb_Fw	AGCTGCAGCAGTTCCAGAAG	Cloning Prin	ners (5'sequence3')
IFNb_Rv	AGTCTCATTCCAGCCAGTGC	ATG5_UTR_Spe_Fw	ATAAACTAGTGACCAGAAACACTTCGCTGC
IFNλ1_Fw	CGCCTTGGAAGAGTCACTCA	ATG5_UTR_MluI_Rv	ATAAACGCGTTTCCTCTAGGGCATTGTAGGC
IFNλ1_Rv	GAAGCCTCAGGTCCCAATTC	ATG5_UTR_SDM_Fw	AATGACTTTGATAATGAACAGTGAG
IL6_Fw	CTCAGCCCTGAGAAAGGAGA	ATG5_UTR_SDM_Rv	TGTAGTTAAGGAAAGATGGGTTTAC
IL6_Rv	CCAGGCAAGTCTCCTCATTG	ATG12_UTR_Spe_Fw	ATAAACTAGTCACGGAAGAGACAGCTCTGA
OAS1_Fw	GAGCTCCAGGGCATACTGAG	ATG12_UTR_HindIII_Rv	ATAAAAGCTTGGCACTCAATATGTGAATGACAG
OAS1_Rv	CCAAGCTCAAGAGCCTCATC	BECN1_UTR_Fw_SpeI	ACTAGTGGGAGGTTTGCCTTAAAGGC
IP10_Fw	TGGCATTCAAGGAGGTACCTCTC	BECN1_UTR_Rv_MluI	ACGCGTGGCAGTTTTCAGACTGCAGC
IP10_Rv	TGATCTCAACACGTGGACAAA	BECN1_UTR_SDM_Fw	AATAAGAAAAAATCCACAAAAGC
TLR-3_Fw	TTGCCTTGTATCTACTTTTGGGG	BECN1_UTR_SDM_Rv	TGTATACCCGAATTTAATTTAAAACATG
TLR-3_Rv	TCAACACTGTTATATTTGTGGGT	SOCS1_UTR_HindIII_Fw	AAGCTTGATGGTAGCACACAACCAGGTG
TLR-7_Fw	TCAAGCCTTAGATTGGCGATGTC	SOCS1_UTR_SalI_Rv	GTCGACTAAAGCCAGACCCTCCC
TLR-7_Rv	CCAGATTGATTTGGGAATTTGTG	SOCS1_UTR_SDM_Fw	TATGCTTTGCACAAACCAGGGG
TLR-9_Fw	AGTCCTCGACCTGGCAGGAA	SOCS1_UTR_SDM_Rv	AGTATAGGAGGTGCGAGTTCAG
TLR-9_Rv	GCGTTGGCGCTAAGGTTGA	SOCS3_UTR_SpeI_Fw	ACTAGTAAGGGCGCAAAGGGCAT
miR_30e_5p_Prom_Fv	CGCGGTACCCTTAACTATACTAAATATGTTGGG	SOCS3_UTR_HindIII_Rv	AAGTTTAGCCTCAAGGGCCTGAG
miR_30e_5p_Prom_Rv	7 CGCAAGCTTGTAGCAAAGACTGCCCAGAAAG	SOCS3_UTR_SDM_Fw	TATGTCACTCTGTCTTTTATAAAGATTC
mIL6_Fw	CCTCTGGTCTTCTGGAGTACC	SOCS3_UTR_SDM_Rv	АСТАСАААСАААСАААААААТАСААААААААС
mIL6_Rv	ACTCCTTCTGTGACTCCAGC	TANK_UTR_Fw_SpeI	ACTAGTGACATTTGAAAACAGACATATCAAG
mIP10_Fw	ACCATGAACCCAAGTGCTG	TANK_UTR_Rv_HindIII	AAGCTTGACACATTTGAAAACAGACATATCAAG
mIP10_Rv	GTGGCAATGATCTCAACACG	TANK_UTR_SDM_Fw	TATGTAATTCAAAATTATGTATGTGACTTAG
mTNFa_Fw	ATGAGCACAGAAAGCATGA	TANK_UTR_SDM_Rv	AGTAATTACAGTTTTATACAGAATTTTTTTG
mTNFa_Rv	AGTAGACAGAAGAGCGTGGT	TRIM38_UTR_Spe_Fw	ACTAGTGATGGGGGGATTCAGTTCTGG
ATG5_Fw	ACTAGTGACCAGAAACACTTCGCTGC	TRIM38_UTR_HindIII_Rv	AAGCTTGTCTGGGTCAGCATACCGAG
ATG5_Rv	ACGCGTTTCCTCTAGGGCATTGTAGGC	TRIM38_UTR_SDM_Fw	TTAAACAAATCTGATATTTGTTGAAGTCCTAC
ATG12_Fw	TTCCAACTTCTTGGTCTGGG	TRIM38_UTR_SDM_Rv	TCAGATTTGTTTAATTTTTTTTTTTCCTTGAGGCAC