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Abstract

In systems neuroscience, most models posit that brain regions communicate information under con-
straints of efficiency. Yet, metabolic and information transfer efficiency across structural networks are
not understood. In a large cohort of youth, we find metabolic costs associated with structural path
strengths supporting information diffusion. Metabolism is balanced with the coupling of structures sup-
porting diffusion and network modularity. To understand efficient network communication, we develop a
theory specifying minimum rates of message diffusion that brain regions should transmit for an expected
fidelity, and we test five predictions from the theory. We introduce compression efficiency, which quan-
tifies differing trade-offs between lossy compression and communication fidelity in structural networks.
Compression efficiency evolves with development, heightens when metabolic gradients guide diffusion,
constrains network complexity, explains how rich-club hubs integrate information, and correlates with
cortical areal scaling, myelination, and speed-accuracy trade-offs. Our findings elucidate how network
structures and metabolic resources support efficient neural communication.
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1 Introduction

Darwin described the law of compensation as the concept that “to spend on one side, nature is forced to

economise on the other side,” [1]. In the economics of brain connectomics, natural selection optimizes net-

work architecture for versatility, resilience, and efficiency under constraints of metabolism, materials, space,

and time [2, 1, 3]. Networks – composed of nodes representing cortical regions and edges representing white

matter tracts – strike evolutionary compromises between costs and adaptations [2, 1, 4, 5, 6, 7], whereby

disruptions may contribute to the development of neuropsychiatric disorders [8, 9, 10, 11]. To understand

how the brain efficiently balances resource constraints with pressures of information processing, models of

information diffusion in brain networks are necessary. Such models have gained traction [12, 13, 14, 5, 15, 16],

but it is unknown how a network of brain regions efficiently transmits messages to targets in the presence of

countless alternative routes that are spatially embedded in diverse architectures of connectivity [3, 16, 17].

Novel brain network communication models are needed because the predominant theories of shortest path

routing and diffusion have been criticized as infeasible or inefficient [3, 15, 16]. In shortest path routing,

neural signals travel from source to target using either the fewest connections or the shortest spatial dis-

tance [16]. Shortest path routing assumes biologically infeasible global information of path length or greedy

selection of distances. Diffusion models assume an inefficient process of random propagation from source

to target. In contrast to these models, the efficient coding hypothesis proposes that the brain represents

information in a metabolically economical or compressed form by taking advantage of redundancy in the

structure of information [18, 2]. Coding efficiency characterizes low-dimensional neural representations and

dynamics supporting cognition [19, 20, 21]. New models should therefore demonstrate metabolic and infor-

mation transfer efficiency that predictably differ according to variation in brain network structure across the

protracted development of structural connectivity [3, 12, 5, 22, 17, 7, 16].

We develop a brain network communication model of efficient coding by information diffusion (Figure 1A).

We apply our model to 1,042 youth (aged 8-23 years) in the Philadelphia Neurodevelopmental Cohort who

underwent diffusion tensor imaging (DTI) and arterial-spin labeling (ASL; see Supplementary Figure 1) [23].

To operationalize metabolic expenditure, we use ASL, which measures cerebral blood flow (CBF) and is

correlated with glucose expenditure and ATP consumption (Figure 1B) [24]. We join work modeling efficient

coding with rate-distortion theory [25], a branch of information theory that provides the mathematical foun-

dations of lossy compression [26]. By assuming that the minimal amount of noise is achieved by signals that
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diffuse along shortest paths [12, 14, 16], we calculate the optimal rate of signal transmission to communi-

cate between brain regions with an expected transmission fidelity in the capacity-limited structural network.

Specifically, we define the expected signal distortion as the probability of not propagating along the shortest

path. In developing the framework, we seek to understand how network structure and metabolic resources

support and constrain the efficient transmission of information.

To evaluate the validity of our efficient diffusion model, we assess five published predictions of rate-distortion

theory and information diffusion (Figure 1C) [27, 25]. As we will describe in detail, hypotheses of information

diffusion models posit how network structure guides propagating signals in support of metabolic efficiency,

transmission fidelity, and information integration [28, 12, 13, 29]. Hypotheses of rate-distortion theory posit

that the trade-off between message fidelity and compression governs predictable differences in the efficiency

of information broadcasting across networks [27, 25]. In evaluating the validity of our efficient diffusion

model, we introduce compression efficiency, which quantifies how much structural networks prioritize lossy

compression versus communication fidelity. To demonstrate the utility of our model, we use compression

efficiency to test the hypothesis that diffusing information is integrated and broadcast by the brain’s highly

connected regions or hubs [29]. Finally, we use compression efficiency to explain individual variation in

the speed-accuracy trade-off of cognitive performance, and we contrast its explanatory power with that of

competing measures [30]. Our model advances the current understanding of how efficiency, noise, and infor-

mation integration are associated with metabolic resources and network architecture.

2 Results

2.1 Metabolic running costs of network communication architectures

We sought to distinguish how brain metabolism is associated with structural signatures of shortest path

routing versus diffusion signaling. Although shortest path routing is hypothesized to reduce metabolic cost,

existing evidence for this hypothesis remains sparse [28]. To quantify the extent to which a person’s brain is

structured to support shortest path routing, we used the global efficiency, a commonly computed measure of

the average shortest path strength between all pairs of brain regions. Intuitively, global efficiency represents

the ease of information transfer by the strength of direct connections in a network. As an operationalization

of metabolic running cost, we considered CBF, which is correlated with glucose consumption. To test the
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Figure 1: The efficient diffusion model and associated hypotheses. (A) To model efficient coding, we apply rate-
distortion theory, a branch of information theory that provides the foundations of lossy compression, to a previously
proposed network measure called resource efficiency [12]. Resource efficiency models probabilistic diffusion by shortest
paths, solving for the number of random walkers required for at least one to propagate by the shortest path given an
expected probability. By assuming that the minimal amount of noise is achieved by signals that diffuse along shortest
paths, we calculate the optimal information rate to communicate between brain regions with an expected transmission
fidelity in the rate-limited (or capacity-limited) structural network. (B) Across the brain, regional CBF measured from
1,042 participants in our study correlates with the regional cerebral metabolic rate for glucose acquired from published
maps of 33 healthy adults (Pearson’s correlation coefficient r = 0.47, df = 358, pSPIN < 0.001), replicating prior findings
and supporting the operationalization of metabolic expenditure using CBF [24]. We use CBF to investigate the relationship
between metabolic demands and network organization supporting either shortest path routing or diffusion. (C) Importantly,
our model generates five predictions from the rate-distortion theory and information diffusion literature [25, 27, 29]. First,
information transfer should produce a characteristic rate-distortion gradient in empirical and artificial networks, where
exponentially increasing information rates are required to minimize signal distortion. Second, information transfer efficiency
should improve with manipulations of the system architecture designed to facilitate signal propagation, where information
costs decrease when message diffusion is biased with regional differences in metabolic rates. Third, the information rate
should vary as a function of the costs of error, with discounts when costs are low and premiums when costs are high. Fourth,
brain network complexity should flexibly support communication regimes of varying costs and fidelity, where a high-fidelity
regime predicts information rates that exponentially increase as the network grows more complex, and a low-fidelity regime
predicts asymptotic information rates indicative of lossy compression. Fifth and finally, structural hubs should integrate
incoming signals to efficiently broadcast information, where hubs (compared to other brain regions) have more compressed
input rates and higher transmission rates for equivalent input-output fidelity.
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Figure 2: Metabolic running costs support brain network architectures for diffusion. (A) Global efficiency increases
with development while cerebral perfusion declines (Fglobal efficiency, age = 50, estimated df = 3.46, p < 2 × 10−16;
FCBF,age = 69.22, estimated df = 3.74, p < 2 × 10−16). Contrary to prior reports, the relationship between CBF and
global efficiency is confounded by age (r = 0.01, df = 1039, p = 0.79). Therefore, the claim of reduced metabolic cost
associated with shortest path routing is weakened. (B) All brain regions are accessible to signals randomly walking across
5 edges or more. Bluer nodes represent greater normalized node strengths, reflecting the accessibility of the brain region
to a random walker diffusing along the structural connectome with differing walk lengths. Shortest path routing predicts
that only shortest path walks of length 5 or less are associated with CBF. Diffusion models predict that longer random
walk paths are also associated with CBF. (C) Global CBF is negatively correlated with the strengths of structural paths
with lengths of at least 7 when controlling for age, sex, age-by-sex interactions, degree, density, and in-scanner motion
(t = −1.59 to −2.81, estimated model df = 11.45, FDR-corrected p < 0.05). Metabolic expenditure is related to
structure supporting signal diffusion, rather than shortest path routing. (D) Regional CBF is positively correlated with
high-integrity connections comprising the structural scaffolds supporting differing walk lengths (ρ = 0.10 to 0.15, df = 358,
FDR-corrected p < 0.05), controlling for age, sex, age-by-sex interaction, degree, density, and in-scanner motion. Asterisks
denote statistical significance following correction for multiple comparisons. Together, these data suggest that metabolic
cost is associated with a regional profile of white matter path strengths that support diffusing messages. Individuals with
greater path strengths tend to have lower global metabolic expenditure, while brain regions with greater path strengths
tend to have greater metabolic expenditure.
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spatial correlation between CBF and glucose consumption, we used a spatial permutation test that gen-

erates a null distribution of randomly rotated brain maps that preserves the spatial covariance structure

of the original data; the p-value reflecting significance is denoted pSPIN (Method 7.7.6). We replicated the

previously reported linear association with glucose consumption (Figure 1B; Pearson’s correlation coefficient

r = 0.47, df = 358, p < 0.001; pSPIN < 0.001) [24]. Therefore, if shortest path routing is linked to a decrease

in metabolic expenditure, then we should observe a negative correlation between global efficiency and CBF.

Moreover, the negative correlation should explain variance in the data above and beyond the developmen-

tal effects of age. In a sensitivity analysis excluding age, but controlling for mean gray matter density,

sex, mean degree, network density, and in-scanner motion, the global efficiency was correlated with CBF

(r = −0.20, df = 1039, p < 0.001). However, we found that global efficiency was positively correlated with

age (Figure 2A; F = 50, estimated df = 3.46, p < 2× 10−16), while CBF was negatively correlated with age

(F = 69.22, estimated df = 3.74, p < 2 × 10−16), and after controlling for age we do not find a significant

relationship between global efficiency and CBF (r = 0.01, df = 1039, p = 0.79). Therefore, age confounds

the relationship between global efficiency and CBF, and the data does not support the claim that shortest

path routing is associated with reduced metabolic expenditure.

