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Abstract

Nongenetic phenotypic variation can either speed up or slow down adaptive evolution.
We show that it can speed up evolution in environments in which available carbon and
energy sources change over time. To this end, we use an experimentally validated model
of Escherichia coli growth on two alternative carbon sources, glucose and acetate. On
the superior carbon source (glucose), all cells achieve high growth rates, while on the
inferior carbon source (acetate) only a small fraction of the population manages to
initiate growth. Consequently, populations experience a bottleneck when the
environment changes from the superior to the inferior carbon source. Growth on the
inferior carbon source depends on a circuit under the control of a transcription factor
that is repressed in the presence of the superior carbon source. We show that noise in
the expression of this transcription factor can increase the probability that cells start
growing on the inferior carbon source. In doing so, it can decrease the severity of the
bottleneck and increase mean population fitness whenever this fitness is low. A modest
amount of noise can also enhance the fitness effects of a beneficial allele. It can
accelerate the spreading of such an allele, increase its likelihood of going to fixation, and
reduce its fixation time. Central to the adaptation-enhancing principle we identify is the
ability of noise to mitigate population bottlenecks. Because such bottlenecks are
frequent in fluctuating environments, and because fluctuating environments themselves
are ubiquitous, this principle may apply to a broad range of environments and
organisms.

Author summary

Individuals that grow in the same environment and share the same genes may still differ
in their behaviour and their traits. These differences between individuals arise from
uncertainty inherent in all biological processes, and they are found in all domains of life.
Although this random individual variability is itself short-lived, it still has the potential
to shape evolution in the long term. For example, if a population encounters a harsh
environment, random (nongenetic) differences between individuals can cause some
individuals to cope better with the new environment than others. These rare individuals
may give a population an advantage compared to populations with fewer such
differences between individuals. Furthermore, if some of these rare individuals carry a
beneficial gene variant, the beneficial effect of this gene variant may become amplified,

February 9, 2020 1/24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2020. ; https://doi.org/10.1101/2020.02.13.947275doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.947275
http://creativecommons.org/licenses/by/4.0/


and consequently spread faster in a population with more random variation. Using a
realistic model of cell growth, we show that this mechanism not only works in
unfavourable environments that are stable, but also in environments that switch back
and forth between a favourable and an unfavourable state. Because many natural
environments undergo such periodic changes, and because random differences between
individuals are ubiquitous, the mechanism we have identified may be widespread in
nature.

Introduction 1

Both genetic and non-genetic factors influence the rate of evolutionary adaptation. 2

Genetic factors are well-studied, and include the intensity of natural selection [1], 3

population size [2], standing genetic variation [3], the supply of adaptive mutations [4] 4

and clonal interference [5]. A prominent non-genetic factor that can affect adaptation 5

rates is variation in phenotype, variation that arises between individuals even when they 6

share the same genome and environment [6–9]. 7

Nongenetic phenotypic variation has the potential to either slow down or accelerate 8

the rate of adaptation. On the one hand, nongenetic variation can lower the fitness of a 9

population [10]. It can also cause transient random fitness differences between 10

individuals that obscure genetic fitness differences, which weakens the effect of natural 11

selection and increases that of genetic drift [10, 11]. Consequently, populations with a 12

higher level of nongenetic variation may adapt more slowly, and are more prone to 13

accumulate deleterious mutation [12]. 14

On the other hand, nongenetic variation can increase the rate of adaptation if it 15

increases the mean population fitness. Such an increase can occur when a population 16

has low mean fitness. For example, when a population is far removed from its fitness 17

optimum for a given trait, phenotypic variation in the trait can increase the fitness of a 18

few individuals in the population [13–16]. Although the fitness benefit may be 19

temporary for these rare individuals, it may persist at the population level and thus 20

improve the mean population fitness [15]. This fitness advantage of nongenetic variation 21

disappears when the trait value is close to the fitness optimum, such that random 22

fluctuations in the trait value reduce fitness [16]. This theoretical prediction has been 23

confirmed through competition experiments in yeast, where nongenetic variation 24

becomes deleterious when the mean expression of a metabolic enzyme approaches its 25

fitness optimum [17]. 26

When nongenetic variation does confer such a fitness advantage, it can additionally 27

magnify the impact of a beneficial mutation, causing the mutation to spread faster and 28

thus increase a population’s rate of adaptation [15]. In one pertinent experiment, Bódi 29

et al. [14] transformed yeast cells with variants of a synthetic gene circuit that induced 30

greater or lesser variation in the expression of a gene that confers resistance to the 31

antifungal drug fluconazole. When yeast populations harbouring these circuits were 32

exposed to the drug, the populations with higher variation in the gene’s expression not 33

only survived higher concentrations of the drug, they also evolved drug resistance more 34

rapidly. The reason was that high variation populations derived a greater fitness 35

increase from beneficial mutations than low variation populations. 36

Nongenetic variation can also increase fitness in fluctuating 37

environments [6, 9, 13,18], for example through bet-hedging [19]. Bet-hedging increases 38

the long-term fitness of a population by minimising the population’s fitness variation in 39

two or more environments [6, 13]. Through bet-hedging, organisms either display a 40

single phenotype that performs well in multiple environments, or they display multiple 41

phenotypes, each best suited for one environment, and switch between them [6]. 42

Bet-hedging strategies are widespread in nature, especially among bacteria [9]. 43
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Most work on the role of nongenetic variation in adaptation focuses on unchanging 44

environments. We thus know little about this role in changing environments. One 45

exception is a theoretical study [20] predicting that in periodically fluctuating 46

environments, genotypes underlying increased nongenetic variation can also be more 47

sensitive to mutation, a property that may increase evolvability [21]. Another study [22] 48

found that phenotypic plasticity, which can bring forth nongenetic variation, can protect 49

a population against extinction when the environment suddenly changes or when 50

fluctuates randomly. However, in this study, the increased survival probability of a 51

population with high plasticity did not lead to faster genetic change and evolutionary 52

adaptation in the plastic population. We thus do not know wherher nongenetic 53

variation can amplify the fitness effects of a beneficial mutation in a fluctuating 54

environment, and thus accelerate the mutation’s spread through a population. To 55

answer this question, we modelled how bacteria respond physiologically and eventually 56

adapt evolutionarily to an environment in which the availability of a carbon and energy 57

source changes periodically. 58

Our model focuses on the evolution of the lag time that bacteria need to resume 59

growth after a change in carbon source. It pertains to an environment that switches 60

periodically between two carbon sources. Lag times can be caused by two different 61

mechanisms [23]. The first is that all cells need time to reconfigure their metabolism 62

when the environment changes. In this case, all cells in a population may take about 63

the same amount of time to adjust. The second cause is that only some cells may start 64

to grow once a new carbon source has become available. Multiple experiments report 65

that bacteria [23,24] and yeast [25] split into a growing and a non-growing 66

subpopulation after the environment switches from a superior to an inferior carbon 67

source. If only a few cells initially grow on the new carbon source, population growth 68

appears to stop, and only resumes again once sufficiently many cells are growing [23]. In 69

Escherichia coli, this phenomenon occurs when the environment switches from glucose 70

to acetate. Once the environment switches back to the superior carbon source glucose, 71

all cells resume growth and no lag phase occurs at the population level [23]. Our model 72

predicts that populations with a higher fraction of cells in the growing subpopulation 73

will experience shorter lag times and a competitive advantage. Previous theoretical 74

studies have shown that increased gene expression noise can increase the fraction of 75

growing cells [26], and an empirical study in yeast has demonstrated that shorter lag 76

times can increase fitness in an environment that alternates between two carbon sources 77

