
neuPrint: Analysis Tools for EM Connectomics

Jody Clements1, Tom Dolafi1, Lowell Umayam1, Nicole L.
Neubarth1,2, Stuart Berg1, Louis K. Scheffer1, and Stephen M.

Plaza1

1Janelia Research Campus, Howard Hughes Medical Institute,
Ashburn, VA, USA

2Two Six Labs, Arlington, VA, USA

January 16, 2020

Abstract

Due to technological advances in electron microscopy (EM) and deep
learning, it is now practical to reconstruct a connectome, a description of
neurons and the connections between them, for significant volumes of neural
tissue. The limited scope of past reconstructions meant they were primarily
used by domain experts, and performance was not a serious problem. But
the new reconstructions, of common laboratory creatures such as the fruit
fly Drosophila melanogaster, upend these assumptions. These natural
neural networks now contain tens of thousands of neurons and tens of
millions of connections between them, with yet larger reconstructions
pending, and are of interest to a large community of non-specialists. This
requires new tools that are easy to use and efficiently handle large data.
We introduce neuPrint to address these data analysis challenges. neuPrint
is a database and analysis ecosystem that organizes connectome data in
a manner conducive to biological discovery. In particular, we propose
a data model that allows users to access the connectome at different
levels of abstraction primarily through a graph database, neo4j, and its
powerfully expressive query language Cypher. neuPrint is compatible with
modern connectome reconstruction workflows, providing tools for assessing
reconstruction quality, and offering both batch and incremental updates to
match modern connectome reconstruction flows. Finally, we introduce a
web interface and programmer API that targets a diverse user skill set. We
demonstrate the effectiveness and efficiency of neuPrint through example
database queries.

1 Introduction

High-resolution EM data reveals the morphology of individual neurons and the
synapses between them. By representing the neurons as nodes and synapses

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

as edges, the resulting connectivity graph provides scientists one tool to help
understand neural mechanisms in brains. Technical hurdles in generating and
reconstructing connectomes from EM data limited prior studies to either small
brains like C. elegans [1] or smaller portions of larger brains [2], [3], [4]. Despite
the relatively small size, typically 1000 or fewer neurons, compared to the
100, 000 neurons in the Drosophila or millions of neurons in a mouse brain,
deciphering the circuits formed by these neurons is challenging. The need for
effective representation of complex connectomes is increasing with much larger
EM datasets available[5][6] and the introduction of new methods of speeding
up connectomic reconstruction, using techniques such as automatic EM image
segmentation using deep learning[7].

At its simplest, a connectome is a lookup table that enables scientists to find
the inputs or outputs of a given neuron. In some model organisms like Drosophila,
one can use this information, combined with modern genetic tools, to selectively
silence or monitor specific neurons to potentially infer neural mechanisms for
certain behavior[8]. However, even this look-up table application poses many
analysis challenges, especially for larger datasets. If the neuron type being looked
up is not well-established and annotated explicitly in the database, how does
one find it? Once found, many neurons have hundreds of inputs and outputs
spanning large portions of the brain. Which ones are important? To minimize
the need for follow-up experiments, the once simple lookup task might require
a more complicated analysis of inferring the role of neurons in this population
based on their connectivity and projections. This analysis will likely involve
brain regions and neurons unknown to the experimenter, or often science as a
whole. These challenges of interpreting large data further intensify if one wishes
to infer mechanisms directly from the data, such as by trying to find underlying
patterns in the connectivity graph or examining low-level motifs such as the
location distribution of synapses on a given neuron.

We introduce neuPrint as a connectome analysis framework to address the
challenges of interpreting large connectome data. At its core, neuPrint is a data
model for representing connectome data that provides the following advantages:

• It represents data at different levels of detail based on natural anatomical
features (brain region, neuron, and synapse level) to maximize the efficiency
of queries based on the needs of the users and to enable an intuitive interface
consistent with the goals of the user.

• It exploits a graph database (neo4j [9]) to facilitate working efficiently with
large graph data.

• It exploits brain regions (regions of interest, or ROIs) to allow users to
take a top-down strategy for understanding complex data. It does this by
decomposing connectome data by ROI when relevant.

• It facilitates relatively simple and straightforward queries by leveraging
the expressive Cypher graph query language.

• It enables metadata properties to be flexibly added to neurons and synapses.

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

This data model is implemented within neo4j. We implement a connectomics
interface over neo4j allowing users to access the data either programmatically
or interactively through a web interface. Our web interface combines 3D vi-
sualization and a flexible plugin system to enable the rapid creation of new
analysis tools to meet the demands of new usage patterns for this emerging field.
Furthermore, the neuprint ecosystem can leverage other storage solutions, e.g.,
[10], for non-graph connectome-relevant data, such as morphological skeletons,
useful in tasks such as delay modeling.