Rather than being driven by shortest path routing, metabolic expenditure could instead be associated with

communication by diffusion. Each brain region can reach every other brain region via diffusion along paths

of 5 connections (Figure 2B). A diffusing message will likely not take the most efficient paths and must

instead rely on the structural strengths of longer paths. Hence, if brain metabolism is associated with com-

munication by diffusion, then CBF should correlate with the strength of the white matter paths greater

than length 5. We computed the strength of connections across different diffusion distances using the matrix

exponent of the structural network (see Method 7.5.2 and Supplementary Figure 1B). We then tested the

association between longer paths and metabolic expenditure across both individuals (Figure 2C) and regions

(Figure 2D). Considering variation across individuals, we found that the average node strengths for walks

of length 2 to 15 were negatively correlated with CBF (t = −1.59 to −2.81, estimated model df = 11.45,

FDR-corrected p < 0.05), controlling for age, sex, age-by-sex interaction, average node degree, network den-

sity, and in-scanner motion (Figure 2C). The negative correlations between CBF and the average connection

strengths suggest that the greater the connection integrity, the lower the metabolic expenditure. When

examining variation across brain regions, we found that node strengths comprising walks of lengths 2 to 15

were positively correlated with CBF (Spearman’s rank correlation coefficient ρ = 0.10 to 0.15, df = 358,
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FDR-corrected p < 0.05), controlling for age, sex, age-by-sex interaction, average node degree, network den-

sity, and in-scanner motion (Figure 2D). Brain regions with greater path strengths tended to have higher

metabolic expenditure. The convergent findings of an association between CBF and path strengths across

individuals and regions suggest that metabolic running costs are linked to diffusion signaling and not to

shortest path routing.

2.2 Adaptive trade-offs between metabolism and network architecture

Communication between brain regions or modules requires reliable broadcasting of information with an

expected fidelity. Although our data does not link metabolic expenditure to shortest path routing, com-

munication of information diffusing along shorter paths should nevertheless confer advantages in speed and

signal fidelity compared to longer paths. To test this hypothesis, we investigated whether brain metabolism

is associated with network structures that support diffusion over shorter paths. Specifically, we assessed the

association between CBF and path transitivity, a measure of the density of connections re-accessing shortest

paths, thereby guiding diffusion along efficient pathways (Figure 3A). Prior reports have demonstrated that

path transitivity in structural networks is positively correlated with fMRI BOLD functional connectivity

[13], a finding that we replicate in our own data (Supplementary Figure 2). Path transitivity requires more

connections and presumably incurs greater metabolic running costs associated with both the structural con-

nections and increased functional connectivity [31]. When considering variation across individuals, we find

that greater path transitivity is associated with greater CBF (Supplementary Figure 3A; t = 2.27, estimated

model df = 11.45, p = 0.02; controlling for age, sex, age-by-sex interaction, degree, density, and in-scanner

motion). This result suggests that brain networks may strike a compromise between metabolic cost and the

signaling advantages of path transitivity. Next, we sought to assess whether the relationship between brain

metabolism and path transitivity was moderated by development. We found that the interaction between

path transitivity and age was positively associated with CBF (F = 24.6, estimated df = 3.13, p < 2× 10−6;

Supplementary Figure 3B). Increased metabolic expenditure associated with greater path transitivity was

prominent during adolescence, when global CBF tends to decrease [32].

We expanded our analysis of compromises between brain metabolism and network topology by considering

multiple trade-offs. Specifically, we considered variations in metabolic cost, path transitivity, and modu-

larity across individuals (Figure 3B). We found that the relationship between path transitivity and global
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Figure 3: Trade-offs between modularity and diffusion architecture locally optimize metabolic running cost. (A)
Greater path transitivity enhances the ability of diffusing signals to re-access the shortest path when the number of closed
paths (triangles) returning to nodes on the path is high; path transitivity of the brain’s structural network is statistically
associated with fMRI BOLD activity [13]. Modularity is a feature of brain organization across species whereby regions
cluster into highly intraconnected communities; modularity is thought to confer efficient use of physical materials, segregate
information representation, and support efficient information transfer among brain regions. (B) The 3-dimensional fitness
landscape conveys adaptive trade-offs associated with brain metabolism in the context of evolutionary constraints on
efficiency. (C) When we consider variation across individuals, we find that economical network architectures are adaptively
balanced with metabolism. Metabolic cost is associated with the interaction of path transitivity and modularity (t = 2.56,
estimated model df = 13.43, p = 0.01), controlling for age, sex, age-by-sex interaction, degree, density, and in-scanner
motion. The mean path transitivity and modularity across all individuals (red dotted lines projected from frequency
histograms) approach a saddle point (critical point), defined as a point on the surface that is both a relative minimum
and a maximum along different axes. The saddle point suggests that adaptive compromises in network architecture are
constrained by dual objectives. Along one axis, the objective is minimizing metabolic expenditure by coupling modularity
with path transitivity. Along the other axis, the objective is maximizing metabolic expenditure by decoupling modularity
from path transitivity. This landscape suggests the existence of compromises which balance adaptations of functional
flexibility and spatial efficiency with material and metabolic costs.
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CBF is moderated by modularity (t = 2.56, estimated model df = 13.43, p = 0.01). When we consider

variation across individuals, we find a saddle point function of metabolic costs, where the means for both

path transitivity and modularity fall at the critical point (Figure 3C). A saddle point suggests that adaptive

compromises in network architecture are constrained by dual objectives. Along one axis, the objective is

minimizing metabolic expenditure by coupling modularity with path transitivity. Along the other axis, the

objective is maximizing metabolic expenditure by decoupling modularity from path transitivity. Brain net-

works may negotiate multiple trade-offs between metabolism and structure such that most brain networks

reside around a critical point with locally optimal metabolic savings when network structure is coupled

(saddle point), whereas a smaller fraction of brain networks exhibit globally optimal metabolic savings when

network structure is decoupled (global minima).

2.3 Systems-level efficient coding as lossy compression

To understand how the brain balances the transmission rate of diffusing signals and signal distortion across

different network architectures, we propose a measure called compression efficiency, which synthesizes short-

est path routing and diffusion (Figure 1A and 4A). We have thus far described how individual differences in

metabolic running costs and brain architecture suggest that the brain communicates by diffusion. We for-

malize a rate-distortion model of efficient diffusion by assuming that the minimal amount of noise is achieved

by signals that diffuse along shortest paths (Figure 1A and 4B). We define distortion as the probability of

a diffusing signal not taking the shortest path. To understand how the brain balances information rate and

distortion, we measure resource efficiency: the number of resources required for at least one resource to

randomly walk along the shortest path to a target cortical region, with an expected probability (Figure 4C;

Method 7.5.5). Just as rate-distortion theory predicts the minimum information rate needed to achieve a

specified signal distortion transmitting through a capacity-limited channel, resource efficiency predicts the

minimum number of resources needed to achieve a specified level of signal distortion resulting from diffusion

across the structural connectome (Figure 4D). The information-theoretic trade-off between information rate

and signal distortion is defined by individually different rate-distortion gradients (Figure 4E). As distor-

tion increases, the information rate decays exponentially. By analogy with rate-distortion theory, here we

consider the extent to which the brain’s structural connectome prioritizes compression versus fidelity. We

refer to this tradeoff as the compression efficiency (Figure 4E), and define it as the slope of the exponential

rate-distortion gradient (Method 7.5.6).
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Figure 4: Neurodevelopment places a premium on fidelity. (A) Rate-distortion theory is a mathematical framework
that defines the required amount of information for an expected level of signal distortion during communication through
capacity-limited channels. Loss functions, such as the mean squared error, are defined to map encoded and decoded signals.
In a given channel, compressed messages demand lower information rates at the cost of fidelity. (B) In brain networks,
we define the distortion function as the probability of a diffusing signal not taking the shortest path. This definition is
reasonable because the temporal delay, signal mixing, and decay introduced by longer paths collectively increase distortion.
(C) The Galton board depicts the problem of determining the minimum number of resources (diffusing messages) that the
starting node should prepare to transmit in order for one resource to propagate by the specified path given an expected
probability. Formalizing the shortest path distortion function allows analytical solutions to determine the corresponding
minimum rate of information using the metric of resource efficiency. Recall that the resource efficiency solves for the
number of randomly walking resources (or messages) required for at least one walker to propagate by the shortest path
with an expected probability. (D) In applying our theory to the structural connectome, we observe a characteristic curve
that is consistent with that predicted by the rate-distortion function. Just as an artificial pixelated image is governed
by the same information-theoretic rules as a naturalistic image, the synthetic random networks exhibit the rate-distortion
gradient also observed in brain networks, supporting the first prediction of rate-distortion theory. The blue curve depicts
the loess fit of the mean rate-distortion function across all individuals. The black curve depicts the mean rate-distortion
function for Erdös-Renýı random networks whose edges maintain the weights from empirical measurements. The resources
required of brain connectomes and random networks differ by distortion (F = 10 × 105, df = 29120, p < 2 × 10−16),
highlighting the established graph theoretical notion that random networks increase shortest path accessibility but demand
a heftier materials cost. (E) We measure the differing slopes of the semi-log plot of the rate-distortion gradients as
differing compression efficiency. Then, we interpret variation across individuals in the language of rate-distortion theory.
For example, consider two brain networks functioning at the same low level of distortion. The brain network with the
flatter slope between resources and distortion has greater compression efficiency because the network architecture confers
resource discounts. In comparison, the brain network with a steeper slope has reduced compression efficiency because the
network architecture pays a premium for the same expected fidelity. (F) When we consider variation across individuals,
we find that compression efficiency decreases with age and differs by sex (Supplementary Figure 4; F = 27.54, estimated
df = 2.17, p < 0.001), suggesting that neurodevelopment places a premium on high-fidelity network communication.
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To evaluate the roles of resource efficiency and rate-distortion theory in the brain, we assess five previ-

ously published predictions of rate-distortion theory and information diffusion (Figure 1C) [25, 29]. The

first prediction of rate-distortion theory is that communication systems should produce an information rate

that is an exponential function of distortion. Moreover, artificial networks should be governed by the same

information-theoretic rules as empirical networks. To test this prediction, we computed the resource ef-

ficiency of each individual, with the probability of diffusion along the shortest path ranging from 10% to

99.9% (Figure 4D). We designed artificial communication systems as Erdös-Renýı random networks (Method

7.6), which predominantly transfer information by short paths [33]. We observed an exponential gradient

in individual brain networks and the Erdös-Renýı random networks, consistent with the first prediction of

rate-distortion theory. Furthermore, the random networks, which are composed of more short connections

than empirical brain networks, incurred a decreased resource cost compared to empirical brain networks

(Figure 4D and Supplementary Figure 4; F = 10 × 105, df = 29120, p < 2 × 10−16), consistent with the

intuition that a greater prevalence of short connections in the random network translates to greater like-

lihood of shortest path diffusion [33]. Rate-distortion trade-offs vary as a function of age and sex, where

individual differences in compression efficiency (Figure 4E) were negatively correlated with age (F = 27.54,

estimated df = 2.17, p < 0.001), suggesting that neurodevelopment places a premium on fidelity (Figure 4F).