(glucose and maltose) [25]. We predict that greater gene expression noise can increase 78

the fitness of a population in fluctuating environments, augment the fitness increase 79

derived from beneficial mutations, and accelerate the rate of evolutionary adaptation to 80

the new environment. 81

Results 82

A stochastic model of carbon source switching shows a bimodal 83

distribution of growth rates on acetate 84

To model a population undergoing regular fluctuations in carbon substrate, with both a 85

growing and a nongrowing subpopulation on one substrate, we drew on a circuit in E. 86

coli that controls the response to a switch in carbon source from glucose to acetate 87

(Fig 1a). This circuit was proposed by Kotte et al. [43], has since been experimentally 88

verified [23,47] and plays a central role in the control of carbon metabolism [55]. 89

In E. coli and many other bacteria, growth on small metabolites such as acetate 90

requires the synthesis of larger molecules such as sugars that can serve as biosynthetic 91

building blocks. Cells respond to a switch in carbon source from glucose to acetate by 92
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Fig 1. Stochastic model of an E. coli circuit that generates a growing and a
nongrowing subpopulation on acetate as well as a single growing
population on glucose. (A) Structure of the circuit. Dotted arrows show regulatory
interactions and solid arrows show the flow of carbon through metabolism. Circles show
the number of carbon atoms in each metabolite. The circuit has two states, a
‘glycolytic’ state with high fructose-1,6-bisphosphate (fbp) and low phosphoenolpyruvate
(pep) concentrations (yellow) and a ‘gluconeogenetic’ state with low fbp and high pep
concentrations (grey). Both pathways eventually lead to the accumulation of biomass
(striped). Carbon metabolism and growth is condensed into four reactions, each of
which is catalysed by a single enzyme whose expression is noisy. Glucose and acetate
incorporation and their conversion into fbp and pep are represented by enzymatic steps
abbreviated as Gi and Ai respectively. Pep is converted to fbp through lower glycolysis
(Lg). Growth proceeds through the conversion of fbp into biomass through anabolism
(An). The transcription factor Cra, whose amount is also stochastic, is repressed by fbp
and activates acetate incorporation (Ai) [23]. Pep allosterically activates An, increasing
the consumption of fbp and consequently lowering its concentration. Low fbp
concentrations keep Cra activity high and stabilize the uptake of acetate. In the
presence of glucose, fbp concentrations are high and Cra is inhibited. (B) Predicted
distribution of growth rates on glucose (yellow) and acetate (grey). When acetate is the
only available carbon source, cells can be in either in the glycolytic or the
gluconeogenetic state and the distribution of growth rates is bimodal. When the sole
available carbon source is glucose, only the glycolytic state is active and the distribution
of growth rates is unimodal. We recorded simulated growth rates in 10 mM glucose
after 720 hours of growth. To simulate the growth rates in acetate, we first equilibrated
the populations for 48 hours in 10 mM glucose and recorded the growth rates after 720
hours in 20 mM acetate. We show a Gaussian kernel density estimation of the two
growth rate distributions. Cra expression noise is η2 = 0.2.

reversing the flow of metabolites through glycolysis, the main pathway for breaking 93

down sugars [42]. The reversed pathway, known as gluconeogenesis, allows for growth 94

on acetate [34]. The circuit that controls the switch between glycolysis and 95

gluconeogenesis relies on the concentration of fructose-1,6-bisphosphate (fbp) as an 96

indicator of the rate of flow through glycolysis [47]. Low fbp concentrations indicate a 97

low rate of flow and by extension a low availability of glucose. Fbp is an inhibitor of the 98

transcription factor Cra [41] (Fig 1a), which promotes the expression of proteins 99

involved in acetate metabolism and gluconeogenesis [34]. Consequently, the lower the 100

glycolytic flux, the more active Cra is, and therefore the greater the chance that a cell 101

will start growing on acetate. Gluconeogenesis replenishes fbp, however, and in the 102

absence of a mechanism of keeping fbp concentrations low, gluconeogenesis would come 103

to a halt even when acetate is available. To prevent such stalling, a feedforward loop 104

involving the metabolic intermediate phosphoenolpyruvate (pep) promotes the removal 105

of fbp while acetate flows into a cell. Specifically, in E. coli, pep is an allosteric 106

activator of fructose bisphosphatase, which removes fbp from lower glycolysis [41] and 107

thus plays an important role to stabilize gluconeogenesis in the presence of acetate [23]. 108

If insufficient pep is produced, fbp concentrations can remain high enough to inhibit 109

Cra, and the cell becomes locked in a state with no growth even if plenty of acetate is 110

available. In contrast to growth on acetate, all cells are capable of growing on glucose, 111

regardless of whether they previously grew on acetate or not. 112

As a result of the circuit’s regulatory dynamics, cells can be in two states on acetate 113

that are distinguished by the concentrations of fbp and pep. One state involves a high 114

fbp and a low pep concentration. Because fbp inhibits Cra, acetate metabolism remains 115

low, and the pep concentration is too low to promote the removal of fbp. Cells in this 116
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state do not grow. The other state involves a high pep concentration and a low fbp 117

concentration, and therefore a high Cra activity that promotes the intake of acetate and 118

its conversion into pep. Cells in this state do grow. Cells switch between states 119

depending upon how active Cra is. Cra activity depends on the number of Cra 120

molecules within a cell, the fbp concentration, and the strength of binding between Cra 121

and fbp. In the presence of glucose, fbp concentrations are high and acetate metabolism 122

is repressed. These two states can arise even in a purely deterministic regulatory circuit 123

that does not involve stochastic fluctuations of molecular concentrations (see S1 124

Appendix section 6), and it is to some extent robust to changes in the values of 125

biochemical parameters (S1 Appendix section 7). We modelled this deterministic circuit 126

with a system of three ordinary differential equations (ODEs) that determine the 127

temporal change in pep and fbp concentration in each cell (Eq 2 and Eq 3 respectively), 128

and the resultant change in cell mass (Eq 1). 129

Because stochastic fluctuations are in practice important for the switching between 130

states, we embedded the deterministic model into a more comprehensive model that 131

includes stochastic protein production (Fig 1a). In this model, we condensed central 132

metabolism into four reactions that link the uptake of acetate or glucose to the 133

production of biomass (Fig 1a). Each reaction is catalysed by a single protein enzyme 134

whose expression is stochastic. These proteins are expressed constitutively except for 135

the protein involved in acetate uptake, whose expression is activated by Cra. Because 136

only few proteins are actively degraded in E. coli [32], we set the rate of active protein 137

degradation to zero, an assumption whose consequences we assess in the supporting 138

information (S1 Appendix section 9). Because the number of proteins in a cell 139

fluctuates randomly, the rate of the reactions catalysed by these proteins will fluctuate 140

as well, and this random variation in reaction rates affects the cell growth rate. Also, 141

fluctuations in the number of Cra molecules affects whether cells occupy the growing or 142

nongrowing state on acetate (see S1 Appendix section 8). Cells start with a fixed 143

amount of biomass, and divide once their mass has doubled. 144

Our model permits us to tune gene expression noise while keeping the mean protein 145

number per cell constant. We quantify expression noise (η2) as the squared coefficient 146

of variance, a definition we adopted from [50] (see Methods for details on the model 147

underlying gene expression noise, and S1 Appendix section 3, for the parameter values 148

underlying each level of noise). Specifically, we investigated four levels of Cra expression 149