Other tools exist for analyzing connectomes [11, 12, 13, 14] [13], which
between them provide an impressive collection of analysis tools. neuPrint differs
by using an off-the-shelf database solution, neo4j, and its well-documented and
reasonably intuitive query language, Cypher, as the medium instead of a more
custom query language. Also, neuPrint emphasizes a data model that maximizes
performance and interpretability with graph data in mind without as much
emphasis on lower-level data and exploration. Unlike [11, 12, 14], neuPrint is
not an editing tool, which again allows us to focus our design goals. An example
is the use of a native graph database which has performance advantages for path
queries when compared to a relational database used in other tools[12]. neuPrint
does not subsume all the analysis capabilities of these editing tools. Rather,
neuPrint is compatible with any workflow that leverages segmentation during
editing (e.g., [2]), so that neuPrint can be used in parallel with reconstruction.
This is especially important since automatic image segmentation and connectome
datasets are imperfect and constantly under revision. To this end, neuPrint
can help assess dataset quality and navigate reconstruction uncertainty or
incompleteness.

In this paper, we first discuss our overall framework and the main data model.
Then, we describe the programmer API and web application. Finally, we discuss
the practical details of deploying neuPrint, and present empirical justification
for our design decisions, as well as explore several example queries on a large
dataset.

2 Storing and representing analysis data

Figure 1 shows an overview of the neuPrint ecosystem. In this section, we
emphasize the representation and storage of connectome data. The next section
will discuss the higher level interfaces.

We consider the storage of the connectomic graph and associated metadata
within a graph database neo4j [9]. Presumably, other graph databases that
support the graph query language Cypher could be compatible with neuPrint,
though this has not been tested. In a graph database, nodes can access related
nodes through linked lists. This is in contrast to more traditional table-based
relational (SQL) databases, where finding whether a node is related to another
node requires first joining those two tables together. Therefore, queries that
require relationship lookups, such as path searches, are potentially much faster
in a graph database.

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

Figure 1: neuPrint ecosystem. The ecosystem is broadly divided into a lower-
level data representation and storage above the dashed line and a higher-level
interface below the dashed line.

Graph databases are often advantageous when a problem can be clearly
formulated as a graph, such as the connectome. In this case a data model, or
strategy for organizing the data, can be more intuitively designed for a graph
database. Conversely, in a relational database, a simple graph model showing
neuron nodes connected by synapse edges would require several different tables.
For instance, one could have a neuron table, an synapse or edge table, a neuron
property table, and an edge property table. Graph databases and other so-called
NoSQL databases tend to not require an exact schema, meaning that it is easy
to add new relationship types on pre-existing data models. This is advantageous
in connectomics as we anticipate the need to adapt quickly to new analysis
requirements.

The EM connectomic dataset involves other data useful for analysis that
are not ideally suited for a graph database. For larger storage objects, like
a neuronal skeleton (which is a simplified ball and stick representation of a
neuron’s morphology) and ROI surface meshes, we leverage simpler key/value
stores where one retrieves a value by using a specific key or address. While one
can reasonably store a series of skeleton nodes in a graph database, we found
that most analyses involving skeletons required the whole skeleton meaning that
a simple fetch of the whole data structure was sufficient, and more time and
space efficient.

In the following, we present the neuPrint graph data model and then explain
the ramifications.

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

2.1 Data model

We illustrate how the data is organized in the graph database in Figure 2. There
are five major node types or labels denoted by the syntax “:”. In neo4j these labels
help partition the nodes into different groups. :Neuron and :Synapse nodes are
two obvious aspects of a connectome. Neurons contain several properties (with
more details in the Appendix). The bodyId is a mandatory field and is a unique
identifier for the given neuron. Other fields are required as indicated in the
figure. neo4j allows one to index different properties for a node label, reducing
querying time at the cost of more disk storage. Synapses contain x,y,z location,
which are indexed properties that can be accessed using neo4j’s spatial querying
capabilities. The synapses for a given neuron are grouped under different nodes
called :SynapseSet. There is a synapse set that groups all the synapses for each
connection for each neuron. The :Meta node type provides top-level information
about the database.

Figure 2: neuPrint graph data model. This shows the various node types
and properties used for storing data relevant for connectome analysis.

The data model also has a :Segment node label. As noted earlier, neuPrint
was designed to be useful for quality control for connectome datasets. The
current best practice for creating a connectome requires using automatic image
segmentation. This typically creates, in addition to large neuronal pieces, many
small segment fragments that could still be edited and joined to a neuron. A
:Segment node is superset of :Neuron. The criteria for labeling a :Segment

as also a Neuron depends on the usage patterns of the database and what is
considered to be relevant for most queries.

Between these different node types, we define several relationship types.
Prominently, the segments (or neurons) and synapse sets are connected via
a :ConnectsTo property. Individual synapses are linked together through a

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

:SynapsesTo property. We use the :Contains relationship to define the synapse
sets that each segment contains and the synapses that each synapse set contains.