Compression efficiency differs on average by sex, in parallel with the sex-specific developmental trajectories

of CBF (Supplementary Figures 5-6). The data, therefore, indicate that resource efficiency gradients – that

is, the trade-offs between resources and distortion – vary predictably across different network architectures.

The second prediction of rate-distortion theory is that manipulations of the system architecture designed to

facilitate signal propagation should reduce resource costs. Efficient coding characterizes the constraint on in-

formation costs by metabolic costs. Whereas we have so far only provided information about local connection

strengths to diffusing signals, we now modify edge weights to additionally describe regional changes in local

brain metabolic rate (Figure 5A; Method 7.5.7). Metabolic chemotaxis describes a mechanism of diffusion

in which random propagation is biased along gradients of increasing or decreasing metabolic resources. De-

pending on information processing demands, metabolic efficiency could be characterized by connected regions

with high metabolic resources that attract chemosensitive neural signals or that repel them to connected

regions with lower cost. To assess if chemosensitive neural signals support compression efficient coding,

we modify our information diffusion model to allow brain regions to either attract random walkers with
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increased probability or repel walkers with decreased probability as a function of greater metabolic expendi-

ture in the source and target regions. If chemotactic diffusion along metabolic gradients reduces the required

resources compared to diffusion along the original network of structural connection strengths (Figure 5B),

then chemotaxis will appear to support compression efficiency. In the structural networks biased to attract

or repel diffusing signals by regions of high cerebral blood flow, we observed that the rate-distortion gradient

differs between unbiased diffusion and chemotactic diffusion when distortion is less than 60% (Figure 5C;

F = 6×105, df = 29120, all p-values corrected using the Holm-Bonferroni method for family-wise error rate;

p < 0.05 at 60% distortion, p < 0.01 at 50% distortion, and p < 0.001 at distortion less than or equal to

40%). The differences arise from reduced resource requirements introduced by additional information from

regional CBF (attract: t = 20.9, df = 1993.9, p < 0.001; repel: t = 22.69, df = 1970.7, p < 0.001; Figure 5D),

supporting the second prediction of rate-distortion theory that metabolic rates support the efficient com-

munication of information among brain regions. Together, these results support the use of rate-distortion

theories of capacity-limited, efficient coding to model brain network communication by diffusion.

The third prediction of rate-distortion theory states that the information rate should vary as a function

of the costs of errors in empirical systems that interact with the environment. If errors are more costly

for networks operating at a high fidelity with exponentially greater information rates, then we should ob-

serve a resource rate surpassing the minimum predicted by rate-distortion theory. In contrast, if errors are

less costly for networks operating at low fidelity with exponentially reduced resource rates, then we should

observe no more than the minimum predicted resources. We observed that brain networks commit more

resources than required for very low levels of distortion, such as 0.1%, but allocate the predicted resources

or fewer to guarantee levels of distortion between 2% and 90% (Figure 5C). Hence, the third prediction of

rate-distortion theory was consistent with our observation of a premium placed on very low signal distortion

and a discounted cost of greater distortion.

Next, we sought to test the fourth prediction of our model by identifying network properties that support

a system that we might expect to transmit information in a high- or low-fidelity regime according to the

environment in which the system operates. Systems functioning in high-fidelity regimes place premiums on

accuracy, even given some expected level of error. Systems functioning in low-fidelity regimes are tolerant to

noise and fix resource rates despite increasing complexity. With increasing complexity, a high-fidelity regime

will continue to place a premium on accuracy, whereas a low-fidelity regime will tolerate noise in support of
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Figure 5: Metabolic chemotaxis supports efficient coding. (A) Chemotactic diffusion was modeled as a biased random
walk with transition probabilities modified by regional CBF. A biased random walk attracting diffusing signals to regions
of high CBF was modeled by constructing a biased structural connectivity matrix. The weight of an edge between region
i and region j was given by the average, normalized CBF between pairs of brain regions multiplied by the weight of the
structural connection. For biased random walks repelling diffusing signals from regions of high CBF, the weight of an
edge was given by (1 minus the normalized inter-regional CBF) multiplied by the weight of the structural connection. (B)
The second prediction of rate-distortion theory is that providing additional chemotactic information to the information
processing system will reduce information cost. Specifically, we hypothesized that diffusion along metabolic gradients
would increase compression efficiency. The alluvial diagram depicts our expected results: if metabolism acts as a medium
supporting efficient coding, then we should observe reduced minimum resources in chemotactic diffusion compared to
unbiased diffusion. (C) The variation of predicted minimum resources required for distortion levels less than 60% is explained
by the interaction of the distortion level with the type of chemotactic diffusion (*** : p < 0.001), supporting the second
prediction of rate-distortion theory. According to the third prediction of rate-distortion theory, we should expect asymmetries
about the rate-distortion gradient where there are asymmetric costs of error. Specifically, the cost of error should be
greater during neural dynamics requiring high-fidelity communication compared to low-fidelity communication. The level
of distortion and type of random walk fully explain variance in resource efficiency (R2 = 0.99, F = 6×105, df = 29120, all p-
values corrected using the Holm-Bonferroni method for family-wise error rate; ∗ : p < 0.05, ∗∗ : p < 0.01, ∗∗∗ : p < 0.001).
Across individual brain networks, the resources required for 0.1% distortion are greater than predicted by the rate-distortion
gradient, reflecting a premium placed on very high fidelity signaling. At greater levels of distortion, the resources required are
less than predicted by the rate-distortion gradient. The premium cost of high-fidelity communication compared to discounts
of low-fidelity communication supports the third prediction of rate-distortion theory. (D) In agreement with our hypothesis
that chemotaxis supports efficient coding, the number of required resources decreased in chemotactic diffusion compared
to unbiased diffusion (tunbiased,attract = 20.87, df = 1993.9; tunbiased,repulse = 22.69, df = 1970.7; ***: p < 0.001).
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lossy compression. For an information-encoding channel aiming to achieve an expected level of signal distor-

tion in a high-fidelity regime, rate-distortion theory predicts that the information rate, here operationalized

as resources, should monotonically increase with the complexity of the information-encoding system (Figure

6A). To evaluate this prediction, we operationalized complexity as network size, or the number of nodes,

to maintain consistency with the methods of existing predictions [27]. In a low-fidelity regime, the infor-

mation rate should plateau as a function of network complexity. We observed that the minimum number

of resources increases monotonically in brain networks reparcellated at different resolutions, consistent with

a high-fidelity regime (Figure 6B and Supplementary Figure 7). Brain networks with a greater number of

parcellated brain regions or modules will require exponentially greater information rates to achieve the same

level of distortion as a brain with fewer parcels or modules.
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Figure 6: Compression efficiency constrains brain network complexity. (A) High versus low fidelity communication
regimes make different predictions regarding the minimum resources required for an expected distortion and system com-
plexity. We define system complexity as the network size, or the number of functionally and cytoarchitectonically distinct
modules. In the high fidelity regime, the brain should place a premium on high fidelity signaling by allocating a mono-
tonically increasing information rate to achieve low distortion despite increasing system complexity. In the low fidelity
regime, the brain should place a premium on lossy compression by asymptotically capping the information rate despite
increasing system complexity. (B) Resources scale monotonically with network size, consistent with the prediction of a
high fidelity regime. Individual brain networks were reparcellated using the Lausanne brain atlases with 83, 129, 234, 463,
and 1,015 parcels, respectively. Together, the monotonically increasing resource demand highlights a trade-off between
high fidelity communication and network complexity, indicating an additional evolutionary constraint on brain network size
and complexity. (C) Shortest path complexity is the average number of nodes comprising path transitivity. Resources scale
asymptotically with inter-individual differences in path transitivity, consistent with a low-fidelity regime for lossy compres-
sion and storage savings. The non-linear model outperforms a linear model (non-linear AIC = 7902, linear AIC = 7915;
non-linear BIC = 7964, linear BIC = 7968). Lossy compression of a signal by differing densities of path transitivity is
perhaps akin to image compression by pixel resolution. Reduced path transitivity, or pixel resolution, tends to result in
more compression, while greater path transitivity supports greater fidelity.

In addition to high-fidelity communication, a flexible system of communication may also transfer information

in a low-fidelity regime to restrict information rates in noisy environments. We sought to investigate the

properties of network architecture that support lossy compression, consistent with predictions of a low fidelity
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regime. If the shortest path represents the structure supporting highest fidelity, then we hypothesized that

path transitivity (Figure 3A), as longer approximations of shortest paths, supports lossy compression and a

low fidelity regime. To remain consistent with the method of existing predictions [27], the complexity of the

shortest path was defined as the number of nodes comprising the local detours re-accessing the shortest path

in the measure of path transitivity. We found that the number of resources begins to plateau non-linearly

as a function of shortest path complexity, consistent with a low-fidelity regime (Figure 6C). Model selection

criteria support the non-linear form compared to a linear version of the same model (non-linear AIC = 7902,

linear AIC = 7915; non-linear BIC = 7964, linear BIC = 7968). The non-linear fit of these data suggest

that path transitivity supports neural communication that is tolerant to noise, consistent with the conception

of path transitivity as local detours from the highest-fidelity shortest path.

