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Abstract: Plant economics run on carbon and nutrients instead of money. Leaf strategies 

aboveground span an economic spectrum from ‘live fast and die young’ to ‘slow and steady’, but 

the economy defined by root strategies belowground remains unclear. Here we take a holistic 

view of the belowground economy, and show that root-mycorrhizal collaboration can short 

circuit a one-dimensional economic spectrum, providing an entire space of economic 45 

possibilities. Root trait data from 1,781 species across the globe confirm a classical fast-slow 

‘conservation’ gradient but show that most variation is explained by an orthogonal 

‘collaboration’ gradient, ranging from ‘do-it-yourself’ resource uptake to ‘outsourcing’ of 

resource uptake to mycorrhizal fungi. This broadened ‘root economics space’ provides a solid 

foundation for predictive understanding of belowground responses to changing environmental 50 

conditions. 

 

One Sentence Summary: Collaboration broadens the ‘root economics space’ ranging from ‘do-

it-yourself’ resource acquisition to ‘outsourcing’ to mycorrhizal partners. 

  55 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.17.908905doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.17.908905


4 
 

Main text: The diversity of plant traits across the globe shapes ecosystem functioning (1). 

Seeking general patterns, ecologists have used economic theory to explain trait variation in 

leaves as the aboveground plant organs for resource acquisition by photosynthesis (1–3). 

Aboveground plant strategies thereby fall along a ‘leaf economics spectrum’ (2) from cheaply-

constructed but short-lived leaves optimized for ‘fast’ resource acquisition to more expensive but 60 

persistent leaves with a ‘slower’ rate of return over longer time scale.  

As the belowground equivalent of leaves, fine roots acquire resources from the soil (4). 

Therefore, fine root trait variation has been hypothesized to follow a similar one-dimensional 

spectrum (1, 5). At one side of this spectrum, plants with a ‘fast’ belowground resource 

acquisition strategy are expected to construct long, narrow-diameter roots with minimal biomass 65 

investment but high metabolic rates (1, 4, 6). At the opposite side of the spectrum, plants with a 

‘slow’ strategy are expected to achieve longer lifespan and prolonged return on investment by 

constructing thicker-diameter, denser roots (4, 7).  

However, mixed empirical results caused ecologists to question whether variation in root traits 

can be adequately explained by a one-dimensional ‘fast-slow’ economics spectrum (1, 5, 8–12). 70 

Here, we aim to settle this debate by presenting a new conceptual framework of root economics 

that better captures the complexity of belowground resource acquisition strategies. First, we 

integrated existing knowledge to build a conceptual understanding of the covariation among four 

key root traits (Table 1, Fig. 1). Second, we tested our conceptual model against root traits of 

1,781 plant species across all biomes of the world. All analyses were phylogenetically informed 75 

using fine-root trait data from the Global Root Trait database (GRooT) (13).  

The currency of root economics is the carbon input required to construct fine roots that explore 

the soil for resource acquisition. Specific root length (SRL) - the root length per unit mass - 
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therefore reflects the rate of return per unit of investment, and is a function of both root diameter 

(D) and root tissue density (RTD) – the root mass per unit of root volume -, following: 80 

 SRL = 4 / (π x D2 x RTD)        

Although this equation(6) is a simplification when sampling heterogeneous fine root populations 

(14), it implies that SRL increases with decreasing D and/or RTD. Besides efficient soil 

exploration, plants have to maintain a high metabolic rate to assure ‘fast’ resource acquisition 

leading to high nitrogen (N) content in the fine roots (1, 15). While strong negative relationships 85 

between SRL and D (9, 11, 16–18) as well as between RTD and N (9, 11, 17) have been 

observed, the relationships between SRL and RTD (17, 19, 20) as well as between D and N (12) 

have been less clear. In fact, observations across a wide range of species suggest that plants can 

construct roots with many combinations of SRL and RTD (9, 11) indicating complex trait 

interactions inconsistent with a one-dimensional root economics spectrum (8–12). 90 