Region information is encoded in the data model at multiple levels. Each
synapse has a boolean value for each ROI it resides in. Since ROIs are hierar-
chically defined, several such values may be set. The synaptic ROI information
is also aggregated over segments and connections and is stored in the roiInfo

field. This enables users to easily extract the number of synapses per region for
a segment or connection.

For each node label, we also partition the node using a dataset-specific indi-
cator. For instance, a neuron for the dataset named “x”, would be “:x Neuron”.
In this manner, we can support multiple datasets in the same database. Queries
can be made across datasets or targeted to a specific dataset.

2.2 Design considerations

This section explains the motivation for some of the data model design decisions.
The primary goal of the data model design was to encourage top-down use of

the data model and to allow users to exploit region information extensively. The
most common queries will only involve neuron connections, which exists as a
redundant higher-level representation in our model. An alternative data model
design could require the user to extract neuronal connectivity by traversing every
synapse between two neurons – a slower, and more complicated query. The ROI
information is similarly encoded at multiple levels to facilitate query performance
and ease of use. Even though it is possible to compute region statistics from the
synapse points, it is faster and easier to find neurons in certain regions and get
basic region statistics by simply querying information available at the neuron
and neuron connection level.

Creating a connectome from automatic segmentation often requires merg-
ing several smaller segments together into large segments [15]. Based on prior
experience, a segmentation contains many more segments than neurons. This
observation motivated creating :Segment and :Neuron labels as a mechanism
of partitioning the most important segments. By restricting most analyses to
:Neuron labels, queries that require linear scans can operate much faster. We
also have an optional property status tracking the quality of a given neuron
reconstruction. Finally, each synapse contains a confidence field, typically com-
puted by automatic synapse prediction, that can be used to model confidence
for certain neuron connections.

Future considerations. The proposed data model can be extended in many
different ways. By allowing multiple datasets in the same neo4j (by using the
dataset prefix for each node label), one could add specific relationships between
related neurons across datasets. Also, if there are many more property types re-
quired for a segment, it might make sense to create a separate :SegmentProperty
node. We could also extend the model to accommodate other cell ultra-structure.
For instance, we would add a :MitoSet to link to :Mitochondrion nodes for

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

each neuron. Finally, a relationship type like :Merge could indicate segments
that could be grouped together.

The current strategy for embedding roiInfo at the connection level and
segment level is convenient but clumsy. Because neo4j does not support map
datatypes (where a list of keys can have an associated value), the data is encoded
as a JSON string. This data cannot be indexed in a meaningful way and requires
decoding the JSON when used as a filter within a query. One could encode region
breakdown per ROI with the introduction of explicit :Region nodes. While
this might be more idiomatic, it leads to more complex user queries, hence our
current design decision. Finally, the current data model treats each ROI or brain
region separately. If the ROIs available form a hierarchy, one could presumably
simplify roiInfo by providing stats only for the ROIs at the lowest level of the
hierarchy.

3 Interfacing with neuPrint

To enable unified access to the underlying data model and other connectomic
data, such as neuron skeletons, we provide a software layer, neuPrintHTTP.
neuPrintHTTP provides a mostly read-only connectomic-specific interface that
allows users to make HTTP requests that then call the underlying neo4j database
or other storage engines. It also simplifies querying within a given dataset. As
previously noted, each node label actually encodes the dataset name, such as
<dataset> <node label>. With neuPrintHTTP, the user can direct queries
to a given dataset without having to provide dataset-specific labels.

neuPrintHTTP is designed in the language Go to exploit convenient concur-
rency semantics, so it can handle several parallel requests efficiently. Furthermore,
the backend of the software layer abstracts the storage into different technology-
specific plugins. For the non-graph data, plugins exist to access DVID [10] and
a generic key-value database. Other databases that can satisfy the interface
requirements can be easily added, such as Google storage or Amazon S3. ne-
uPrintHTTP also supports authentication with Google OAuth and provides
options to make the data read only for anyone, or to restrict access to a set of
authorized users. neuPrintHTTP also has a mode to enable database writes for
given admin-level authorized users.

3.1 neuPrint Web Explorer

In many cases, users might prefer an interactive visual interface with neuPrint over
the use of APIs. To this end, we introduce neuPrintExplorer. neuPrintExplorer is
a web application that interacts with neuPrintHTTP written using the modular
web framework called REACT. It provides a series of different common analysis
queries within different plugins. Each plugin is a gateway into accessing the
data. At its simplest, most queries involve displaying some table of information
based on a simple database request to neuPrintHTTP. In addition, many of
these plugins create visuals such as charts that breakdown neuron or connections

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

(see Figure 3) to separate brain regions or provide links to access other parts of
the dataset.