2.4 Neurodevelopment and evolutionary constraints of compression efficiency

Motivated by our findings corroborating the validity of compression efficiency and that neurodevelopment

places a premium on fidelity (Figure 4F), we sought to understand the association between compression

efficiency and evolutionary properties of cortical organization. Evolutionarily new connections may support

higher-order and flexible information processing [4], emerging from disproportionate expansion of the as-

sociation cortex. The association cortex also contains reduced cortical myelin compared to sensorimotor

cortices [34], which promotes efficient transmission and propagation speed while preserving communication

fidelity [2]. To explore how compression efficiency relates to cortical areal expansion and myelination, we

used published maps of cortical myelination (estimated using published maps of T2/T1w MRI measures

with histological validation [34]) and areal scaling (estimated as allometric scaling coefficients defined by

the non-linear ratios of surface area change to total brain size change over development; Figure 7B). To

study the compression efficiency of brain regions sending or receiving messages, we computed the send and

receive compression efficiency of brain regions (Figure 7A; Method 7.5.5). We found that brain regions with

greater sender compression efficiency tend to have greater myelin content (Figure 7C; r = 0.23, df = 358,

pSPIN, Holm-Bonferroni = 0.04), consistent with the understanding that myelination enhances the speed and

efficiency of neural transmission, as regions with greater compression efficiency require a reduced rate of

resources for a given fidelity. Brain regions that disproportionately expand in relation to total brain size

during neurodevelopment tend to prioritize input fidelity (r = −0.20, df = 358, pSPIN, Holm-Bonferroni = 0.03)

and transmission compression (r = 0.14, df = 358, pSPIN, Holm-Bonferroni = 0.045). In contrast, brain regions

that are disproportionately out-scaled by total brain expansion may save material, space, and metabolic

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.14.906842doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.14.906842
http://creativecommons.org/licenses/by-nc-nd/4.0/


1.2

1.4

1.6

−1.6 −1.5 −1.4

Regional compression efficiency

(sender)

C
o

rt
ic

a
l 
m

y
e

lin
 c

o
n

te
n

t

A

B

1.09 1.75 

Cortical myelin content

Compression efficiency (sender)

-1.67  -1.38

r = 0.23
*

0.638 1.35 

Cortical areal scaling

r = -0.20
*

0.8

1.0

1.2

−2.4 −2.0 −1.6 −1.2

-0.877-2.38 

Compression efficiency (receiver)

C
o

rt
ic

a
l 
a

re
a

l 
s
c
a

lin
g

(l
o

g
-l
o

g
 c

o
e

ff
ic

ie
n

t)

0.8

1.0

1.2

−1.6 −1.5 −1.4

r = 0.14
*

C

Regional compression efficiency

(sender)

Regional compression efficiency

(receiver)

C
o

rt
ic

a
l 
a

re
a

l 
s
c
a

lin
g

(l
o

g
-l
o

g
 c

o
e

ff
ic

ie
n

t)

Prioritize

output fidelity

Prioritize

output compression

Prioritize

input fidelity

Prioritize

input compression

Figure 7: Adaptive advantages of compression efficiency align with patterns of cortical myelination and areal scaling.
(A) Sender compression efficiency differs regionally across the cortex and describes the number of diffusing messages
required to transmit information with specified signal fidelity (Supplementary Figure 8). Receiver compression efficiency
describes the number of messages required to receive information with an expected signal fidelity. Regional values were
averaged across individuals. (B) Brain regions differ in myelination and non-linear spatial scaling ratios of surface area
change to total brain size change over development. Regional values were obtained from published maps [34, 7]. (C) Cortical
regions with greater levels of myelin tend to have greater sender compression efficiency (r = 0.23, pSPIN, Holm-Bonferroni =
0.04), consistent with myelin reducing conduction delay and promoting the efficient trade-off between signal rate and
fidelity to reduce the transmission rate while preserving fidelity. Cortical areal scaling in neurodevelopment reflects patterns
of evolutionary remodeling. Brain regions that have higher sender compression efficiency tend to disproportionately expand
in relation to total brain size during neurodevelopment (r = 0.14, df = 358, pSPIN, Holm-Bonferroni = 0.045). We observed
that cortical regions with the lowest receiver compression efficiency, placing a premium on information processing fidelity,
tend to disproportionately expand in relation to whole brain growth (r = −0.20, df = 358, pSPIN, Holm-Bonferroni = 0.03).
Positively scaling regions that prioritize compression-efficient broadcasting of messages arriving with high fidelity may reflect
evolutionary expansion of brain regions with high information processing capacity, whereas negatively scaling regions that
prioritize high-fidelity broadcasting of compressed messages may permit other modes of material, spatial, and metabolic
cost efficiency.
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resources by exploiting greater input compression efficiency and high-fidelity transmission of compressed

messages.

2.5 Cognitive efficiency and efficient broadcasting of ‘rich-club’ structural hubs

The fifth and final hypothesis of our model posits that the structural hubs of the brain’s highly interconnected

rich club supports information integration of diffusing signals [29]. To explain the hypothesized information

integration roles of rich-club structural hubs, we investigated the compression efficiency of messages diffusing

into and out of hub regions compared to that of other regions. In order to identify the rich-club hubs, we

computed the normalized rich-club coefficient and identified 43 highly interconnected structural hubs (Figure

8A). Next, we computed the send and receive compression efficiency of rich-club hubs compared to all other

regions. In support of their hypothesized function, we found that the rich-club hubs tend to receive reduced

rates of messages compared to other regions (Wilcox rank sum test, W = 12829, p < 0.001), suggesting

prioritization of information compression (or integration). For the rich-club hub to transmit outgoing mes-

sages with a fidelity that is equivalent to the incoming messages, the rich-club hubs tend to transmit greater

rates of messages compared to other brain regions (W = 64, p < 0.001), supporting the notion that rich-club

hubs serve as high-fidelity information broadcasting sources. These contrasting roles of prioritizing input

compression and output fidelity within rich-club hubs are consistent with the understanding of rich-club

hubs as the information integration centers and broadcasters of the brain’s network [29].

Given the distinct integrative and broadcasting role of rich-club hubs compared to other brain regions, we

sought to evaluate the association between compression efficiency in rich-club hubs and cognitive performance

in a diverse battery of tasks. In light of trade-offs between communication fidelity and information com-

pression, compression efficiency should correlate with cognitive efficiency, defined as the speed-to-accuracy

ratio in task performance. Moreover, studying the compression efficiency of communication in rich-club hubs

compared to brain-wide structure can elucidate differing roles of network organization relevant to cognition.

For example, a greater association of compression efficiency in rich-club hubs with cognitive efficiency, com-

pared with other brain regions, would suggest that hubs are uniquely associated with cognition. In contrast,

cognitive efficiency could correlate with compression efficiency in both rich-club hubs and other brain regions,

consistent with the importance of diverse connectivity [35]. To assess the relationships between compression

efficiency and cognitive efficiency, we used four independent cognitive domains that have been established by
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Figure 8: Compression efficiency explains the integrative role of rich-club hubs and individual differences in cognitive
efficiency. (A) The rich club consists of highly interconnected structural hubs, thought to be the backbone of the brain
connectome. Across participants, the rich club was comprised of 43 highly connected brain regions. (B) The receiver
compression efficiency of rich clubs was greater than other brain regions (W = 12829, p < 0.001), suggesting that the
organization of the structural network prioritizes integration and compression of information arriving to rich-club hubs.
The sender compression efficiency of rich clubs was reduced compared to other brain regions, supporting the fidelity of
information broadcasting (W = 64, p < 0.001). (C) Individuals having non-rich-club regions with decreased compression
efficiency tended to exhibit greater efficiency (speed-to-accuracy trade-off) of complex reasoning (all p-values corrected using
the Holm-Bonferroni method; t = −4.72, estimated model df = 10.50, p = 2 × 10−5), executive function (t = −2.85,
estimated model df = 10.64, p = 0.03), and social cognition (t = −2.30, estimated model df = 10.45, p = 0.04),
controlling for age, sex, age-by-sex interaction, degree, density, and in-scanner motion. Non-rich-club compression efficiency
was not associated with memory efficiency (t = −1.61, estimated model df = 9.85, p = 0.11). Individuals with less rich-
club compression efficiency tended to exhibit greater efficiency of complex reasoning (p = 1 × 10−7), memory efficiency
(p = 0.03), social cognition (p = 0.02), and executive function (p = 0.03). Overall, individuals with brain structural
networks prioritizing fidelity tended to perform with greater accuracy and/or speed in various cognitive functions. Asterisks
depict significance following family-wise error correction. (D) Individual differences in complex reasoning efficiency were
negatively associated with individual differences in compression efficiency (t = −4.95, estimated model df = 11.52,
p < 0.001), controlling for global efficiency, age, sex, age-by-sex interaction, degree, density, and in-scanner motion. See
Supplementary Figure 9 for additional scatterplots of the correlation between cognitive efficiency and compression efficiency.
For comparison to a commonly used metric of shortest-path information integration, we include global efficiency in the
model, which was positively correlated with complex reasoning efficiency (t = 2.68, estimated model df = 11.52, p < 0.01).
Global efficiency was not partially correlated with compression efficiency (r = −0.04, df = 997, p = 0.18), controlling for
age, sex, age-by-sex interaction, degree, density, and motion. Hence, reduced compression efficiency prioritizing fidelity
explains individual differences in complex reasoning efficiency.
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confirmatory factor analysis to assess individual variation in tasks of complex reasoning, memory, executive

function, and social cognition 7.2. We found that the compression efficiency of the rich-club structural hubs

was negatively associated with the cognitive efficiency of complex reasoning (all p-values corrected using

the Holm-Bonferroni family-wise error method; t = −4.72, estimated model df = 10.59, p = 2 × 10−5),

memory (t = −2.60, estimated model df = 9.85, p = 0.04), executive function (t = −2.80, estimated model

df = 10.69, p = 0.03), and social cognition (t = −2.55, estimated model df = 10.47, p = 0.04). In our anal-

yses, we controlled for age, sex, age-by-sex interaction, degree, density, and in-scanner motion. We further

found that the compression efficiency of brain regions outside the rich club was negatively associated with the

cognitive efficiency of complex reasoning (t = −4.72, estimated model df = 10.50, p = 2× 10−5), executive

function (t = −2.85, estimated model df = 10.64, p = 0.03), and social cognition (t = −2.30, estimated

model df = 10.45, p = 0.04). Individuals with brain structural networks that prioritize fidelity tended to

perform with greater cognitive efficiency in a diverse range of functions. We found relationships between

cognitive efficiency and compression efficiency in both rich-club hubs and other brain regions, consistent with

findings suggesting that diverse network connectivity profiles may play an equally important role in brain

network communication as hubs [35]. Importantly, compression efficiency explained variation in cognitive

efficiency even when controlling for the commonly used shortest-path measure of global efficiency (Figure

8D; compression efficiency t = −4.95, estimated model df = 11.52, p < 0.001; global efficiency t = 2.68,

estimated model df = 11.52, p < 0.01). Taken together, compression efficiency explains the information

integration and broadcasting role of the rich-club structural hubs [29], and individual differences in the

speed-to-accuracy trade-off of cognitive functions.

3 Discussion

To constrain the expansive theoretical space of communication models, we investigated how principles of

evolutionary efficiency constrain models of brain network communication [18, 2, 36, 37, 3, 12, 5, 38, 15, 16].

Specifically, we considered the brain structural connectome as a capacity-limited information channel per-

forming lossy compression. We found metabolic expenditure correlated with structural signatures indicative

of diffusion models, but not shortest path routing [3]. In developing an efficient diffusion model of com-

munication, we introduced the notion of compression efficiency, which describes the prioritization of either

communication fidelity or lossy compression in structural networks. Five predictions of rate-distortion theory

and information diffusion adapted from prior literature corroborated our findings, supporting the validity of
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compression efficiency [29, 27, 25]. Broadly, our work advances the study of brain network communication

efficiency, information integration, and neural noise by reframing brain network communication as diffusing

messages governed by rate-distortion and efficient coding theories.