noise (η2) which span four orders of magnitude from 10−2 to 101, and which correspond 150

to a standard deviation of 14 to 316 Cra molecules per cell for a mean of 100 Cra 151

molecules per cell. These levels of noise are within the range observed in E. coli except 152

for the lowest (10−2). However, even this low value can be observed in vivo for 153

synthetic combinations of promoters and ribosome binding sites [56,57]. In nature, 154

mutations affect both the mean and the variance of gene expression levels. Uncoupling 155

these two is important to study the effect of gene expression noise on fitness 156

independently from that of mean expression. Also, theory suggests that mean and 157

variance can evolve independently during adaptive evolution [58]. In addition, they can 158

be uncoupled experimentally [17]. 159

In an environment containing glucose as the only carbon source, the model results in 160

a unimodal distribution of growth rates on glucose. In an environment containing only 161

acetate it reveals a bimodal distribution of growth rates (Fig 1b). To assess how often 162

cells switch between the growing and the nongrowing state in acetate, we simulated 1000 163

cells growing on 20 mM acetate for 2100 hours, and followed only one of the offspring 164

cells of each cell division (that is, we followed a single cell lineage). We observed that cell 165

lineages remain in the nongrowing state for about 110 hours (± 210 hours st. dev.), and 166

that they remain in the growing state for about 450 hours (± 500 st. dev.). Thus, once 167

cells are locked in a given growth state on acetate, switching to the other state is rare. 168
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Populations with greater Cra expression noise have shorter lag 169

times after a switch to acetate 170

Because cells with more Cra molecules are more likely to grow in acetate (S1 Appendix 171

section 8), we investigated how Cra expression noise affects lag times after a switch 172

from glucose to acetate. Increased Cra expression noise increases the likelihood that 173

cells arise which host very large numbers of Cra molecules. These cells may have an 174

elevated probability of initiating growth on acetate, and if they do, their descendants 175

may drive population growth. We reasoned that by increasing the proportion of such 176

rare cells, Cra expression noise may decrease a population’s lag time and thus increase 177

the mean population fitness. 178

To find out whether Cra expression noise does increase fitness, we first studied how 179

Cra expression noise influences the lag time after a shift from glucose to acetate. To this 180

end, we simulated the population dynamics of four kinds of populations, which differed 181

in their level of Cra expression noise. These populations grew in a simulated 182

environment through which nutrient medium flowed at a constant rate. The constant 183

flow of medium flushed out cells at random, and the concentration of a carbon source 184

(glucose or acetate) in the growth environment depended on its influx, efflux and uptake 185

by cells. Each population started growing from an initial number of 2000 cells and 186

experienced a single change from glucose to acetate after 48 hours of growth. We 187

observed that populations with high Cra expression noise resume growth earlier and 188

experience less severe bottlenecks in population size after the shift to acetate (Fig 2a). 189

Specifically, the size of the noisiest populations (Fig 2b) decreases to an average of 1500 190

cells (± 80 st. dev.), whereas the size of the quietest populations decreases to an 191

average of 580 cells (± 90 st. dev.). The smallest population sizes differ significantly 192

between populations with different levels of Cra expression noise (pairwise Wilcoxon 193

rank sum test with Holm’s correction, p < 0.001, except for populations with the two 194

lowest levels of noise, which are not significantly different p = 0.064). The quietest 195

populations also take – on average – twice as long as the noisiest populations to 196

rebound and reach carrying capacity (we use the term ‘carrying capacity’ in the sense of 197

equilibrium population size) (Fig 2c). More generally, populations with lower Cra 198

expression noise take significantly longer to rebound and reach carrying capacity in 199

acetate (One-Way ANOVA, F=734.9, degrees of freedom 3 and 196, p < 0.001). In sum, 200

populations with noisier Cra expression experience shorter lag times on average. 201

Fig 2. Cra expression noise improves population recovery after a switch
from glucose to acetate. (A) Population size during two days of growth in glucose
(yellow box) followed by two days in acetate (grey box). Growth occurs in an
environment with constant medium flow that flushes cells out at a continuous rate. The
areas shaded in red (highest Cra expression noise) and black (lowest Cra expression
noise) show the range in population sizes observed at every point in time for 50
replicate simulations. After the switch in carbon source, populations collapse and
recover to carrying capacity in acetate. (B) Smallest population size observed in acetate.
(C) Time required to reach carrying capacity after the switch to acetate. In (B) and (C),
the yellow diamonds show the mean and the yellow lines one standard deviation. Circles
show observations for each of the 50 replicates and are coloured by the level of Cra
expression noise. Grey violin plots are Gaussian kernel estimates of the distribution of
the data.
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Cra expression noise increases fitness 202

Populations with shorter lag times may have a fitness advantage compared to 203

populations with longer lag times, because the former spend more time growing 204

exponentially and thus leave more descendants. To find out whether fitness does 205

increase with shorter lag times, we simulated a competitive fitness assay. For each of 206

our four levels of Cra expression noise, we competed 50 replicate populations against a 207

reference population with an intermediate level of Cra expression noise (η2 = 0.2). We 208

started this in silico competition with both competitors occurring at an initial frequency 209

of 50% and a total of 2000 cells. As a measure of fitness, we quantified the number of 210

descendants after a total of four days of growth and a single shift from glucose to 211

acetate half-way during this time (see Methods). Increasing Cra expression noise indeed 212

improves fitness (Fig 3a), i.e. a one-way ANOVA reveals significant differences in fitness 213

(F=59.8, degrees of freedom 3 and 196, p < 0.001). Only the fitness values between 214

populations with the lowest levels of Cra expresssion noise 0.01 and 0.1 are not 215

significantly different (Tukey’s HSD, p = 0.312). 216

Fig 3. Cra expression noise increases fitness in a fluctuating environment
when a population has low mean fitness. (A) Mean population fitness increases
with Cra expression noise. We estimated fitness values through competition against a
reference population with an intermediate level of Cra expression noise (η2 = 0.2) and
the same Cra-fbp dissociation constant as the reference (0.1 mmol g=1), with 50
replicate simulations for each competition. In each replicate, both populations started
with initially 1000 cells and grew together for four days in an environment with a
constant flow of medium where the carbon source changed from glucose to acetate after
two days. We estimated fitness from the change in the relative frequency of the
non-reference population. Yellow diamonds and lines show the sample mean and one
standard deviation. Circles represent the fitness values observed in each replicate, and
grey violin plots are Gaussian kernel density estimates of the distribution of fitness
values. (B) The fitness benefit derived from looser Cra-fbp binding is greater in
populations with noisier Cra expression when the mean population fitness is low. We
note that lower Cra-fbp dissociation constants correspond to greater binding strength.
In this panel, fitness was determined through competition with a reference population
that had both intermediate Cra expression noise (η2 = 0.2) and Cra-fbp dissociation
constant (0.125 mmol g=1), with 50 replicates for each competition. Circles denote
mean fitness and are slightly offset on the horizontal axis for clarity. Error bars show
one standard deviation. (C) Relaxing Cra-fbp binding increases the expression of the
acetate incorporation enzyme Ai. We simulated cell growth on acetate in an
environment with continuous medium through-flow for 21 days to equilibrate the
population and then recorded the number of proteins per cell. Yellow diamonds and
lines show the sample mean and one standard deviation. The violin plots are a
Gaussian kernel density estimate of the distribution of proteins. The number of cells
sampled for each combination of noise and Cra-fbp dissociation constant are 1637, 1619,
1835, 1719, 2005, 1991, 1981, and 2020.