We hypothesize that this root trait complexity results from the range of belowground resource 

uptake strategies. In contrast to aboveground photosynthesis, which is solely conducted by plant 

organs, belowground many species have the ability to outsource resource acquisition. This 

gradient of plant collaboration strategies ranges from ‘do-it-yourself’ acquisition by cheap roots 

for efficient soil exploration to ‘outsourcing’ acquisition via the investment of carbon in a 95 

mycorrhizal partner for the return of limiting resources. However, such outsourcing strategies 

have consequences for root traits. This is particularly true for arbuscular mycorrhizal fungi 

(AMF) because plants must increase their root cortical area, and hence their root diameter (D), to 

provide the intraradical habitat for their fungal partner (17, 21, 22). This is generalizable for 

plant symbiosis with AMF, the most widespread type of mycorrhizal fungi (22) and also well 100 

documented for ectomycorrhizal (EM) fungi (23). Thus, we hypothesize that plants can optimize 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.17.908905doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.17.908905


6 
 

resource uptake by investing carbon either in thin roots that efficiently explore the soil 

themselves (9) or in a mycorrhizal partner which requires a thick root for efficient symbiosis 

(Fig. 1).  

This hypothesized collaboration gradient from ‘do-it-yourself’ to ‘outsourcing’ challenges the 105 

traditional spectrum of root economics that assumes D to increase with RTD for tissue 

conservation. Both scaling laws and empirical data (20) show that as D increases, root cortex 

area increases at a faster rate than stele area such that D scales positively with the cortex fraction 

(CF) (17) (though patterns can vary between growth forms (12)). The parenchymatous cortical 

tissue has a lower carbon content and dry weight than the stele tissue, which transports nutrients 110 

and water through lignified cells (24, 25). Thus CF and RTD will be negatively correlated (Table 

1). Furthermore, since D and CF are closely positively correlated, and increase in unison with 

mycorrhizal symbiosis, D should be negatively correlated with RTD. These relationships 

contradict the assumption of a one-dimensional root economics spectrum, where plants with a 

‘slow’ strategy are expected to construct roots that are both thick and dense and advocate for a 115 

multi-dimensional space of root trait variation. 

By testing pairwise correlations of all traits, we confirmed the bivariate relationships underlying 

our new concept of a belowground economics trait space with two main dimensions (Table 1). 

The strongest negative correlation was found between SRL and D (R = -0.70) representing the 

‘collaboration’ gradient, from ‘do-it-yourself’ to ‘outsourcing‘. We also found a negative 120 

correlation between RTD and root N (R = -0.25) as observed in previous studies (9, 11, 17), 

which corresponds  to a ‘conservation’ gradient, representing the traditional trade-off between 

‘fast’ and ‘slow’ return on investment (Fig. 1). 
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On a sub-set of 737 species with complete information on the four main root traits (SRL, D, 

RTD, and root N) we could confirm these two distinct and largely independent gradients in a 125 

principal component analysis (PCA) where the first two axes encompass a plane with a 

cumulative explanatory power of 78% of all root trait variation. Henceforth, we refer to these 

gradients as the main dimensions of the root economics space (Fig. 2A). The first PCA axis 

(45% of total trait variation) represents a gradient from SRL to D, suggesting that our 

hypothesized ‘collaboration’ gradient is the main source of root trait variation. The second PCA 130 

axis, (33% of total trait variation) represents the ‘conservation’ gradient from root N to RTD 

(table S1).  