Shortest path routing as a model of brain network communication was not supported by our data, consistent

with the common acknowledgment that it is infeasible to expect a signal to have global knowledge of network

structure to compute shortest paths [3, 5, 15, 16]. Rather, our observations agreed with the hypotheses that

result from information diffusion along structural paths. We found that individuals whose brains are struc-

tured with high-integrity paths tended to have reduced metabolic cost, joining similar prior reports [34]. In

our investigation of multiple trade-offs between network structure and metabolic cost, we discovered that

brain metabolism reached a critical point as a function of path transitivity and modularity. Specifically, we

observed a saddle point, where network structure was coupled or decoupled. In the decoupled axis, brain

networks organized with, for example, high modularity and low path transitivity tended to exhibit optimal

metabolic savings. In the coupled axis where increases in modularity are linked with increases in path transi-

tivity, brain networks can achieve locally optimal metabolic savings around the average brain network, where

deviations incur metabolic costs. Brain networks may reconfigure to place premiums on network structures

thought to support functional versatility and resilience at the expense of cost efficiency, or vice versa [3, 16].

Turning from shortest-path based measures, such as global efficiency and betweenness centrality, our findings

motivate future studies of information integration in structural brain networks that instead adopt metrics of

the structural signatures and processes of information diffusion that emphasize neuroanatomically specific

processes [39, 15, 16]. For example, we found that chemotactic diffusion along metabolic gradients sup-

ports efficient coding by enhancing compression efficiency, offering a potential biological medium for greedy

navigation by shortest spatial distances [16]. Chemotactic attraction models the increased neural activity

associated with metabolic expenditure [31], whereas repulsion models information bottlenecks redirecting

flow away from congestion to less metabolically costly routes [14]. Furthermore, we found that compression

efficiency was associated with cognitive efficiency above and beyond the contributions of global efficiency;

the latter having been previously reported to explain variation in fluid intelligence [30]. Global efficiency

remains a useful metric of local connection strength, pairwise wiring cost trade-offs, and shortest path struc-

ture accelerating diffusion [36, 3, 14], but falls short of explaining processes of information integration.
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We offer an explanation of integrative processes arising from the connectivity of rich-club hubs. By mea-

suring asymmetric send-receive message diffusion [40, 41] and modeling transmission rate as a function of

expected fidelity, we showed that hubs are compression-efficient receivers and high-fidelity senders. This

finding adds to the understanding of hubs as sources and sinks for the early spreading of diffusing signals

[14]. Rich-club hubs develop early and underpin information integration and broadcasting, possibly offset-

ting high metabolic, spatial, and material costs [29, 42, 9, 41]. However, an adaptationist explanation as

such is challenging to falsify [38]. We introduced compression efficiency in the context of efficient coding

to reframe explanations of evolutionary adaptation in terms of a heritable capacity to develop hubs under

constraints of whole-brain network efficiency [38, 41]. Prior findings of greater metabolic costs in rich-club

regions were exploratory [29] and conflict with research supporting the metabolic efficiency of the myeli-

nated long-distance connections prevalent in the rich-club [3, 34, 6]. Despite our well-powered analysis and

replication of several other findings (Supplementary Figures 2, 6, and 10) [24, 32, 13, 22], we were unable

to replicate observations of high metabolic costs in the rich-club (Supplementary Figure 11). Although fur-

ther investigation of the metabolic costs of rich-club hubs is warranted, our findings nevertheless reinforce

a wealth of evidence emphasizing the importance of the development, resilience, and function of hubs in

cognition and psychopathology [29, 9, 31, 14, 6, 10].

With the objective of efficiency, developmental processes may balance compression efficiency, cortical scal-

ing, and myelination to adapt to differing environments. Cortical areal scaling highlights the problem of

allocating limited materials, space, and metabolic resources to the disproportionate changes in surface area

of brain regions in relation to total brain size [7]. Brain regions that prioritize high-fidelity broadcasting of

compressed messages may save space, materials, and metabolic resources with decreased scaling in propor-

tion to the growth of the whole brain. For example, we found this property of compression-efficient inputs

and high-fidelity outputs in rich-club hubs, which appear in an adult configuration at birth [43]. In contrast,

brain regions prioritizing compression-efficient broadcasting of high-fidelity messages tended to dispropor-

tionately expand, and brain networks prioritizing communication fidelity tended to support greater cognitive

efficiency. These novel findings converge with theories positing that evolutionarily new connections support

higher-order and flexible information processing [4, 34, 7], and that plastic white matter microarchitecture

supports reasoning ability and speed [44]. Indeed, we found monotonically increasing information processing

costs and capacity with greater network complexity. In addition to spatial scaling, developing brain networks

may use myelination to modify connection strengths and efficiency [45, 34]. We found that brain regions

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.14.906842doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.14.906842
http://creativecommons.org/licenses/by-nc-nd/4.0/


with greater myelination tended to have greater sender compression efficiency, consistent with evidence that

myelin promotes propagation speed and efficient transmission rates while preserving communication fidelity

[2, 34]. The objective of efficient coding in brain networks can be achieved by balancing communication fi-

delity and lossy compression in developmentally plastic brain networks and rich-club hubs [37, 32, 42, 6, 46].

We suggest that compression efficiency may represent an information processing constraint on brain size and

complexity. Brain systems viewed as information processors exhibit recurring compromises between infor-

mation efficiency and other resource costs at the cellular [18, 2] and circuit levels of the brain [47, 19]. At the

neuronal level, an optimal strategy for distributed coding is to reduce population size while distributing ac-

tivity among a fraction of cells [18, 2]. Brain networks may reach a similar compromise through information

processing constraints on complexity (i.e. size) of the network and its modules, and increasing the number of

endogenously active components, such as in the default-mode system. Efficient coding predicts that bit rate

varies as a function of the number and redundancy of synapses [2, 27]. Transmitting the same message across

many parallel paths improves fidelity and increases bit rates, but information rate increases sublinearly with

the number of paths because the system is highly redundant, incurring greater metabolic costs [2]. We sim-

ilarly found that individuals with greater path transitivity—more redundant and lossy alternative paths to

the shortest, direct paths—tended to require sublinearly increasing computational costs and tended to have

greater global metabolic expenditure. Taken together, our efficient diffusion model addresses the notable

absence of biologically plausible and efficient inter-regional brain network communication models [3, 16].

Our work admits several theoretical and methodological limitations. First, regionally aggregated brain sig-

nals are not discrete Markovian messages and do not have goals like reaching specific targets. As in recent

work, our model introduced a deliberately simplified but useful abstraction of macro-scale brain network

communication [14]. Second, although we used resource efficiency in light of prior methodological decisions

and information theory benchmarks [12], compression efficiency can be implemented using alternative ap-

proaches (Supplementary Figure 12). Several methodological limitations should also be considered. The

accurate reconstruction of white-matter pathways using DTI and tractography remains limited [48]. More-

over, non-invasive measurements of CBF with high sensitivity and spatial resolution remain challenging. We

acquired images using an ASL sequence providing greater sensitivity and approximately four times higher

spatial resolution than prior developmental studies of CBF [32]. Lastly, our data was cross-sectional, limiting

the inferences that we could draw about neurodevelopmental processes.
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In summary, our study advances understanding of the adaptive trade-offs in brain metabolism and architec-

ture that support efficient diffusion processes. In addition to advancing the biophysical realism of information

transmission, our information-theoretical model naturally admits future applications to measurements of en-

tropy, which have provided insight into information flow of brain activity [47, 39]. Our model may be applied

to study neural circuits of Bayesian integration in brain networks, as rate-distortion models of perception

and cognition have been suggested as extensions of conventional Bayesian approaches [25]. Moreover, our

work distinguishing a low- and high-fidelity regime suggests our framework could be used to investigate dual-

system models of information processing bounded by resource and capacity limitations that characterize fast

but error-prone versus slow but deliberate regimes [49]. In the complementary learning systems theory,

we posit that the hippocampus acts as a hub in plastic cortical networks which pass, distort, and recon-

struct compressed signals [50]. Compression efficiency of hippocampal and sensory pathways should predict

the speed, accuracy, and efficient cognitive coding of high-dimensional visuospatial stimuli in sensorimotor

learning [25, 19]. Such studies could illuminate how the representational structure of information drives the

selective loss of redundant or core information in convolutional feedforward network models of sensorimotor

information processing where triangular structural motifs of path transitivity resemble feedforward loops

[13, 19]. Lastly, our findings invite further development and application of well-studied information routing

models and coding schemes to brain network communication [26, 51, 40]. The compression efficiency model

is a useful starting point for the development of more sophisticated approaches of efficient systems-level

information transfer, and is also a novel tool to test leading hypotheses of dysconnectivity [8], hubopathy

[9, 10], disrupted information integration [52], and neural noise [53] in neuropsychiatric disorders.
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7 Materials and Methods

7.1 Participants

As described in detail elsewhere [23], diffusion tensor imaging (DTI) and arterial-spin labeling (ASL) data

were acquired for the Philadelphia Neurodevelopmental Cohort (PNC), a large community-based study of

neurodevelopment. The subjects used in this paper are a subset of the 1,601 subjects who completed the

cross-sectional imaging protocol. We excluded participants with health-related exclusionary criteria (n=154)

and with scans that failed a rigorous quality assurance protocol for DTI (n=162) [54]. We further excluded

subjects with incomplete or poor ASL and field map scans (n=60). Finally, participants with poor quality

T1-weighted anatomical reconstructions (n=10) were removed from the sample. The final sample contained

1042 subjects (mean age=15.35, SD=3.38 years; 467 males, 575 females). Study procedures were approved

by the Institutional Review Board of the Children’s Hospital of Philadelphia and the University of Penn-

sylvania. All adult participants provided informed consent; all minors provided assent and their parent or

guardian provided informed consent.
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7.2 Cognitive Assessment

All participants were asked to complete the Penn Computerized Neurocognitive Battery (CNB). The battery

consists of 14 tests adapted from tasks typically applied in functional neuroimaging, and which measure cog-

nitive performance in four broad domains [23]. The domains included: (1) executive control (i.e., abstraction

and flexibility, attention, and working memory), (2) episodic memory (i.e., verbal, facial, and spatial), (3)

complex cognition (i.e., verbal reasoning, nonverbal reasoning, and spatial processing), (4) social cognition

(i.e., emotion identification, emotion intensity differentiation, and age differentiation), and (5) sensorimotor

and motor speed. Performance was operationalized as z-transformed accuracy and speed. The speed scores

were multiplied by −1 so that higher indicates faster performance, and efficiency scores were calculated as

the mean of these accuracy and speed z-scores. The efficiency scores were then z-transformed again, to

achieve mean = 0 and SD = 1.0 for all scores. Confirmatory factor analysis supported a model of four latent

factors corresponding to the cognitive efficiency of executive function, episodic memory, complex cognition,

and social cognition [55]. Hence, we used these four cognitive efficiency factors in our analyses.