The fitness benefit of nongenetic variation in a trait often diminishes as populations 217

approach the optimum value for that trait [15–17]. We investigated whether this 218

reduction also occurs in our model. Specifically, we hypothesised that the fitness benefit 219

derived from the presence of cells with exceptionally high Cra activity may become 220

irrelevant as a population’s lag time shortens, which is a proxy for its closeness to a 221

fitness optimum. To test this hypothesis, we repeated the in silico competitions with 222

populations that not only varied in the level of noise in Cra expression, but also in the 223

duration of the lag time, which we modified by changing the strength of binding 224
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between Cra and its inhibitor fbp. Looser binding increases Cra activity and 225

consequently the probability that cells will grow on acetate, thus shortening lag times 226

and increasing fitness. We modulated the Cra-fbp binding strength by changing the 227

Cra-fbp dissociation constant (the higher the dissociation constant, the weaker binding 228

is). We competed each of these populations against a single reference population that 229

has intermediate values for both Cra expression noise and Cra-fbp binding strength 230

(Fig 3b). While noisier populations have a clear fitness advantage when Cra-fbp binding 231

was strong, this advantage disappears as Cra-fbp binding loosens. Cra expression noise 232

does not become detrimental at high fitness, however. Instead, weak Cra-fbp binding 233

causes Cra to have high activity in all cells exposed to acetate, which leads to a reliably 234

high expression of the acetate uptake enzyme throughout the population (Fig 3c). 235

Gene expression noise accelerates the spread of a beneficial 236

allele by modulating the ratio of bottleneck sizes 237

If gene expression noise is to increase the rate of adaptation, it should increase the 238

fitness benefit derived from a beneficial allele, which requires three conditions to be met. 239

First, a beneficial allele should reduce lag times more in populations with greater Cra 240

expression noise. Second, this reduction should lead to a larger fitness advantage of the 241

beneficial allele in populations with larger Cra expression noise. Third, the greater the 242

fitness advantage of the beneficial allele is, the faster it should spread through a 243

population. To find out whether these conditions are met by the circuit we study, we 244

simulated populations in which all cells have the same Cra expression noise, but initially 245

50% of the cells in a population of 2000 cells carry an allele which confers a fitness 246

advantage that is independent of Cra expression noise. We refer to this allele as the 247

beneficial allele and to the other allele as the wild-type allele. In these simulations, the 248

environment changed in carbon source between glucose and acetate every two days, and 249

the simulations continued until one of the two alleles had gone to fixation (Fig 4a). We 250

quantified the fitness of the beneficial allele relative to the wild-type allele from the 251

change in allele frequency after four days and for 50 replicate simulations. We also 252

recorded how much time it took for the beneficial allele to become fixed. In general, we 253

model different alleles as circuit variants that differ in a single parameter, and the 254

specific allele we consider here loosens Cra-fbp binding by increasing the Cra-fbp 255

dissociation constant, thus increasing Cra activity. Indeed, this increased Cra activity 256

shortens lag times (Fig 4b) and thus gives cells a competitive advantage (Fig 4c). 257

When we studied how the fate of the beneficial allele depends on gene expression 258

noise, we first found that it reduces lag times more in populations with higher Cra 259

expression noise. As a proxy for lag time we quantified the smallest population size in 260

acetate (Fig 4a, red circles). As Cra expression noise increases, both competing 261

subpopulations experience less severe bottlenecks after the switch to acetate (Fig 4b). 262

The smallest population size increases more for the subpopulations with the beneficial 263

allele. For example, in the populations with the lowest Cra expression noise, the 264

smallest population sizes differ on average by 12 cells (± 33 cells st. dev.), while in the 265

populations with the highest Cra expression noise, the average difference in population 266

size is 177 cells (± 202 cells st. dev.). Gene expression noise thus magnifies the 267

advantage derived from the beneficial allele. 268

Second, we did observe an increasing fitness advantage of the beneficial allele with 269

greater Cra expression noise, but only up to a point. The average fitness benefit 270

(Fig 4c) is greater in noisier populations up to a Cra expression noise of η2 = 1 271

(ANOVA, F=18.9, degrees of freedom 3 and 196, p < 0.001). For populations with the 272

largest Cra expression noise (η2 = 10), we found a lower fitness gain from the beneficial 273

allele than for populations with the second largest level of noise (Tukey’s HSD test, 274
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Fig 4. The ratio of the smallest number of cells carrying different Cra
alleles in acetate is a strong predictor of the fitness of cells carrying the
beneficial allele. (A) Stackplot of the number of cells carrying either the wild-type or
beneficial allele (dissociation constant 0.05 and 0.07 mmol g=1, in green and blue
respectively) growing in an environment that switches between glucose and acetate
every two days. We show an example simulation in which both subpopulations have a
Cra expression noise of η2 = 10. All simulations start with 2000 cells, where 1000 cells
carry either allele. The two connected red dots show the smallest number of cells
carrying either allele during the first exposure to acetate. (B) Smallest number of cells
for both competing alleles during the first exposure to acetate. (C) Fitness of the
beneficial allele relative to the wild-type allele as estimated from the change in relative
frequency in the four days since the beginning of the simulation. (D) The fitness benefit
of the subpopulation carrying a beneficial Cra allele correlates strongly with the
logarithm of the ratio between its smallest population size in acetate and that of the
subpopulation carrying the wild-type allele (Pearson’s r = 0.95, p < 0.001, the line of
best fit is shown in black with the 95% confidence interval in grey). Circles show the
values observed in 50 replicates. The black square point (arrow) shows the one replicate
for a Cra expression noise of η2 = 0.01 where the beneficial allele was lost from the
population. For (B) and (C), yellow diamonds and lines show the sample mean and one
standard deviation, and every circle is an observation from a replicate observation. All
plots show the result of 50 replicates for each level of Cra expression noise.

p = 0.035 for the pairwise comparison of populations with Cra expression noise 10 and 275

1). This reduction in the relative fitness benefit occurs because the highest level of Cra 276

expression noise also substantially increases the smallest cell count of the subpopulation 277

carrying the wild-type allele (Fig 4b). In contrast, the lower levels of Cra expression 278

noise have only a slight impact on the smallest cell count of subpopulations carrying the 279

wild-type allele, but affect subpopulations carrying the beneficial allele much more 280

(Fig 4b). Consequently, the factor determining the outcome of competition is not the 281

difference but the ratio between the smallest populations sizes of the two 282

subpopulations. This ratio correlates strongly with the fitness benefit derived from the 283

beneficial allele (Pearson’s r = 0.95 with p < 0.001, Fig 4d). In sum, the relative fitness 284

benefit of the beneficial allele increases with Cra expression noise, but only as long as 285

the benefit of noise for the wild-type allele is slight in comparison. 286

Third, we examined whether Cra expression noise, given that it can increase the 287

fitness benefit of a beneficial allele, can also accelerate the spread of the beneficial allele 288

through a population and shorten the time to fixation of the beneficial allele. For this 289

analysis we quantified the change in the frequency of the beneficial allele during the 290

simulation, and recorded the fixation time. As one might expect, the greatest change in 291

allele frequency occurs during periods of acetate exposure (Fig 5a-b). In populations 292

with high Cra expression noise (Fig 5a) the frequency of the beneficial allele increases 293

consistently over time. In contrast, in populations with low Cra expression noise 294