Species associated with AMF were the largest group in the database and were distributed over 

the entire trait space (Fig. 2A), but differed significantly from both non-mycorrhizal (NM) and 

ectomycorrhizal (EM) species (table S4). NM plants clearly aggregated on the ‘do-it-yourself’ 135 

side of the collaboration gradient, as well as on the ‘slow’ side of the conservation gradient. EM 

plants showed less variation along the collaboration gradient than AM plants with a tendency 

towards ‘do-it-yourself’ and ‘slow’ as well. A high RTD, indicative of a ‘slow’ strategy might 

partly originate from the fact that EM species are often woody species, although woodiness was 

not a significant factor of variation within the global species set (Fig. 2D, table S4). The 140 

tendency towards ‘do-it-yourself’ roots with high SRL likely results from the nature of the 

ectomycorrhizal symbiosis that is less dependent on cortex area but also from its more recent 

evolution, as evolutionarily younger species tend to have thinner roots (9, 21, 25, 26). Even so, 

PCAs that solely represent the root traits of either AM or EM plant species (Fig. 2, B and C, 

table S1) show the same dimensions of variation as in the global dataset. Plants associated with 145 

N-fixing bacteria differed from the rest (table S4) by being located on the ‘fast’ side of the 
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conservation gradient as their roots are rich in N (fig. S2A). Nevertheless, we could still confirm 

the collaboration gradient as the first PCA-axis within this species set (fig. S2, B and C, table 

S1). Furthermore, the two dimensions of the root economics space are present irrespective of 

biome or plant growth form (fig. S3 and S4, table S1). 150 

To test our ecological interpretation of the proposed gradients, we added traits to the PCA that 

act as proxies for ecological functions (Fig. 2E, table S2). We used percent root length colonized 

by AMF (%M) as a proxy for the strength of the mycorrhizal symbiosis (27), and cortex fraction 

as a general proxy for the ability of a species to host mycorrhizal fungi (17, 28, 29). We found 

both %M and CF to be associated with the ‘outsourcing’ side of the collaboration gradient. To 155 

test whether the proposed conservation gradient aligns with the classical ‘fast-slow’ economics 

spectrum, we used root lifespan as a proxy for short- or long-term investment of plant carbon (1, 

30–32). We found that longer lifespan was indeed associated with the ‘slow’ side of the 

conservation gradient which is consistent with reports of negative relationships between root 

lifespan and N (1, 30, 32). 160 

The decrease in root diameter over evolutionary time (9, 26) suggests a reduced dependence of 

plants on mycorrhizal fungi. We found that the ‘collaboration’ gradient was indeed 

phylogenetically conserved, showing an evolutionary transition from ‘outsourcing’ to ‘do-it-

yourself’ (Fig. 3, table S3 and S5). In contrast, the ‘fast-slow’ trade-off of the ‘conservation’ 

gradient was less pronounced across all plant families in our database (Fig. 3), and also less 165 

phylogenetically conserved (table S3). This suggests that evolutionary history causes the 

‘collaboration’ gradient to be the main source of variation in root traits. 

Taken together, our results provide an answer as to why root trait variation cannot be adequately 

explained by a one-dimensional root economics spectrum (8–11, 17, 33). Plant outsourcing of 
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belowground resource acquisition through collaboration with mycorrhizal partners represents a 170 

main dimension of root trait variation, and is fundamentally different from aboveground. This 

collaboration gradient from ‘do-it-yourself’ to ‘outsourcing’ represents an investment in soil 

exploration by either the root itself or its mycorrhizal partners. It is independent from the 

conservation gradient, which represents the well-known concept of ‘fast’ versus ‘slow’ return on 

investment. Thus both gradients depict different facets of root economics, and rather than a 175 

single one-dimensional spectrum, encompass a whole root economics space of plant strategies 

for belowground resource acquisition. 
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Fig. 1. Conceptual framework of the root economics space. Based on this concept we 

hypothesize 1) a collaboration gradient ranging from ‘do-it-yourself’ soil exploration by high 

specific root length (SRL) to ‘outsourcing’ by investing carbon into the mycorrhizal partner and 360 

hence extraradical hypheae which requires a large cortex fraction (CF) and root diameter (D) and 

2) a conservation gradient ranging from roots with high root tissue density (RTD) that show a 