7.3 Image Acquisition, Preprocessing, and Network Construction

Neuroimaging acquisition and pre-processing were as previously described [23]. We depict the overall work-

flow of the neuroimaging and network extraction pipeline in Figure 1A.

7.3.1 Diffusion Tensor Imaging

As was previously described [22, 56], DTI data and all other MRI data were acquired on the same 3T Siemens

Tim Trio whole-body scanner and 32-channel head coil at the Hospital of the University of Pennsylvania.

DTI scans were obtained using a twice-focused spin-echo (TRSE) single-shot EPI sequence (TR = 8100

ms, TE = 82 ms, FOV = 240 mm2/240 mm2; Matrix = RL: 128/AP:128/Slices:70, in-plane resolution (x

& y) 1.875 mm2; slice thickness = 2 mm, gap = 0; FlipAngle = 90◦/180◦/180◦, volumes = 71, GRAPPA

factor = 3, bandwidth = 2170 Hz/pixel, PE direction = AP). The sequence employs a four-lobed diffusion

encoding gradient scheme combined with a 90-180-180 spin-echo sequence designed to minimize eddy current

artifacts. The complete sequence consisted of 64 diffusion-weighted directions with b = 1000 s/mm2 and 7

interspersed scans where b = 0 s/mm2. Scan time was about 11 min. The imaging volume was prescribed in

axial orientation covering the entire cerebrum with the topmost slice just superior to the apex of the brain

[54].
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7.3.2 Connectome construction

Cortical gray matter was parcellated according to the Glasser atlas [57], defining 360 brain regions as nodes

for each subject’s structural brain network, denoted as the weighted adjacency matrix A. To assess multiple

spatial scales, cortical and subcortical gray matter was parcellated according to the Lausanne atlas [58].

Together, 89, 129, 234, 463, and 1015 dilated brain regions defined the nodes for each subject’s structural

brain network in the analyses of Figure 6.

DTI data was imported into DSI Studio software and the diffusion tensor was estimated at each voxel [59].

For deterministic tractography, whole-brain fiber tracking was implemented for each subject in DSI Stu-

dio using a modified fiber assessment by continuous tracking (FACT) algorithm with Euler interpolation,

initiating 1,000,000 streamlines after removing all streamlines with length less than 10mm or greater than

400mm. Fiber tracking was performed with an angular threshold of 45, a step size of 0.9375mm, and a

fractional anisotropy (FA) threshold determined empirically by Otzu’s method, which optimizes the contrast

between foreground and background [59]. FA was calculated along the path of each reconstructed stream-

line. For each subject, edges of the structural network were defined where at least one streamline connected

a pair of nodes. Edge weights were defined by the average FA along streamlines connecting any pair of nodes.

7.3.3 Arterial-Spin Labeling

CBF was quantified from control-label pairs using ASLtbx [60], as was previously described [32]. We consider

f as CBF, δM as the difference of the signal between the control and label acquisitions, R1a as the longitudinal

relaxation rate of blood, τ as the labeling time, ω as the post-labeling delay time, α as the labeling efficiency,

λ as the blood/tissue water partition coefficient, and M0 as the approximated control image intensity.

Together, CBF f can be calculated according to the equation:

f =
∆MλR1a exp (ωR1a)

2M0α
[1− exp (−τR1a)]

−1
. (1)

Because prior work has shown that the T1 relaxation time changes substantially in development and varies

by sex, this parameter was set according to previously established methods, which enhance CBF estimation

accuracy and reliability in pediatric populations [61, 62].
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7.4 Brain Maps

7.4.1 Cortical Myelin

As described previously [63], cortical myelin content was calculated by dividing the T1w image signal by the

T2w image signal. Specifically, we define the myelin content x2 in the following manner:

T1w

T2w
≈ x ∗ b

(1/x) ∗ b
= x2, (2)

where x is the myelin contrast in the T1w image, 1/x is the myelin contrast in the T2w, and b is the receive

bias field in both T1w and T2w images. We used a published atlas generated by this method [34].

7.4.2 Cortical Areal Scaling

As described previously [7], to estimate cortical areal scaling between the size of cortical regions and the total

brain, regression coefficients β were estimated for log10(total cortical surface area) as a covariate predicting

log10(vertex area) using spline regression models that incorporated effects of age and sex on vertex area [64].

We used the following relational form:

log 10(Vertex area) ∼ s(age by = sex) + BI [log 10 (total−area)] . (3)

When β is 1, the scaling between total brain size and brain regions is linear. When β deviates greater or

less than 1, scaling is non-linearly and disproportionately expanding or contracting. We used the published

atlas generated using the same data as in our study [7, 23].

7.5 Network Statistics

7.5.1 Global Efficiency

In the context of the brain structural connectome, global efficiency represents the strength of the shortest

paths between brain regions supporting efficient communication. In network neuroscience, global efficiency is

commonly used as a metric of a brain network’s capacity for shortest path routing [3, 12, 16]. We calculated

the common global efficiency statistic [33], which is defined for a graph G as:

Eglob(G) =
1

N (N − 1)

∑
i 6=jεG

1

dij
, (4)
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where N is the number of nodes and dij is the shortest distance between node i and node j. Intuitively, a

high E value indicates greater potential capacity for global and parallel information exchange along shortest

paths, and a low E value indicates decreased capacity for such information exchange [33].

7.5.2 Path Strengths

Beyond shortest paths between pairs of brain regions, we also sought to measure the strength of structural

connections S comprising the paths of multiple connections. As global efficiency measures the capacity of

brain networks for shortest path routing, path strengths measure the capacity for diffusion signaling. Path

strengths are apt for assessing the network capacity for diffusion because paths can be represented as random

walks p = (i, j, . . . , k), where p is a path and i, j, and k are nodes in the path. As in prior work [65], the

strength of the weighted connections in a path, denoted ω(p), in the graph G with adjacency matrix A is

defined as:

ω(p) = [A]i0i1 [A]i1i2 . . . [A]i(l−1)ii , (5)

where the matrix products produce the strengths of all possible random walks according to the length of p,

as depicted in the schematic Figure 1B. Then, for walks of length n, the strengths of the paths from node i

to node j are defined as:

[An]ij =
∑
p∈Pn

ij

ω(p), (6)

where Pnij is the set of all walks from node i to node j with length n. When n=1, the matrix exponent produces

a matrix with elements equal to dij from Equation 1, or the shortest distance between node i and node j.

Intuitively, a high path strength represents structural paths that consist of higher integrity connections

measured by DTI, whereas a low path strength indicates paths consisting of low integrity connections. To

compute node strengths, the values for each node were summed. An average value was also calculated across

node strengths per individual participant.

7.5.3 Path Transitivity

Shortest paths confer advantages in speed and signal fidelity when messages are transmitted by diffusion.

Therefore, we sought to measure a property of brain network architecture supporting diffusion by shortest

paths. Local detours which first leave and then re-access the shortest path serve to support such diffusion,

and the potential for such local detours can be estimated using a measure called path transitivity (see Figure

3A, left) [13]. Path transitivity was previously used to predict functional BOLD activation comparably to
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conventional distance or computational models of neural dynamics. To compute path transitivity, we first

calculated the matching index for each pair of successive nodes i and j along the shortest path πs→t, with

neighboring non-shortest path nodes k as:

mij =

∑
k 6=i,j (wik + wjk) Θ (wik) Θ (wjk)∑

k 6=j wik +
∑
k 6=i wjk

, (7)

where w is the connection weight, and Θ(wik) = 1 if wik > 0, and 0 otherwise. Intuitively, the numerator

is non-zero if and only if there are two locally detouring connections that make a closed triangle along the

shortest path. If either of the two connections wik or wjk does not exist, then the numerator is 0. With the

denominator representing the strength of all cumulative connections of the shortest path nodes, the matching

index fraction then represents the density of closed triangles (i.e., transitivity) around the shortest path.

Whereas the matching index is a pairwise measure of the density of locally returning detours, path transitivity

generalizes the density across the shortest path. Using the computed matching index mij for each pairwise

connection Ω from source node s to target node t by the set of shortest path edges πs→t, we compute path

transitivity M as:

M (πs→t) =
2
∑
i∈Ω

∑
j∈Ωmij

|Ω|(|Ω| − 1)
, (8)

where the numerator sums the matching index mij for all edges in Ω, the scale factor of 2 indicates an

undirected graph, and the denominator sums over all possible edges. Intuitively, a high path transitivity M

indicates that the shortest path is more densely encompassed by locally detouring triangular motifs. Low

path transitivity indicates that the shortest path is surrounded by connections that deviate from the shortest

path without an immediate avenue of return.

7.5.4 Modularity

Modularity is a common architectural feature observed in neural systems across species. A single community

contains brain regions that are more highly connected to each other than to brain regions located in other

communities (see Figure 3A, right). Modularity of brain networks is spatially efficient, supports the devel-

opment of executive function in youths, and supports flexibly adaptable functional activations according to

distinct task demands [66, 67, 22, 68, 69]. To assess modularity, we apply a common community detection

technique known as modularity maximization [70], in which we used a Louvain-like locally greedy algorithm

[71] to maximize a modularity quality function for the adjacency matrix A. The modularity quality function
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is defined as:

Q =
1

2µ

∑
ij

(Aij − γPij) δ(gi, gj), (9)

where µ = 1
2

∑
ij Aij denotes the total weight of A, Aij encodes the weight of an edge between node i and

node j in the structural connectivity matrix, P represents the expected strength of connections according

to a specified null model [70], γ is a structural resolution parameter that determines the size of modules,

and δ is the Kronecker function which is 1 if gi = gj and zero otherwise. As in prior work, we set γ to the

default value of 1 [68]. Intuitively, a high Q value indicates that the structural connectivity matrix contains

communities, where nodes within a community are more densely connected to one another than expected

under a null model. Modularity maximization is commonly used to detect community structure, and to

quantitatively characterize that structure by assessing the strength and number of communities [22, 68, 70].