(Fig 5b), the beneficial allele also sometimes decreases in frequency. In one such 295

simulation, the beneficial allele is lost from the population. In general, the greater the 296

fitness benefit of a beneficial allele, the less time it takes for the beneficial allele to go to 297

fixation (Fig 5c). Therefore, the beneficial allele tends to go to fixation the fastest in 298

populations with the second highest level of Cra expression noise (pairwise Wilcoxon 299

rank sum test with Holm’s correction, p = 0.002 for the pairwise comparison of fixation 300

times in populations with Cra expression noise η2 = 1 and 0.1, or else p < 0.001 301

between η2 = 1 and all others). The beneficial allele spreads somewhat slower in 302

populations with the highest Cra expression noise, where the fixation times are not 303

significantly different from those of populations with the lowest two Cra expression 304
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noises (p = 0.357 for the pairwise comparison of η2 = 10 and 0.1, and p = 0.082 for 305

η2 = 10 and 0.01). These differences in fixation time are well explained by the relative 306

fitness of these populations as quantified during the first four days of growth. The 307

greater the difference in fitness between the two alleles, the less time it takes for the 308

fitter allele to go to fixation (Spearman’s ρ = −0.77 with p < 0.001, Fig 5d). 309

Fig 5. A beneficial allele goes to fixation faster in populations with high
Cra expression noise. (A-B) Frequency of a beneficial allele competing with another
allele in an environment that switches between glucose (yellow) and acetate (grey) every
two days. The Cra dissociation constants have values of 0.07 and 0.05 mmol g=1 for the
beneficial and the wild-type Cra allele respectively. Both alleles occur in cells that have
the same Cra expression noise, which is given by η2 = 10 in (A), and η2 = 0.01 in (B).
Each plot show trajectories for 50 replicate population simulations. (C) Time until
fixation of the beneficial allele (N=50 replicates except for η2 = 0.01, N=49). Yellow
diamonds and lines show the sample mean and one standard deviation. (D) The time
the beneficial allele requires to go to fixation decreases with increasing fitness relative to
its competitor (Spearman’s ρ = −0.77, p < 0.001). Circles are coloured according to
Cra expression noise. The square (arrow) marks the one replicate where the fitter allele
was lost from the population.

Taken together, these observations show that our study circuit meets the three 310

criteria necessary for noise to increase the rate of adaptation. 311

Beneficial alleles are more likely to invade when Cra expression 312

noise is high 313

In the preceding section we asked whether gene expression noise can affect the 314

competitive ability of a beneficial allele that occurs at a high frequency. However, most 315

such alleles originate in a single individual. We thus also wanted to find out whether 316

such alleles can invade a population and go to fixation when initially rare. Therefore, 317

we repeated our simulations, but starting from a population with 2000 individuals 318

where only one individual carried the beneficial allele. 319

We found that when the initial frequency of the beneficial allele is low, it is most 320

likely to go to fixation in populations with the highest Cra expression noise (Fig 6a, 321

two-sided Fisher’s exact test, p < 0.001, 5000 replicates). This increase in fixation 322

probability cannot be caused by the allele’s fitness on its own. If that were the case, the 323

allele would be most likely to fix in populations with the second highest Cra expression 324

noise, because that is where the fitness of a beneficial allele is highest (Fig 4c), and 325

consequently the average time to fixation times is the lowest (Fig 6b). 326

Instead, the increase in fixation probability results from a decreased risk of 327

elimination in populations with high Cra expression noise, because these populations 328

experience less severe bottlenecks in acetate. For example, the average smallest 329

population size during a population’s first exposure to acetate is 37 cells (± 7 cell st. 330

dev.) and 475 cells (± 135 cells st. dev.) for the populations with the lowest and 331

highest Cra expression noise respectively. As a result of this difference, the number of 332

simulations in which the beneficial allele survives the first environmental shift in 333

populations with the lowest noise is less than half of that of populations with the 334

highest noise (70 and 163 respectively). We observed an analogous difference for neutral 335

alleles (see S1 Appendix section 10). 336

In sum, Cra expression noise favours the fixation of a novel and beneficial allele in 337

two ways. First, greater Cra expression noise increases population size, thus decreasing 338

the probability that a new allele is lost through drift. Second, it increases the fitness 339

benefit derived from the new allele, causing selection to help spread this allele faster. 340
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Fig 6. Cra expression noise increases the probability of fixation of a
beneficial allele that is initially at a low frequency. We simulated populations
that started with a single cell carrying a beneficial allele (dissociation constant of 0.07
mmol g=1) in a population of 2000 cells. The other cells carried an allele that had a
lower fitness (dissociation constant of 0.05 mmol g=1). The population grew in an
environment that switched between glucose and acetate every two days, and simulations
continued until one of the two alleles was lost. We repeated these simulations 5000
times for each level of Cra expression noise. (A) The beneficial allele is more likely to go
to fixation in populations with high Cra expression noise. (B) If the beneficial allele
reached fixation, higher Cra expression noise decreases the time the beneficial allele
needs to reach fixation, except for the highest level of noise (10.0). Yellow diamonds
show the average time to fixation and yellow lines indicate one standard deviation.
Circles show the fixation time of the beneficial allele in each replicate where it reached
fixation. Number of observations from lowest to highest Cra expression noise: 16, 16, 23,
65.

Discussion 341

We present a stochastic, agent-based simulation of how a continually growing 342

population of E. coli responds to a shift in carbon source from glucose to acetate. Each 343

cell harbours a regulatory circuit that controls the metabolic switch between glycolysis, 344

which cells use in the presence of glucose, and gluconeogenesis, which they use in the 345

presence of acetate. The circuit is controlled by the transcription factor Cra [43,47]. 346

Cra activates enzymes necessary for growth on acetate [34,42], and is inhibited during 347

growth on glucose [23] by fructose-1,6-bisphosphate (fbp) [41]. When the sole carbon 348

source changes from glucose to acetate, fbp levels drop and Cra activity may rise 349

sufficiently for cells to start metabolising acetate. Kotte et al. [23] reported that, 350

because the circuit behaves stochastically, only some cells grow on acetate while others 351

do not. In other words, there is a bimodal distribution of growth rates on acetate. 352

Consequently, a switch to acetate results in a lag phase at the population level, during 353

which population growth appears to stop until the growing cells constitute a substantial 354

fraction of the population. Upon return to glucose, all cells resume growth and the 355

distribution of growth rates is unimodal. Cells that grew on acetate did not have a 356

subsequent disadvantage on glucose [23]. Although this circuit embodies a specific 357

regulatory mechanism, similar circuits that sense external conditions through 358

intracellular metabolite concentrations are ubiquitous in bacteria [42]. Such ubiquity 359

suggests that our observations may also be relevant for environments fluctuating in 360

other carbon sources, such as cellobiose [24] or lactose [59]. 361

Our aim was to find out how a source of nongenetic phenotypic variation, namely 362

noise in the expression of the transcription factor Cra, affects the spreading of beneficial 363

alleles in a fluctuating environment. We investigated a situation in which shorter lag 364

times confer a fitness advantage, a scenario where previous studies have reported that 365

gene expression noise can be beneficial [26]. We caution that our results are valid only 366

for cases where selection favours decreasing, not increasing lag time. See Bertrand [60] 367

for a more general discussion of lag times and the selection pressures influencing them. 368

We showed that changing the expression noise of Cra without changing its mean 369

expression level affects a population’s recovery after the only available carbon and 370

energy source in the environment changes from glucose to acetate. Higher Cra 371

expression noise leads to a few cells with high Cra expression. In these cells, the high 372

concentration of Cra increases the probability of expressing enzymes required for growth 373

on acetate. These cells are therefore more likely to initiate growth on acetate, thus 374

shortening lag times at the population level. Indeed, during the transition from glucose 375
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to acetate populations experienced a bottleneck, but this bottleneck was less severe 376

when Cra was expressed noisily. We showed that the relative fitness of a population is 377

mainly determined by the severity of this bottleneck. Consequently, populations with 378

high Cra expression noise experience a shorter lag time and have a higher fitness. 379