‘slow’ resource return on investment but are long-lived and well-protected, to ‘fast’ roots with a 

high nitrogen content (N) and metabolic rate for fast resource return on investment, but a short 

lifespan. Arrows indicate negative correlations between the single traits (see Table 1). 365 
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Fig. 2. The root economics space. Phylogenetically informed principal component analyses 

(PCAs) of core traits of A) 737 species, as well as subsets of B) 610 arbuscular mycorrhizal 

(AM) species and C) 93 ectomycorrhizal (EM) species. The collaboration gradient (45%) ranges 370 

from ‘do-it-yourself’ roots with high specific root length (SRL) to thick diameter (D) roots with 

an ‘outsourcing’ strategy of nutrient acquisition. The conservation gradient (33%) explains root 

trait variation from ‘fast’ (high root nitrogen content– N) to ‘slow’ (high root tissue density – 

RTD) turnover and resource return on investment. For each corner of the root economics space 

we highlight two representative plant species: QV - Quercus virginiana Mill., CH - Carex 375 

humilis Leyss., CO - Cornus officinalis Siebold & Zucc., ZM - Zea mays L., LP - Lathyrus 

pratensis L., GB - Ginkgo biloba L., BL - Betula lenta L., CP - Cardamine pratensis L. D) 

Woody (blue) and non-woody (red) species show no distinct pattern within the root economics 

space (see also fig. S4 and table S4). E) PCA based on bivariate trait relationships. The 

percentage mycorrhizal colonization (%M) as well as the cortex fraction (CF) are positively 380 
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correlated with D along the collaboration gradient, while root lifespan is negatively correlated 

with N along the conservation gradient. Eigenvalues, loadings and explained variances can be 

found in table S1. NM - non-mycorrhizal.   
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Fig. 3. The collaboration gradient is phylogenetically conserved. Displayed is the 385 

phylogenetic tree of 1,781 species aggregated on a family level (left) with the standardized 

family mean trait values of the four core traits (center) ranging from low (yellow) to high (blue). 

The collaboration gradient shows a strong phylogenetic pattern (lambda = 0.8) with a transition 

from families with thick root diameter (D) to those with a high specific root length (SRL). The 

phylogenetic signal in the conservation gradient is less pronounced (lambda = 0.5). Pie charts 390 

(right) depict the fraction of different mycorrhizal association types within the broader plant 

phylogenetic clades (indicated by corresponding background colors). RTD – root tissue density, 

N – root nitrogen content, AM – arbuscular mycorrhizal, EM – ectomycorrhizal, NM - non-

mycorrhizal.   
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Table 1. Rationale of the conceptual framework of root trait correlations depicted in Fig. 1. 395 

Expected correlations are based on mathematical and ecological rationale and empirical support 

from the literature. de facto correlations (see also fig. S1) are phylogenetically-informed 

correlation coefficients of species subsets with the respective trait coverage. D – root diameter, 

SRL – specific root length, RTD – root tissue density, N – root nitrogen content, CF - cortex 

fraction. 400 

Trait pair Expected 

correlation 

Rationale Empirical 

support 

de facto 

correlatio

n 

P n 

species 

SRL - D negative A thicker root is 

shorter per unit mass 

(9, 11, 16–

18) 

-0.70 <0.0001 1376 

RTD - N negative Root tissue density 

increases with cell 

wall stabilization 

which is poor in 

nitrogen 

(9, 11, 17) -0.25 <0.0001 845 

CF - D positive Cortex fraction 

increases with 

increasing root 

diameter at a higher 

rate than stele fraction 

(12, 17, 

20) 

0.19 0.0004 308 
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SRL - RTD negative A root with a higher 

tissue density is 

shorter per unit mass 

(9)  -0.23 <0.0001 1265 

RTD - CF negative Cortex tissue is less 

dense than stele tissue. 

(17) -0.17 0.0020 298 

RTD - D negative Root diameter scales 

positively with the 

cortex fraction. Cortex 

tissue is less dense 

than stele tissue. 

(9, 17) -0.19 <0.0001 1298 
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