Figure 3: neuPrintExplorer web application. Queries generate tables of
results. Visualizations exist to see 3D neurons and to help break down the
complexity of the data.

As shown in Figure 3, the web application supports 3D visualization of neurons
by embedding the skeleton viewing tool called SharkViewer (https://github.com/

JaneliaSciComp/SharkViewer). This allows users to see the morphology (shape)
of given neurons (fetching the data from the neuprintHTTP’s skeleton endpoint)
and also the arrangement of synapses on these neurons. We have also imple-
mented a REACT wrapper around the powerful web application neuroglancer
(https://github.com/google/neuroglancer), designed for browsing EM datasets. This
means that we can embed neuroglancer within our application and enable users
to find neurons in neuroglancer based on interactions in neuPrintExplorer. While
neuPrint is designed for analysis only, part of the connectome reconstruction
process sometimes requires users to add annotations or comments on the under-
lying dataset. By supporting neuroglancer, neuPrintExplorer provides a gateway
for lower-level exploration and annotation if needed.

Architecturally, neuprintExplorer is a single-page application written using
REACT/Redux which allows us to leverage other open source components such
as d3 for graphics or material-ui for the UI. We also designed the system to
be modular by providing a plugin system that allows new queries and views
to be added without modifying the core code. There are example plugins and
instructions on how to create a new plugin at https://github.com/connectome-

neuprint/neuPrintExplorerPlugins.

Example plugins

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

Some of the plugins we have created for the most common tasks are:

• Simple connections: find inputs or outputs for a neuron ordered by con-
nection strength. This plugin implements the simple lookup table.

• Find neurons: find neurons in the dataset by name and/or by the regions
that they have inputs and outputs.

• Shortest paths: find all shortest directed paths from one neuron to another
and display the local connectivity graph. This query is generally very
efficient except for very deep (or non-existent) paths. A timeout is set for
a few seconds.

• Find Similar Neurons: find neurons whose inputs and outputs intersect
ROIs similar to the provided neuron.

• Cell type: show all neurons of the same cell type to evaluate the connection
similarity between neuron of the same type (this is an example of a more
complicated query compared to a simple Cypher request).

• Brain region connectivity: show how the brain regions connect to each
other by considering the neurons that go from one region to another.

• Common connectivity: view inputs and outputs common to a set of neurons.

• Custom: allow users to execute custom Cypher queries

• Partner completeness (reconstruction QC tools): examine how fragmented
the inputs or outputs are for a neuron.

• Completeness (reconstruction QC tools): show the percentage of segments
for each brain region that are traced neurons.

To facilitate learning Cypher, relevant plugins provide information on the specific
Cypher query made.

3.2 Programmer APIs

As mentioned, neuPrint provides an HTTP, or REST, interface to enable program-
matic access to the underlying data. Given the diversity of analysis requirements,
many of which are currently unknown, we have aimed for a lean HTTP API from
which more specific capabilities can be written, such as in our python library or
the R packages in natverse [16].

The most basic API endpoint provides direct query access to the neo4j inter-
face through the Cypher query language. Cypher shares semantic similarities
with SQL and is intended to provide a mostly intuitive language to query a graph
database. Below is an example of a query that returns all downstream part-
ners, m, from a given neuron, n with body id 123, with more than 10 connections.

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

MATCH (n :Neuron)-[x :Connections]->(m)
WHERE n.bodyId=123 AND x.weight > 10
RETURN m.bodyId

Most Cypher queries have these three components. A MATCH statement
identifies the pattern to be found. In this case, that is n with a connection
to m (the direction of the connection is indicated by the arrow). A WHERE
statement applies filters to the above MATCH statement. Here we restrict the
match to a neuron n with unique body id 123 and with connection weight or
strength greater than 10. Finally, the RETURN statment provides the results
back to the user, which in this case is just the partner(s) body id. There are
several online resources for learning Cypher. We will show a few other examples
later in the results section.

In addition to this Cypher interface, neuprintHTTP subdivides its HTTP API
into different categories. For example, there is a sub-category called “dbmeta”
for database meta information and one called “npexplorer” to provide convenient
wrappers for common connectome queries used in the web interface defined
below, such as finding neurons that intersect certain regions. This connectomics
interface is a work in progress. We plan to extend the interface to provide
a simplified wrapper around the most common types of Cypher queries, as
access patterns are better understood. More information on this interface
can be found at https://github.com/connectome-neuprint/neuPrintHTTP. More
information on the python API can be found at https://github.com/connectome-
neuprint/neuprint-python.

4 Initializing, updating, deploying neuPrint

To use the neuPrint ecosystem requires loading data into neo4j and configuring
the relevant backend storage solutions to be accessible to neuPrintHTTP. In
this section, we focus on how to load data into the graph database and how to
manage connectome datasets that are being actively revised and reconstructed.
In particular, we hightlight the light-weight data requirements and ability for
neuPrint to be updated via a light-weight incremental interface.