To find out how Cra expression noise may influence the spread and eventual fixation 380

of a beneficial allele, we modeled a beneficial allele that decreases the binding strength 381

between Cra and its inhibitor fbp, compared to another, wild-type allele. This reduction 382

in Cra-fbp binding strength is beneficial because it increased Cra activity and therefore 383

shortens lag times. 384

Cra expression noise influences the spread and eventual fixation of this beneficial 385

allele in two ways. First, it leads to faster spreading of the beneficial allele. Second, it 386

increases the likelihood that the allele does not become lost during a population 387

bottleneck. We discuss these observations in greater detail in the following two 388

paragraphs. 389

Cra expression noise accelerates the spread of the beneficial allele as long as it 390

magnifies the fitness difference between the beneficial and wild-type alleles. We found 391

that this amplification of fitness effects occurs for all levels of Cra expression noise we 392

investigated, but that an intermediate level of Cra expression noise increases the relative 393

fitness of the beneficial allele more than the highest level of noise. This reduction in the 394

fitness benefit occurs because Cra expression noise decreases the lag time for all 395

subpopulations, regardless of whether a subpopulation is carrying the beneficial or 396

wild-type allele. However, for low to intermediate levels of Cra expression noise this 397

effect is far more pronounced in subpopulations carrying the beneficial allele, while at 398

high noise both alleles benefit substantially. These observations suggest that the fitness 399

benefit derived from nongenetic variation alone can be so large that the fitness effect of 400

a beneficial mutation becomes irrelevant. Consistent with existing theory [61], we found 401

that the relative fitness between beneficial and wild-type alleles is a strong predictor of 402

the amount of time a beneficial allele needs to spread to fixation from an intermediate 403

frequency (p=50%). That is, the beneficial allele spreads the fastest with an 404

intermediate level of Cra expression noise. 405

We also found that higher Cra expression noise increases the probability that a rare 406

beneficial allele survives population bottlenecks. This increase in survival occurs 407

because higher Cra expression noise makes bottlenecks less severe, and the beneficial 408

allele is thus less likely to be eliminated from the population by chance. This effect also 409

increases the eventual fixation probability of the beneficial allele. Fluctuations in 410

population size are known to reduce the fixation probability of beneficial 411

mutations [2, 62,63], especially because reductions in population size can lead to an 412

increase in the power of drift and rapid elimination of genetic variation [64]. Empirical 413

work regularly shows faster adaptation in populations that undergo less severe 414

bottlenecks [65–67]. Although many theoretical studies consider the effect of population 415

bottlenecks on the fate of mutations [62], most assume that these fluctuations in 416

population size are caused by factors outside the control of the organism [63,64], 417

although there are exceptions [22,68,69]. An intriguing exception is a previous 418

theoretical study, which has found that phenotypic plasticity can decrease the severity 419

of population bottlenecks, thus increasing standing genetic variation [22]. This 420

observation suggests that nongenetic variation has the potential to dampen fluctuations 421

in population size more generally. 422

We caution that our study only demonstrates an acceleration of adaptation through 423

gene expression noise in the short term. For two reasons, this advantage may disappear 424

in the long term. First, Cra expression noise only results in a fitness benefit when the 425

mean population fitness is low. 426

In other words, the fitness benefit of Cra expression noise decreases as populations 427
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increase in fitness during adaptive evolution. This pattern holds for nongenetic variation 428

in general, and is consistent with prior theoretical [15, 16] and empirical work [17]. This 429

occurs because in populations remote from a fitness optimum, random variation in 430

phenotype is more likely to push some individuals closer to the optimum than in a 431

well-adapted population. In the latter kind of population, most random variation will 432

push individuals away from the optimum [15]. These considerations suggest that Cra 433

expression noise will only accelerate the spread of beneficial mutations at the beginning 434

of an adaptive process when populations have very low fitness. Towards the end of the 435

process, Cra expression noise may become irrelevant or even slow down adaptation. 436

A second reason why noisy Cra expression may only provide short-term benefits is 437

that high Cra expression noise leads to rapid elimination of genetic variation, which 438

may slow down adaptation in the long term. Previous theoretical studies show that 439

nongenetic variation can strengthen genetic drift [10, 11], which we also observed in 440

simulations of two competing alleles that are selectively neutral, i.e. that do not lead to 441

a change in fitness (see S1 Appendix section 10). Strong genetic drift generally leads to 442

fast elimination of genetic variation, some of which may be adaptive. In other words, 443

populations with a higher level of nongenetic variation may also have a lower level of 444

standing genetic variation. A well-known result of theoretical population genetics is that 445

the response of a population to selection on a given trait is predicted by the amount of 446

standing genetic variation in that trait [3]. Consequently, a population with high levels 447

of nongenetic variation may be less responsive to selection, and thus adapt slowly. 448

These considerations suggest that, even though beneficial mutations are more likely to 449

spread and reach fixation once they arise in a population with much nongenetic 450

variation, the overall rate of adaptation in such a population may be low compared to a 451

population with less nongenetic variation. 452

What is important for the generality of the mechanism we identified here is that the 453

source of nongenetic variation must itself be heritable, so that successive generations 454

generate similar amounts of random phenotypic variation whenever the environment 455

changes. Fortunately, there is no shortage of such heritable sources of nongenetic 456

variation. The most obvious one in bacteria is gene expression noise, because it is highly 457

heritable [56,70]. However, many other sources may play this role, including variation in 458

epigenetic markers in unicellular eukaryotes [71] or cancer cells [72], nongenetic variation 459

in the surface proteins of pathogens [73] such as the highly variable surface glycoproteins 460

of trypanosomes [74], or phenotypic plasticity in multicellular organisms [75]. 461

From a broader perspective, our study highlights two especially important properties 462

of population bottlenecks in fluctuating environments. The first is that the capacity to 463

mitigate population bottlenecks can be an important part of adapting to fluctuating 464

environments. The second is that a particular kind of bottleneck called a selective 465

bottleneck can increase the rate of adaptation. In a selective bottleneck, cells have 466

heritable differences in the probability of surviving, in contrast to a nonselective 467

bottleneck, where all cells have the same probability of surviving. Because competition 468

for passing through a selective bottleneck can be particularly intense, selective 469

bottlenecks have great potential to accelerate the spread of beneficial alleles [73], an 470

effect also observed in natural populations [76]. Both selective bottlenecks and 471

bottleneck mitigation are best-studied for the transmission of pathogens. Pathogens 472

experience a strong bottleneck during transmission, because only a few infectious agents 473

are transmitted successfully between hosts or between tissues within a host [69,73,77]. 474

What is more, pathogens that are more likely to invade a new host or that can decrease 475

the severity of the transmission bottleneck can have a large fitness advantage over 476

others [68,69,73]. However, not just pathogens but most organisms may experience 477

selective bottlenecks. The reason is that natural environments are heterogeneous and 478

unpredictable [76, 78, 79]. They are subject to periodic fluctuations in, for example, the 479
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intensity of predation [80], as well as seasonable changes in food availability [81] or 480

temperature [82]. 481

Conclusion 482

To conclude, we show that nongenetic variation in the form of gene expression noise can 483

increase fitness by shortening a population’s lag time before the population resumes 484

growth in a new environment. We describe a novel mechanism invoking selective 485

bottlenecks that can increase the fitness benefit of an allele and accelerate its spread 486

through a population. We postulate that our findings are not limited to bacteria but 487

can be extended to other organisms experiencing periodic changes in their environment 488

that are associated with a reduction in population size, for example through seasonality. 489