7.5.5 Resource Efficiency

A signal that diffuses along the shortest path between brain regions confers advantages in speed, reliability,

and fidelity [3, 72, 16]. Following prior work, we sought to compute the number of random walkers beginning

at node i that were required for at least one to travel along the shortest path to another node j with

probability η [12, 72]. To begin, we consider the transition probability matrix by U, defined as U = WL−1,

where each entry Wij of W describes the weight of the directed edge from node i to node j, and each entry

Lii of the diagonal matrix L is the strength of each node i, defined as
∑
iWij . Intuitively, each entry Uij of

U defines the probability of a random walker traveling from node i to node j in one step. Next, to compute

the probability that a random walker travels from node i to node j along the shortest path, we define a new

matrix U ′(i) that is equivalent to U but with the non-diagonal elements of row i set to zero and Uii = 1 as

an absorbant state. Then, the probability of randomly walking from i to j along the shortest path is given

by:

1−
N∑
n=1

[U ′(i)H ]in, (10)

where H is the number of connections composing the shortest path from i to j. Similarly, the probability

η of releasing r random walkers at node i and having at least one of them reach node j along the shortest

path is given by:
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η = 1−

(
N∑
n=1

[U ′(i)H ]in

)r
. (11)

Setting the above probability to some set value η, we can then solve for the number of random walkers r

required to guarantee (with probability η) that at least one of them travels from i to j along the shortest

path, denoted by:

rij(η) =
log(1− η)

log
(∑N

n=1 [U ′(i)H ]in

) . (12)

We refer to the number of random walkers rij as resources. In our analyses, we calculate resources rij over

a range of values of η for each participant. Finally, to calculate the resource efficiency of each participant,

the resource efficiency of an entire network is taken to be 1/(rij(η)) averaged over all pairs of nodes i and j.

With the right stochastic matrix U ′i , the resource efficiency of brain regions as message senders is 1/(rij(η))

averaged over i, while brain regions as message receivers is 1/(rji(η)) averaged over j.

7.5.6 Compression Efficiency

Rate-distortion theory formalizes the study of information transfer as passing signals (messages) through a

capacity-limited information channel. A signal x is encoded as x̂ with a level of distortion D that depends

on the information rate R. The greater the rate, the less the distortion. The rate-distortion function

R(D) defines the minimum information rate required to transmit a signal corresponding to a level of signal

distortion (see Figure 4A). Lossy compression arises from the choice of the distortion function d(x, x̂),

which implicitly determines the relevant and irrelevant features of a signal. With the true signal x mapped

to the compressed signal x̂ described by p(x̂|x), the rate-distortion function is defined by minimizing the

mutual information of the signal and compression over the expected distortion defined as d(x, x̂)p(x,x̂) =∑
x∈X

∑
x̂∈X̂ p(x, x̂)d(x, x̂):

R(D) ≡ min
d(x,x̂)

I(X, X̂) =
∑
x∈ΩX

∑
x̂∈ΩX̂

P (x̂|x)P (x) log2

(
P (x̂|x)

P (x̂)

)
. (13)

By minimizing the mutual information I(X, X̂), we arrive at a probabilistic map from the signal to the

compressed representation, where the information gain between the signal and compression is as small as

possible (i.e., high fidelity) to favor the most compact representations.
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Similar to the mathematical framework of rate-distortion theory, we sought to specify a distortion function

reflecting communication over the brain’s structural network. Prior work building models of perceptual

and cognitive performance have inferred distortion functions through Bayesian inference of a loss function

[73, 25]. For instance, the loss function could be the squared error denoting the residual values of the true

signal minus the compression, L = (x̂ − x)2 (Figure 4A). A neural rate-distortion theory has been theo-

retically developed [27], but remains empirically untested due in part to a lack of methodological tools at

the level of brain systems. Moreover, it has been difficult to define a distortion function that incorporates

both true signals x and compressed signals x̂ in part because the measurements of these signals in human

brain networks remains challenging. Here, we define an analogous framework of information transfer through

capacity-limited channels in the structural network of the brain. Particularly, we build a distortion function

from the simple intuition that the shortest path is the route that most reliably preserves signal fidelity, as

depicted in (Figure 4B).

Given that a random walker propagating from node i along the shortest path to node j retains the great-

est signal fidelity, we define the distortion function of any signal x from brain region i to a compressed

representation x̂ decoded in brain region j as:

d(x, x̂)ij = (1− η), (14)

where η denotes the probability that a walker gets from node i to node j along the shortest path. A signal

with greater probability η of propagating by the shortest path between brain region i and brain region j is

at a lower risk of distortion (see Figure 4D). Intuitively, increased topological distance adds greater risk of

signal distortion due to further transmission through capacity-limited channels (i.e. structural connections),

temporal delay, and potential mixing with other signals. Given the measure of resources in Equation 12, we

develop and test predictions of a novel definition of the rate R(D); here, we define R(D) as the resources

rij(η) required to achieve a tolerated level of distortion d(x, x̂)ij :

R(D) ≡ rij(d(x, x̂)ij), (15)

as in (Figure 4D). When the log of resources log(rij) is plotted against our metric of distortionD = d ∈ 1−ηij ,

the exponential gradient is depicted linearly (see Figure 4E). Because prior work focused on 50% distortion

during analyses, we required the slope to intersect the mean midpoint rate at 50% distortion [12]. In addition
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to the precedent offered by prior work, this requirement is also reasonable given that we sought to model

both high and low distortions equitably. The slope denotes the minimum number of resources required

to achieve a tolerated level of distortion, which we refer to as the compression efficiency (4E; bottom).

A steeper slope (i.e., a more negative relation) reflects reduced compression efficiency, or prioritization of

message fidelity. A flatter slope (i.e., a more positive relation) reflects increased compression efficiency, or

prioritization of lossy compression. Individual variation in compression efficiency can be assessed by using

the average resource efficiency across brain regions. When compression efficiency is computed for sets of

brain regions by averaging across individuals, the slope can denote either messages sent from or arriving to

a brain region by using the average resource efficiency over either all nodes j or all nodes i, respectively.

7.5.7 Biased Random Walk

Given the advantages of shortest path diffusion, we sought to assess how brain metabolism could support the

reliability and fidelity of signaling. Chemotactic diffusion can be modeled as random walks over a structural

connectivity matrix biased by regional CBF [74]. To model chemotactic diffusion of random walkers attracted

to or repelled from brain regions of high CBF, we used analytical solutions to biased random walks. First,

we defined the matrix T of CBF-biased transition probabilities as:

Tαij =
αiAij∑
k αkAkj

, (16)

where the element of Tij defines the transition probabilities of a random walker traversing edges of the

structural connectivity matrix A which are multiplied by a bias term α. For random walkers attracted to

brain regions of high CBF, the bias term α was defined as the average CBF value for each pair of brain

regions. For random walkers repelled by regions of high CBF, the bias term α was defined as 1 minus

the average CBF value for each pair of brain regions. Hence, a random walker propagates over the brain’s

structural connections with transition probabilities of Tij that reflect the integrity of structural connections

and the average level of CBF between pairs of brain regions. We then substituted the U matrix in the

resources rij(η) of Equation 12 with Tij in Equation 16 to compute the number of resources required for a

biased random walker to propagate by the shortest path with a specified probability.
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7.5.8 Rich Club

Due to the importance of brain network hubs in the broadcasting of a signal [3, 75, 16], we sought to identify

the set of high-degree brain regions in the rich club (see Figure 8A) [76]. To identify the subnetwork of rich

club brain regions, we computed the weighted rich club coefficient Φz(k) as:

φz(k) =
Z>k∑E>k

l=1 z ranked
l

, (17)

where Zranked is a vector of ranked network weights, k is the degree, Z>k is the set of edges connecting the

group of nodes with degree greater than k, and E>k is the number of edges connecting the group of nodes

with degree greater than k. Hence, the rich-club coefficient Φz(k) is the ratio between the set of edge weights

connected to nodes with degree greater than k and the strongest E>k connections. The rich-club coefficient

was normalized by comparison to the rich club coefficient of random networks [76]. Random networks were

created by rewiring the edges of each individual’s brain network while preserving the degree distribution.

The rich-club coefficient for the randomized networks Φ random (k) was computed using Equation 17. Then,

the normalized rich-club coefficient Φ norm (k) was calculated as follows:

φnorm(k) =
φ(k)

φrandom(k)
, (18)

where Φ norm (k) > 1 indicates the presence of a rich club organization. We tested the statistical significance

of Φ norm (k) using a 1-sample t-test at each level of k, with family-wise error correction for multiple tests

over k. Each individual was assigned the value of their highest degree > k rich club level and their nodes

were ranked by rich club level. Over the group of individuals, the nodal ranks were averaged and the top

12% of nodes were selected as the rich club, following prior work [77].

7.6 Network Null Models

Random graphs are commonly used in network science to test the statistical significance of the role of some

network topology against null models. We used randomly rewired graphs generated by shuffling each indi-

vidual’s empirical networks 20 times, as in prior work [78]. Furthermore, we generated Erdös-Renýı random

networks for each individual brain network where the presence or absence of an edge was generated by a

uniform probability calculated as the density of edges existing in the corresponding brain network. Edge

weights were randomly sampled from the edge weight distribution of the brain network. While the randomly
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rewired graphs retain empirical properties such as the degree and edge weight distributions of the individual

brain networks, the Erdös-Renýı networks do not. Hence, the randomly rewired null network was used in all

analyses where the degree distribution should be retained (e.g., normalized rich club coefficient), while the

Erdös-Renýı network was used in analyses assessing the overall contribution of the brain network topology

(e.g., compression efficiency).

Our tests using the randomly rewired network evaluate the null hypothesis that an apparent rich-club

property of brain networks is a trivial result of topology characteristic of random networks with some

empirical properties preserved, as in prior work [76, 75]. The alternative hypothesis is that the brain

network has a rich-club organization beyond the level expected in the random networks. Our tests using

the Erdös-Renýı network evaluate the null hypothesis that the rates in the rate-distortion function modeling

information processing capacity in brain networks does not differ from the rates in the rate-distortion function

of random networks. The alternative hypothesis is that the rate of the brain network’s rate-distortion function

differs from that of random networks, consistent with the notion that Erdös-Renýı networks have a greater

prevalence of shortest paths compared to brain networks. We additionally used the Erdös-Renýı network to

assess the hypothesis of rate-distortion theory that synthetic networks should exhibit the same information

processing trade-offs (the monotonic rate-distortion gradient) as empirical brain networks [25]. We selected

Erdös-Renýı networks to assess these hypotheses for two reasons. First, Erdös-Renýı networks do not retain

core architectures of brain networks, such as modularity, and therefore reflect an extreme synthetic network.

Second, Erdös-Renýı networks are commonly used as a benchmark for assessing shortest path prevalence

due to the prominence of uniformly distributed direct pairwise connections [39, 16]. In light of the central

assumption that shortest paths represent the route of highest signal fidelity in our definition of distortion,

we used Erdös-Renýı networks to verify our intuition that compression efficiency should be greater in the

Erdös-Renýı network than in brain networks.