4.1 Ingesting data into the neuPrint graph data model

The current ingestion system (documented in more detail at https://github.com/

connectome-neuprint/neuPrint) involves initializing neo4j with a series of CSV files.
The files are formatted to minimize computation in neo4j to speedup ingestion,
moving the computational burden to creating these CSV files. The motivation
here is that neo4j is typically deployed on a single server, while these CSV files
can be generated outside this environment with a multi-process initialization
approach. Creating this initialization routine to enable efficient processing of
very large datasets is a work in progress and currently only supports having one

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

dataset per database (even though our data model and interfaces allow datasets
to share the same database).

At a high-level the ingested data is relatively compact compared to the size
of the underlying EM dataset. It involves the following components.

• A list of synapse points where each point indicates the parent body id and
ROI(s).

• A edge list that shows how the synapse points are connected.

• A neuron or segment id list that contains associated metadata for each
body id.

• Other metadata such as the brain regions or ROIs available and the version
of the dataset.

4.2 Incrementally updating the neuPrint graph data model

The previous sub-section detailed the initial ingestion process which is streamlined
to enable fast, one-time creation of a neo4j instance. As previously mentioned,
the neuPrint ecosystem is designed to be compatible with modern connectome
reconstruction workflows that use image segmentation. To this end, neuPrint
is mostly decoupled from reconstruction workflows except for an incremental
interface for updating the underlying data model.

Figure 4: Initializing and updating the neuPrint graph data. The
database is initialized by ingesting data via a series of CSV files. To update
the data incrementally, a service monitors dataset changes recorded in Apache
Kafka and makes incremental updates through neuPrintHTTP.

Figure 4 shows the architecture for incrementally updating neuPrint. The
key feature is that we require access to only the changes to the dataset, such as
segment merge and split events, published to a centralized log manager, which
in our case is Apache Kafka. We have light-weight services written in Python

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

that listen for changes recorded to this log and modify the neuPrint data model
using targeted Cypher statements. For example, a user can modify segmentation
data using a tool like [14], which modifies data managed by DVID [10]. DVID
then emits log messages to Kafka, which our Python services then consumes and
updates neuPrint graph data through neuPrintHTTP.

4.3 Deploying and managing multiple datasets

Graph databases perform best when the graph fits into one server’s shared
memory. This is because queries can easily span disparate parts of the graph,
given the so-called small world properties exhibited by many graphs. Fortunately,
the storage requirements for our data model is quite compact compared to the
original EM data and is strongly related to the number of synapses in the dataset.
Extrapolating from results provided in the next section, one could expect 100s
of millions of connections would be manageable on a single large server. Even
larger datasets could presumably be served using fast backup SSDs with some
performance penalty. A more extreme solution to even larger datasets could
involve splitting synapse annotations out of the graph data model.

As previously mentioned, neuPrint allows multiple datasets to be stored in
one graph database. We also allow datasets to be stored across distinct neo4j
databases, since in most cases the queries we are interested typically involve
examining one database at a time. This is helpful for performance reasons
to ensure more dedicated memory for each dataset. We use this capability to
support checkpoint management. If a dataset is actively being reconstructed,
snapshots can be created for each version of the dataset and these versions are
stored in different neo4j instances and orchestrated by neuPrintHTTP.

5 Results

In this section, we provide some insights on the performance characteristics of
our system. Comparing neo4j with other relational databases is beyond the
scope of this paper. Rather, we try to first demonstrate the effectiveness of our
data model and then show that common queries achieve interactive performance
(i.e. queries are under a few seconds). The example queries explored also serve
as documentation for different use cases.

We make available two neuPrint datasets at https://neuprint-examples.janelia.org:
the fly medulla seven-column dataset [2] and fly mushroom body dataset [3].
Storage and ingestion performance characteristics are provided in Figure 5 for
those datasets and a larger unpublished dataset with 10s of millions of synaptic
elements. The ingestion was performed on a machine with 256GB of memory
and 20 processors.

The smaller two datasets, which were some of the largest connectomes
produced when they were published, load in only a few seconds. Notably, the
much larger dataset’s load time shows that performance scales well with increased
size. As mentioned earlier, we format CSV files to streamline ingestion into

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

Figure 5: neuPrint graph representation performance. The ingestion and
storage requirements for three example datasets.

neo4j. Notably, the CSV files are about the same size as the neo4j database on
disk. The relatively small database sizes for even the larger dataset suggest that
a much larger dataset could reside completely within memory on a large server.
Of course, working with larger graphs that do not fit in memory is possible by
leveraging SSD storage with some consequences for performance.