Materials and methods 490

Model description 491

Our model simulates a population of E. coli cells continuously growing under a constant 492

rate of influx of nutrients and a constant efflux of spent medium and cells, as would 493

take place in a well-mixed environment such as a chemostat [27]. The inflowing medium 494

contains either glucose or acetate as the only source of carbon and energy. Glucose and 495

acetate molecules are then either taken up by cells or eventually flushed out of the 496

chemostat (the differential equations modelling this behaviour are given in S1 Appendix 497

section 5). We assume that nutrient and metabolite concentrations change 498

instantaneously throughout the growth environment. Because we assume that cells 499

undergo random fluctuations in protein content, we simulate each cell in the population 500

individually. The simulation proceeds in intervals of ∆t, which we set to one minute, 501

during which (i) intra- and extracellular metabolite concentrations and cell masses are 502

updated, (ii) protein are produced at random, (iii) cells are randomly flushed out of the 503

growth environment, and (iv) cells that have doubled their mass divide. Details of the 504

model implementation, parameter values, and model variables are given in S1 Appendix, 505

sections 1-5. 506

We make the simplifying assumption that, in a constant environment, all variation in 507

a cell’s specific growth rate arises from variation in protein amounts only. We assume 508

that fluctuations due to stochasticity in (i) metabolite diffusion, (ii) transcription factor 509

binding to DNA, (iii) protein-metabolite binding, and (iv) the activity of a given 510

enzyme happen on such short time scales that they can effectively be ignored on the 511

longer scale of a cell’s lifetime [28]. In our model, random fluctuations in protein 512

amounts propagate to the specific growth rate through fluctuations in the rate of the 513

reactions these proteins catalyse, as Kiviet et al. [29] observed experimentally in E. coli. 514

Thus, still assuming a constant environment, these considerations entail that in our 515

model all average reaction rates remain constant with fluctuations in protein amounts 516

as the only source of variation. Our model implements this constancy in two ways. 517

First, we simulate all processes except protein production [30], protein partitioning 518

during cell division [31] and protein degradation [32] deterministically in a system of 519

ordinary differential equations (ODE). Second, we increase the average amount of any 520

protein per cell at the same rate as the cell mass to avoid a drop in reaction rates 521

towards the end of the cell cycle due to protein dilution. 522
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Metabolism and growth: ODE system 523

We implement metabolism as a system of ODEs that determines the temporal change of 524

the extracellular acetate and glucose concentration, and of the intracellular metabolite 525

concentrations of each cell. The model (Fig 1a) condenses glucose and acetate 526

assimilation, glycolysis, its inverse gluconeogenesis, and cell growth into four metabolic 527

reactions, each catalysed by a distinct enzyme [23]. Glucose uptake and conversion into 528

fbp are condensed into glucose incorporation (Gi). Acetate uptake and conversion into 529

pep through the glyoxylate shunt [33] is represented by acetate incorporation (Ai). Pep 530

is then converted to fbp through lower glycolysis (Lg). Finally, fbp is converted to 531

biomass through anabolism (An), whose kinetics are modelled after the enzyme that 532

removes fbp from lower glycolysis in E. coli, fructose-bisphosphatase [34]. As a result, 533

we need to model only four metabolite concentrations, that of glucose, acetate, pep and 534

fbp. 535

In our model, both glucose and acetate are converted into fbp with the stoichiometry 536

of the corresponding reactions in E. coli [33,34], namely 1:1 for glucose to fbp, and 4:1 537

for acetate to fbp. One carbon atom is lost as CO2 for every two acetate molecules that 538

are converted to pep (half circle in Fig 1a). The pathway from acetate to fbp goes 539

through the intermediate pep with a stoichiometry of 2:1 for both acetate to pep, and 540

pep to fbp. Fbp then gets converted into biomass with a yield of 0.0896 g of cell mass 541

(dry weight) per mmol of fbp. We estimated the yield using Flux Balance Analysis 542

(FBA) and the iJO1366 reconstruction of the E. coli metabolic network [35] with fbp as 543

the only carbon source (with an influx of 1 mmol g=1 h=1). FBA is a constraint-based 544

modelling tool that allows the prediction of reaction fluxes from a metabolic network 545

and the flux of metabolites into a cell [36]. We use this yield as a coversion factor 546

between the rate of fbp consumption and the specific growth rate and refer to it as c. 547

The biomass yield multiplied by the rate of the reaction converting fbp to biomass 548

determines the specific growth rate µ, i.e. the growth rate per unit cell mass. Cell mass 549

increases exponentially, and the absolute growth rate of a cell is given by 550

dB

dt
= µ ·B (1)

where B is the current mass of the cell in grams dry weight, and the temporal derivative 551

dB
dt is given in g h=1. We assume that newly divided cells have a mass of B0 = 3× 10−13 552

g, or 300 fg [37,38], and divide once their mass has doubled. To keep the model as 553

simple as possible, we ignore the scaling between growth rate and initial biomass [39]. 554

For simplicity, we assume Michaelis-Menten kinetics for all reactions except for the
reaction that converts fbp into biomass, which follows Monod-Wyman-Changeux
(MWC) kinetics [40] and is allosterically activated by pep, as experimentally
observed [41]. The intracellular concentrations of pep and fbp are simulated per gram of
biomass (mmol g=1). The extracellular concentration of glucose or acetate is given in
mM and is converted to mmol g=1 when either carbon source is imported into the cell.
The change in intracellular metabolite concentrations for each cell is determined by the
rate Jx of the four metabolic reactions x (e.g. JGi is the rate of the glucose
incorporation reaction Gi) and the specific growth rate µ, because metabolite
concentrations undergo exponential decay as a cell grows unless they are replenished by
an upstream reaction. Overall, these considerations lead to the following system of
differential equations, which specify the change in intracellular metabolite
concentrations for a given cell as

dpep

dt
=

1

2
JAi − JLg − µ · pep (2)

dfbp

dt
= JGi +

1

2
JLg − JAn − µ · fbp, (3)
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where the coefficients on the right side reflect the stoichiometry of these reactions in E. 555

coli [33, 34]. For example, to achieve a production rate of 1 mmol g=1 h=1 of fbp, the 556

reaction rate of glucose incorporation JGi would need to be 1 mmol g=1 h=1, while the 557

reaction rate through lower glycolysis JLg would have to be 2 mmol g=1 h=1. Details of 558

the equations determining the reaction rates JAi, JGi, JLg, and JAn are given in S1 559

Appendix section 5. 560

Cra-fbp binding and expression of the acetate incorporation enzyme 561

In E. coli, the transcription factor Cra regulates the switch from glycolysis to 562

gluconeogenesis [23,42–45]. Cra is inhibited by fbp [46]. As long as glucose is fed to a 563

cell, fbp levels remain high and Cra activity is suppressed. Once a cell is starved of 564

glucose, the fbp concentration falls, and the increased level of Cra activity promotes the 565

expression of genes involved in acetate assimilation and gluconeogenesis [23,43,47]. 566