7.7 Statistical Analyses

To assess the covariation of our measurements across individuals and brain regions, we used generalized

additive models (GAMs) with penalized splines. GAMs allow for statistically rigorous modeling of linear

and non-linear effects while minimizing over-fitting [64]. Throughout, the potential for confounding effects

was addressed in our model by including covariates for age, sex, age-by-sex interaction, network degree,

network density, and in-scanner motion.
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7.7.1 Metabolic running costs associated with brain network architectures

We used penalized splines to estimate the nonlinear developmental patterns of global efficiency (Equation 4)

and CBF, as in prior work [32, 22]. Then, we assessed the partial correlation between the residual variance

(unexplained by covariates of age, sex, age-by-sex-interaction, degree, density, and motion) of global efficiency

and CBF. The final models can be written as:

Global efficiency ∼ spline(age) + sex + spline(age by sex) + degree + density + motion, (19)

CBF ∼ spline(age) + sex + spline(age by sex) + degree + density + motion, (20)

and

Residual(Global efficiency) ∼ residual(CBF). (21)

To evaluate the importance of age as a confound for the relationship between global efficiency and CBF, we

also performed sensitivity analyses by removing selected covariates and re-assessing the model. In addition,

for consistency with prior work [28], we performed the same analysis including covariates for gray matter

volume and density.

To assess the relationship between CBF and the strength of structural paths supporting diffusion (Equation

6), we again used penalized splines. The final model can be written as:

CBF ∼ path strength + spline(age) + sex + spline(age by sex) + degree + density + motion. (22)

Assessments of path strengths were corrected for false discovery rate across the statistical tests performed

over the discrete path lengths.

7.7.2 Trade-offs between modularity and diffusion architecture

Next, we sought to evaluate the metabolic running cost of brain network properties, in line with calls for

investigation of the economic landscape of resource-constrained trade-offs between hallmark brain network

architectures such as modularity (Equation 9) and new measures of brain network organization [3]. Following

our findings that CBF is associated with structural properties supporting diffusion, we investigated path

transitivity (Equation 8). We continued to use penalized splines to model the non-linear patterns of CBF
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and brain properties of interest. The final model can be written as:

CBF ∼ path transitivity + modularity + path transitivity by modularity

+ spline(age) + sex + spline(age by sex) + degree + density + motion.

(23)

To visualize the landscape of CBF as a function of modularity and path transitivity, we plotted the GAM

model response function. We described the distribution of modularity and path transitivity across individuals

using frequency histograms.

7.7.3 Compression efficiency and development

To assess the possibility of distinct compression efficiency of brain networks compared to random networks,

we calculated the resource efficiency (Equation 12) at 14 levels of distortion and performed an analysis of

variance (ANOVA) test. The ANOVA model can be written as:

Resources ∼ distortion + type of network, (24)

where the type of the network is a categorical variable designating if the network was a brain network or a

random network.

To compute compression efficiency per individual brain network, we used a polynomial regression function

to find the best linear fit to the monotonic rate-distortion function according to the prediction of a linear

rate-distortion gradient in semi-log space (log(resources) as a function of distortion). Next, we used a GAM

model to assess the non-linear patterns of compression efficiency in development, which we can formally

write as follows:

Compression efficiency ∼ spline(age) + sex + spline(age by sex) + degree + density + motion. (25)

7.7.4 Compression efficiency of chemotaxis

To compute the compression efficiency of chemotactic diffusion, we modified the model of Equation 24 to

instead calculate resource efficiency using the biased random walk matrices from Equation 16. The model
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can be written:

Resources ∼ distortion + type of random walk + distortion by type of random walk, (26)

where the type of random walk is a categorical variable designating unbiased random walks using the struc-

tural network, attraction-biased random walks using the structural network biased with CBF, and repulsion-

biased random walks using the structural network biased with (1 minus CBF). To assess the hypothesis that

resources differ according to the type of random walk, we performed t-tests while controlling for family-wise

error rate across multiple comparisons.

7.7.5 Compression efficiency in a low or high fidelity regime

Next, we sought to test the predictions of a high or low fidelity communication regime. In a high fidelity

regime, minimum resources given an expected distortion should increase monotonically as a function of

network complexity. To assess whether the relationship between resources and network complexity (opera-

tionalized here as network size) is monotonic, we used a linear model written as:

Log2(resources) ∼ log10(network size). (27)

In a low fidelity regime, minimum resources given an expected distortion should plateau as a function of

complexity. We hypothesized that path transitivity is a property of structural networks that supports lossy

compression and storage savings. The complexity of the shortest path was defined as the number of nodes

contributing to path transitivity (Equation 8). To assess whether the resources non-linearly plateau as a

function of shortest path complexity, we used a GAM model written as follows:

Log2(resources) ∼ spline(shortest path complexity). (28)

7.7.6 Compression efficiency and patterns of neurodevelopment

To explore how compression efficiency might relate to patterns of cortical myelination and areal scaling, we

assessed the Spearman’s correlation coefficient between myelination or scaling and send or receive compres-

sion efficiency. To further test correspondence between brain maps, we used a spatial permutation test, which

generates a null distribution of randomly rotated brain maps that preserve the spatial covariance structure
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of the original data [79]. We refer to the p-value of this statistical test as pSPIN . Finally, we applied the

conservative Holm-Bonferroni correction for family-wise error across these tests.

7.7.7 Compression efficiency and rich-club hubs

Given the assumed integrative and broadcasting function of rich-club hubs, we sought to evaluate whether

compression efficiency differed in rich-club hubs compared to other brain regions. We used the Wilcoxon

rank-sum test to compare regional compression efficiency of either receiving or sending messages. Moreover,

we assessed whether there was a difference between CBF in the rich-club hubs compared to other brain

regions. Lastly, we tested the correlation of compression efficiency in the rich-club hubs and other brain

regions with cognitive efficiency. To model non-linear patterns of cognitive efficiency, we used penalized

splines controlling for potentially confounding covariates. The final model can be written as:

Cognitive efficiency ∼ compression efficiency + spline(age)

+ sex + spline(age by sex) + degree + density + motion.

(29)

Due to previous report of the relationship between cognition and global efficiency (Equation 1), we determined

that compression efficiency and global efficiency were not collinear and therefore conducted a sensitivity

analysis including global efficiency as a covariate. The model was written as:

Cognitive efficiency ∼ compression efficiency + global efficiency

+ spline(age) + sex + spline(age by sex) + degree + density + motion.

(30)

7.8 Citation Diversity Statement

Recent work in neuroscience and other fields has identified a bias in citation practices such that papers

from women and other minorities are under-cited relative to the number of such papers in the field [80, 81,

82, 83, 84, 85]. Here we sought to proactively consider choosing references that reflect the diversity of the

field in thought, form of contribution, gender, and other factors. We used automatic classification of gender

based on the first names of the first and last authors [80], with possible combinations including male/male,

male/female, female/male, female/female. Excluding self-citations to the senior authors of our current paper,

the references contain 58.0% male/male, 8.7% male/female, 21.7% female/male, 7.2% female/female, and

4.3% unknown categorization. We look forward to future work that could help us to better understand how

to support equitable practices in science.
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[15] A. Avena-Koenigsberger, B. Mǐsić, R. X. Hawkins, A. Griffa, P. Hagmann, J. Goñi, and O. Sporns, “Path
ensembles and a tradeoff between communication efficiency and resilience in the human connectome,”
Brain Structure and Function, vol. 222, no. 1, pp. 603–618, 2017.

[16] A. Avena-Koenigsberger, B. Misic, and O. Sporns, “Communication dynamics in complex brain net-
works,” Nature Reviews Neuroscience, vol. 19, no. 1, p. 17, 2018.

[17] J. Stiso and D. S. Bassett, “Spatial embedding imposes constraints on neuronal network architectures,”
Trends in cognitive sciences, 2018.

[18] W. B. Levy and R. A. Baxter, “Energy efficient neural codes,” Neural computation, vol. 8, no. 3,
pp. 531–543, 1996.

[19] E. Tang, M. G. Mattar, C. Giusti, D. M. Lydon-Staley, S. L. Thompson-Schill, and D. S. Bassett,
“Effective learning is accompanied by high-dimensional and efficient representations of neural activity,”
Nature neuroscience, vol. 22, no. 6, p. 1000, 2019.

[20] J. M. Shine, M. Breakspear, P. T. Bell, K. A. E. Martens, R. Shine, O. Koyejo, O. Sporns, and R. A.
Poldrack, “Human cognition involves the dynamic integration of neural activity and neuromodulatory
systems,” Nature neuroscience, vol. 22, no. 2, p. 289, 2019.

[21] M. L. Mack, A. R. Preston, and B. C. Love, “Ventromedial prefrontal cortex compression during concept
learning,” Nature Communications, vol. 11, no. 1, pp. 1–11, 2020.

[22] G. L. Baum, R. Ciric, D. R. Roalf, R. F. Betzel, T. M. Moore, R. T. Shinohara, A. E. Kahn, S. N.
Vandekar, P. E. Rupert, M. Quarmley, et al., “Modular segregation of structural brain networks supports
the development of executive function in youth,” Current Biology, vol. 27, no. 11, pp. 1561–1572, 2017.

[23] T. D. Satterthwaite, M. A. Elliott, K. Ruparel, J. Loughead, K. Prabhakaran, M. E. Calkins, R. Hopson,
C. Jackson, J. Keefe, M. Riley, et al., “Neuroimaging of the philadelphia neurodevelopmental cohort,”
Neuroimage, vol. 86, pp. 544–553, 2014.

[24] R. C. Gur, J. D. Ragland, M. Reivich, J. H. Greenberg, A. Alavi, and R. E. Gur, “Regional differences
in the coupling between resting cerebral blood flow and metabolism may indicate action preparedness
as a default state,” Cerebral Cortex, vol. 19, no. 2, pp. 375–382, 2008.

[25] C. R. Sims, “Efficient coding explains the universal law of generalization in human perception,” Science,
vol. 360, no. 6389, pp. 652–656, 2018.

[26] T. Berger, “Rate distortion theory, a mathematical basis for data compression (prentice-hall,” Inc.
Englewood Cliffs, New Jersey, 1971.

[27] S. E. Marzen and S. DeDeo, “The evolution of lossy compression,” Journal of The Royal Society Inter-
face, vol. 14, no. 130, p. 20170166, 2017.

[28] B. Várkuti, M. Cavusoglu, A. Kullik, B. Schiffler, R. Veit, Ö. Yilmaz, W. Rosenstiel, C. Braun,
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