For the next two subsections, we evaluate runtime performance of various
queries on the much larger, unpublished dataset. The graph data was stored
in a cloud VM with memory capacity large enough to hold the entire dataset.
Given the remote location of the server, each query includes several milliseconds
of latency to access it. All rumtime numbers reported are a result of averaging
runtimes of over 50 independent queries.

5.1 Performance Decisions

As discussed in Section 2.2, the graph data model was designed to facilitate
ease of use and runtime efficiency. We evaluate some of the data model design
decisions through three different scenarios shown in Figure 6. For each scenario,
we query the database in two ways: optimized queries that leverage the full
data model and less-optimized queries that assume a more simplistic data model.
In all cases, we notice that the optimized queries are at least 2x faster. We
provide more details in the following paragraphs. While the absolute runtime is
relatively fast for two of these scenarios, programs may issue 100s of queries in a
short-time and 2x runtime improvements would be more noticeable.
Test 1: Segment vs neuron. This test evaluates the decision to partition
a subset of :Segment nodes into :Neuron nodes. The motivation was to focus
queries on the more important, but less numerous :Neuron nodes. The below
queries try to count the number of neurons or segments over a certain size in
each region.

Counting neurons for an ROI.
MATCH (n :Neuron)
WHERE n.ROI AND n.size > 100000000
RETURN count(n)

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

Figure 6: Optimized vs non-optimized query performance. Shows exam-
ples of different types of queries and the performance in milliseconds of querying
using our full data model versus a simplified subset of the data model.

Counting segments for an ROI.
MATCH (n :Segment)
WHERE n.ROI AND n.size > 100000000
RETURN count(n)

In this example, the large performance disparity is also due to ROI names
being indexed to :Neuron. But even if we force a linear scan through all :Neuron
nodes (which involves 1/100 the number of total segments), we still observe
queries under one second. We could in principle create indices for every property
for a segment, but each index comes with a storage cost which is magnified
because there are many more segments than actual neurons. Therefore having
a special :Neuron designation potentially reduces the database size and can
improve performance.

Test 2: roiInfo. This test checks the performance of using the :ConnectsTo

property, roiInfo, versus examining the ROI information by inspecting individ-
ual synapses. The following two queries examine a given neuron connection to
see if the connection is in a given ROI. The first uses the roiInfo property on
the connection edge. The second one inspects region information by looking at
all the synapses within a synapse set.

Checks if connections exist between body1 and body2 in a certain ROI.
MATCH (n :Neuron {bodyId: body1})-[x :ConnectsTo]->(m :Neuron {bodyId:

body2})
RETURN EXISTS(apoc.convert.fromJsonMap(x.roiInfo)[”ROI”])

Checks if connections exist body1 and body2 in a certain ROI without using

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

denormalized roi information.
MATCH (n :Neuron {bodyId: body1})-[:Contains]->(:SynapseSet)-[:ConnectsTo]
->(ss :SynapseSet)<-[:Contains]-(m :Neuron {bodyId: body2})
MATCH (ss)-[:Contains]->(syn :Synapse)
WHERE syn.ROI
RETURN true LIMIT 1

While using the roiInfo property results in a 2x faster query, more impor-
tantly, the first query is much more compact and easier to understand.

Test 3: Accessing synapses through synapse sets. This test motivates
synapeset sets (:SynapseSet) as a mechanism of grouping synapses together. In
general, by grouping synapses together, we can minimize the number of edges on
a given :Segment in the graph model, presumably accelerating queries involving
segments. In our model, :SynapseSet nodes are specific to each connection
between two segments. The queries below provides an example of downloading
all synapses for a given connection either using synapse sets or by determining
the relationships by exploring the lowest level :SynapsesTo relationship.

Retrieving post-synaptic sites for connections with :SynapseSet.
MATCH (n :Neuron {bodyId: body1 })-[:Contains]->(:SynapseSet)-[:ConnectsTo]
->(ss :SynapseSet)<-[:Contains]-(m :Neuron {bodyId: body2 })
MATCH (ss)-[:Contains]->(syn :Synapse)
RETURN syn.location, syn.confidence

Retrieving post-synaptic sites for conneections without :SynapseSet.
MATCH (n :Neuron {bodyId: body1})-[:Contains]->(:SynapseSet)
-[:Contains]->(:Synapse)-[:SynapsesTo]->(syn :Synapse)<-[:Contains]
-(ss :SynapseSet)<-[:Contains]-(m :Neuron {bodyId: body2})
RETURN syn.location, syn.confidence

Both Cypher queries are slightly more complex to express. However, the
synapse sets enable much faster performance.

5.2 Example queries

In this section, we survey different analysis use cases and provide a sense of
runtime performance averaged over several runs. Notably, most queries require
only a fraction of a second. The most complex query involves looking for all
3-hop paths for several random pairs of neurons. The average runtime for this
query is under 5 seconds but we note wide variance with many queries finishing
under a second and some taking around 30 seconds.