We model this process by having Cra activate the transcription of the acetate 567

consumption pathway, which we represent by the enzyme Ai. Cra targets the expression 568

of enzymes at the entry and exit points of lower glycolysis, which are irreversible 569

reactions producing and consuming fbp and pep, but not of the reversible reactions in 570

lower glycolysis between fbp and pep [44,45]. We therefore kept the expression of the 571

enzyme converting pep to fbp independent of Cra activity. Cra repression by fbp follows 572

Hill kinetics [23], which we model in the following way 573

CraA = Cra ×
KnCra

Cra,fbp

fbpnCra +KnCra

Cra,fbp

(4)

where CraA is the number of active Cra protein, KCra,fbp is the dissociation constant 574

for Cra-fbp binding, and nCra is the Hill coefficient governing the cooperativity of 575

binding. We model CraA as a continuous rather than a discrete variable because we 576

average Cra activity over the interval ∆t. Specifically, although the number of active 577

Cra proteins at any given time must be discrete, we assume that the random 578

fluctuations between the active and inhibited forms occur rapidly enough to model Cra 579

activity as a single continuous variable. For example, if a cell harbours a single Cra 580

molecule, which is active for half the time interval ∆t, then CraA is 0.5. 581

We assume that the active form of Cra binds the Ai promoter with 582

Michaelis-Menten kinetics, as this is the simplest model for an activating transcription 583

factor [28]. To account for dilution during cell growth, we use the CraA concentration 584

(CraA activity divided by current cell mass B) to determine the proportion of time 585

Pbound that CraA is bound to the promoter. It is given by 586

Pbound =
CraA/B

CraA/B +KCraA,DNA
(5)

where KCraA,DNA is the dissociation constant of CraA for the Ai promoter. Pbound then 587

determines the expected mRNA production rate per protein half-life αAi, which is the 588

time average of two rates, namely the mRNA production rate when CraA is bound 589

(αAi,1), and unbound (αAi,0, which we set to zero to represent an “off” state). 590

αAi = αAi,0 · (1 − Pbound) + αAi,1 · Pbound (6)

We use αAi to model the stochastic production of Ai in the same way as for all other 591

proteins. 592

Protein production, degradation and dilution 593

Because noise in protein concentrations arises in part from low protein numbers, we 594

simulate the number of proteins per cell explicitly. We use a simple model of protein 595
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production and degradation, which assumes that proteins are expressed from a 596

constitutively expressed gene [48] 597

DNA mRNA Protein

∅ ∅

k1 k2

γ1 γ2

598

where k1 and k2 are the transcription and translation rates, and γ1, γ2 the mRNA and 599

protein degradation rates. This model assumes that transcription, translation, and 600

mRNA degradation are Poisson processes. Ribosomes and ribonucleases compete for 601

mRNA, resulting in a geometric distribution of protein molecules synthesised from a 602

single mRNA [49]. In consequence, the steady-state distribution of protein numbers X 603

per cell follows a negative binomial distribution [48,49] 604

X ∼ NegBin(α, β) (7)

where α = k1/γ2 can be interpreted as the expected number of mRNA transcripts 605

produced during a protein’s half-life, and β = k2/γ1 is the expected number of proteins 606

produced from a given mRNA. The mean of the distribution is given by x = αβ, and 607

the variance by σ2 = αβ(β + 1). Protein expression noise (η2 = σ2/x2) is equal to the 608

inverse of the mRNA production rate 1/α. These quantities agree well with single-cell 609

observations [50,51]. For convenience, we refer to the average number of proteins per 610

cell (αβ) as the number of proteins in a newborn cell, so that a cell that is about to 611

divide has twice as many proteins on average (2αβ). By tuning the parameters α and β, 612

we can change the variance of protein expression without modifying the mean. In other 613

words, we can change expression noise independently from mean expression. 614

Because our modelling approach aims to keep the average number of proteins per 615

unit cell mass constant, but our model allows the growth rate of cells to vary, we couple 616

the protein production rate to the growth rate. Variation in the growth rate affects the 617

rate of dilution of proteins, which we subsume under the protein degradation term γ2, 618

as in [48,50]. We take the protein degradation term γ2 to be the sum of the active 619

protein degradation rate γp and the protein dilution rate γd, i.e. γ2 = γp + γd. The 620

protein dilution rate γd is set by the absolute growth rate µ ·B (Eq 1), because cell 621

growth is exponential and consequently proteins are diluted twice as fast at the end of 622

the cell cycle than at the beginning (given a constant specific growth rate µ). Because 623

the protein dilution rate γd is given in units of time (h=1), we divide the absolute 624

growth rate by the initial cell mass B0, so that γd = µ ·B/B0. Therefore, the protein 625

dilution rate is equal to µ at the beginning of a cell cycle, and 2µ at the end of a cell 626

cycle. To keep the average number of proteins per unit cell mass constant, the protein 627

production rate must stay in step with the rate of protein dilution and degradation. 628

The protein degradation term γ2 affects the average protein number (αβ) through α, 629

thus if α is to remain constant, the transcription rate k1 has to compensate for 630

fluctuations in γ2. Taking these considerations together leads us to the following 631

expression for the rate of transcription k1 for each protein at each point in time: 632

k1 = α · (µ · B
B0

+ γp) (8)

Because most proteins in E. coli undergo little to no active degradation [32], we 633

performed most of our simulations with γp = 0. The half-lives of stable proteins in E. 634

coli range between about 1 hour under starvation conditions to over 70 hours (BNID 635

109921, [52]). In other words, degradation rates range from about γp = 0.7 to 0.01 h=1
636

or lower. Increasing the degradation rate increases the sensitivity of a protein’s amount 637
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to changes in its production rate [28]. Because the acetate incorporation enzyme Ai is 638

the only protein whose production rate changes in response to the environment, we only 639

investigated active degradation of Ai, which we modelled as a process of stochastic 640

decay. Specifically, the number of proteins remaining after a given time interval ∆t 641

follows a binomial distribution in which the probability of survival decays exponentially 642

at the rate γp. 643

Estimating fitness 644

To compare the fitness of different populations, we conducted simulations in which we 645

competed each population of interest against a reference population with an 646

intermediate level of noise η2 = 0.2 and either the same or an intermediate Cra-fbp 647

binding strength (when we investigated multiple Cra-fbp dissociation constants, as in 648

Fig 3b). All simulations started with both populations at an initial size of 1000 cells. 649

The competing populations were first exposed for two days to glucose, and then for an 650

additional two days to acetate. We estimated the relative fitness of the two competing 651

populations by calculating the change in frequency of the population of interest during 652

the simulation [53] 653

w = ln

(
N0/N1

N ′0/N
′
1

)
(9)

where N0 and N1 are the numbers of cells of the population of interest at the 654

beginning and the end of the simulation, respectively. Similarly, N ′0 and N ′1 are the 655

number of cells of the reference population at the beginning and the end. If one defines 656

the fitness of the reference population as equal to one, this measure becomes equivalent 657

to the selection coefficient of the population of interest compared to the reference 658

population [54]. The measure creates a fitness scale in which a population that is fitter 659

than the reference population will have a positive relative fitness, while a population 660

with lower fitness will have a negative relative fitness. 661

Supporting information 662

S1 Appendix. Additional model details and further analysis. This appendix 663

shows parameter values, variables, and further details about the model and its 664

implementation. It presents an analysis of how a growing and a nongrowing state can 665

arise in a deterministic version of the model, and estimates how robust this bistability is 666

against changes in parameter values. It also considers how Cra amounts influence the 667

growth state a cell is in. In addition, it contains simulations showing the effect of active 668

degradation of the acetate incorporation enzyme. Finally, it considers the spread of a 669

neutral allele in populations with different levels of Cra expression noise. 670
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