Example 1: sum connection weight of partners that are traced.
MATCH (n :Neuron {bodyId: bodyid})-[x :ConnectsTo]->(m :Neuron)
WHERE m.status=”Traced”

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

Figure 7: Performance of example queries. Runtime in milliseconds is
averaged over several different queries of the same type.

RETURN sum(x.weight)

Example 2: find all paths up to 3 in length between two neurons with >=5
connections.

MATCH p =(n :Neuron { bodyId: body1 })-[x :ConnectsTo*..3]
->(m :Neuron bodyId: body2
WHERE ALL (x in relationships(p) WHERE x.weight >= 5)
RETURN count(p)

Example 3: find neurons projecting from one region to another.
MATCH (n :Neuron)
WHERE n.ROI1 AND n.ROI2
WITH apoc.convert.fromJsonMap(n.roiInfo) AS info, n
WHERE info[ROI1].post > 0 AND info[ROI2].pre > 0
RETURN count(n)

Example 4: Find reciprocal connections.
MATCH (n :Neuron {bodyId: body1 })-[x :ConnectsTo]
->(m :Neuron {bodyId: body2 })
WHERE (m)-[:ConnectsTo]->(n)
RETURN true

Example 5: Find reconstruction incompletness for a neuron’s outputs (returns the
distribution of reconstruction statuses including which connections are “Traced”).

MATCH (n :Neuron { bodyId: bodyid })-[x :ConnectsTo]->(m :Segment)

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

RETURN m.status as status, sum(x.weight) AS total

Example 6: Lookup neuron type with regular expressions.
MATCH (n :Neuron)
WHERE n.type=∼“prefix.*”
RETURN count(n)

6 Conclusions

We introduce the neuPrint ecosystem in this paper as a mechanism to aid in
large-scale analysis of EM connectomes. The central component of neuPrint
is the graph data model that stores the data in an efficient manner, accessible
to a variety of users and use cases. To this end, we highlight both a custom
interactive web interface and programmer interfaces. Our results show that our
database enables a diverse set of queries with a dataset containing millions of
synaptic connections.

Creating platforms and resources for large EM connectomic datasets pose dif-
ferent challenges than other neuroscience resources, such as VirtualFlyBrain[17],
the Allen Brain Map[18], or the Mouse Light project[19]. These resources typi-
cally involve the collection of several (often smaller) datasets that are combined
to form canonical atlases. In the case of connectomes, a single dataset is expen-
sive to acquire and often very large. The notion of a canonical connectome atlas
is less meaningful currently. As such, neuPrint emphasizes access to specific
datasets rather than a general compilation of many datasets.

An EM image volume often contains much more information than simply
neurons and synapses. Future work will involve incorporating information about
the location and arrangement of various sub-cellular organelles into the data
model. We believe that tools like neuPrint will be critical for managing the
complexity of such rich datasets, especially as the means for extracting this
information automatically become more reliable.

Acknowledgements

We would like to thank the entire Janelia FlyEM team, many who provided
extensive feedback and support for neuPrint. We thank Emily Joyce for help
with documentation, Eric Trautman and Rob Svirskas for software support, and
Reed George for manuscript feedback.

References

[1] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner, “The structure
of the nervous system of the nematode caenorhabditis elegans,” Philos
Trans R Soc Lond B Biol Sci, vol. 314, no. 1165, pp. 1–340, 1986.

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

[2] S.-y. Takemura, C. S. Xu, Z. Lu, P. K. Rivlin, T. Parag, D. J. Olbris,
S. Plaza, T. Zhao, W. T. Katz, L. Umayam, et al., “Synaptic circuits and
their variations within different columns in the visual system of drosophila,”
Proceedings of the National Academy of Sciences, vol. 112, no. 44, pp. 13711–
13716, 2015.

[3] S.-y. Takemura, Y. Aso, T. Hige, A. Wong, Z. Lu, C. S. Xu, P. K. Rivlin,
H. Hess, T. Zhao, T. Parag, et al., “A connectome of a learning and memory
center in the adult drosophila brain,” Elife, vol. 6, p. e26975, 2017.

[4] A. Motta, M. Berning, K. M. Boergens, B. Staffler, M. Beining, S. Loomba,
P. Hennig, H. Wissler, and M. Helmstaedter, “Dense connectomic recon-
struction in layer 4 of the somatosensory cortex,” Science, vol. 366, no. 6469,
2019.

[5] Z. Zheng, J. S. Lauritzen, E. Perlman, C. G. Robinson, M. Nichols, D. Milkie,
O. Torrens, J. Price, C. B. Fisher, N. Sharifi, et al., “A complete electron
microscopy volume of the brain of adult Drosophila melanogaster,” BioRxiv,
p. 140905, 2017.

[6] J. Cepelewicz, “The us government launches a $100-million “apollo project
of the brain.”,” Scientific American, vol. 8, 2016.

[7] M. Januszewski, J. Kornfeld, P. H. Li, A. Pope, T. Blakely, L. Lindsey,
J. B. Maitin-Shepard, M. Tyka, W. Denk, and V. Jain, “High-precision
automated reconstruction of neurons with flood-filling networks,” Nature
Methods, 2018.

[8] E. Serbe, M. Meier, A. Leonhardt, and A. Borst, “Comprehensive charac-
terization of the major presynaptic elements to the drosophila off motion
detector,” Neuron, vol. 89, no. 4, pp. 829–841, 2016.

[9] “Neo4j: Graphs for everyone.” https://github.com/neo4j/neo4j.

[10] W. T. Katz and S. M. Plaza, “DVID: Distributed versioned image-oriented
dataservice,” Frontiers in Neural Circuits, vol. 13, 2019.

[11] K. M. Boergens, M. Berning, T. Bocklisch, D. Bräunlein, F. Drawitsch,
J. Frohnhofen, T. Herold, P. Otto, N. Rzepka, T. Werkmeister, D. Werner,
G. Wiese, H. Wissler, and M. Helmstaedter, “webKnossos: efficient online
3D data annotation for connectomics,” Nature Methods, vol. 14, no. 7,
pp. 691–694, 2017.

[12] S. Saalfeld, A. Cardona, V. Hartenstein, and P. Tomančák, “Catmaid:
collaborative annotation toolkit for massive amounts of image data,” Bioin-
formatics, vol. 25, no. 15, pp. 1984–1986, 2009.

[13] J. Beyer, A. Al-Awami, N. Kasthuri, J. W. Lichtman, H. Pfister, and
M. Hadwiger, “Connectomeexplorer: Query-guided visual analysis of large
volumetric neuroscience data,” IEEE transactions on visualization and
computer graphics, vol. 19, no. 12, pp. 2868–2877, 2013.

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

[14] T. Zhao, D. J. Olbris, Y. Yu, and S. M. Plaza, “Neutu: Software for
collaborative, large-scale, segmentation-based connectome reconstruction,”
Frontiers in Neural Circuits, vol. 12, 2018.

[15] S. M. Plaza, “Focused proofreading to reconstruct neural connectomes from
EM images at scale,” in Deep Learning and Data Labeling for Medical
Applications, pp. 249–258, Springer, 2016.

[16] J. D. Manton, A. S. Bates, S. R. Jagannathan, M. Costa, P. Schlegel,
T. Rohlfing, and G. S. Jefferis, “The natverse: a versatile computational
toolbox to combine and analyse neuroanatomical data,” bioRxiv, p. 006353,
2019.

[17] “Virtual fly brain.” http://www.virtualflybrain.org/.

[18] “Allen brain map.” https://portal.brain-map.org/.

[19] “Mouselight: Neuron browser.” http://ml-neuronbrowser.janelia.org/.

7 Appendix

This section defines many of the various properties shown in Figure 2.

:Segment (:Neuron) nodes

• bodyId: a unique number for each distinct segment

• pre: Number of pre-synaptic sites on the segment

• post: Number of post-synaptic sites on the segment

• type: Cell type name for given neuron (if provided)

• instance: String identifier for a neuron (if provided)

• size: Number of voxels in the body

• roiInfo: JSON string showing the pre and post breakdown for each ROI
the neuron intersects.

• <roi>: This property only exists for the ROIs that intersect this segment

• status: Reconstruction status for a neuron. By convention, we broadly
consider proofread neurons as being “Traced”.

• cropped: Since datasets often involve a portion of a larger brain, cropped
indicates that a significant portion of a neuron is cut-off by the dataset
extents. By convention, all ”Traced” neurons should be explicitly noted
whether they are cropped or not.

:Synapse nodes

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

• confidence: floating point value depicting confidence in synapse annotation
(higher score means more confidence).

• location: x,y,z location for the synapse. This location will be on its parent
segment. The location is indexed to enable fast spatial queries.

• <roi>: This property only exists for the ROIs that intersect this synapse

:ConnectsTo relationship (between two :Segment nodes)

• weight: number of synapses (or weight) between the two neurons

• roiInfo: JSON string showing the pre and post breakdown for each ROI
the connection intersects

:Meta node

• uuid: some version for this dataset. This could be a DOI. Similar to a GIT
commit ID used in software development.

• tag: a release tag similar to the tags provided for software releases (e.g.,
“v1.0”)

• primaryRois: an array of ROIs that make up the primary ROIs (or default
level of ROIs in the ROI hierarchy). This is useful for various plugins in
neuPrint explorer.

• roiInfo: JSON string showing the pre and post breakdown for each ROI.

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.16.909465doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.16.909465
http://creativecommons.org/licenses/by/4.0/

