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Abstract: Ancestral sequence reconstruction is a technique which is gaining
widespread use in molecular evolution studies and protein engineering. Here we
present Graphical Representation of Ancestral Sequence Predictions (GRASP) that
can be used to infer and explore ancestral variants of protein families with more
than 10,000 members. GRASP uses partial order graphs to represent homology in
very large data sets, which are intractable with current inference tools and may, for
example, be used to engineer proteins by identifying ancient variants of enzymes.
We demonstrate that (1) across three distinct enzyme families, GRASP predicts
ancestor sequences, all of which demonstrate enzymatic activity, (2) within-family
insertions and deletions can be used as building blocks to support the engineering
of biologically active ancestors via a new source of ancestral variation, and (3)
generous inclusion of sequence data encompassing great diversity leads to less
variance in ancestor sequence.
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Introduction

Sequencing technology is driving the identification of the extant (modern) portion
of the universe of biological sequences1,2,3. With this increased coverage of natural
diversity we are now better placed than ever before to leverage ancestral sequence
reconstruction (ASR) to recover the ancestral portion and trace the evolutionary
events that determine biological function and structure4. This is especially use-
ful for protein engineering; the evolutionary record reveals essential cues for the
discovery of new enzymes and resurrection of ancestral enzymes often generates
enzymes with novel properties that can be exploited in biocatalysis5,6,7,8.

The ability to perform ASR on large-scale data has been limited by the avail-
able methodology and accompanying technology. A recent review highlighted 12
studies from the past decade which each sought to evaluate sources of ambiguity in
ancestral inferences9. Data set sizes within these studies ranged from 21 to 456 se-
quences, with an average of 168 sequences. Current methods for performing ASR
have reached practical upper limits on data set size, which constrain our ability
to adequately represent and accurately analyse enzymes that have been evolving
for billions of years. We have developed the tool Graphical Representation of An-
cestral Sequence Predictions (GRASP) to take advantage of the rapidly expanding
number of known protein sequences and the information from biological diversity
that can be mined from large protein families.

Processing large amounts of data is not just a quantitative problem, but a qual-
itative one as well. The evolutionary models employed to quantify ancestral states
depend on an accurate representation of homology and remote homologs are likely
to have resulted from numerous evolutionary events that confound current phylo-
genetic analysis techniques. Lee et al.10 demonstrated how a partial order graph
(POG) can be used to represent and support the alignment of widely different se-
quences. The risk of aligning sequence fragments with different evolutionary ori-
gins motivated us to use the POG data structure to separate distinct sources of
sequence diversity at evolutionary branch points. POGs enable us to negotiate se-
quence variance and to track evolutionary events across time. The premise of our
study is that this significant increase of the scope of ASR will provide (a) a rich
resource for evolutionary studies, and (b) valuable guidance for protein engineer-
ing given the demonstrated usefulness of ancestral enzymes as robust templates
for directed evolution7. Consequently, our method was designed with a view to
identifying substitutions, insertions, and deletions that may be combined to form
sequence configurations inspired by, but not necessarily present in, either extant or
inferred sequences.

We tested the approach by inferring ancestors from different enzyme fami-
lies, exemplifying various degrees of sequence number, functional diversity, and
sequence similarity. All of the enzyme families studied are attractive from a pro-
tein engineering perspective, as ASR offers efficient pathways towards industrially
relevant outcomes such as increased thermal stability or altered substrate speci-
ficity. Resurrected ancestral proteins from the following families were produced
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and evaluated in terms of their structure and function.

1. The glucose-methanol-choline (GMC) oxidoreductases represent a super-
family of enzymes with varying biological functions and industrial appli-
cations; we focused on the glucose dehydrogenase (GDH, EC 1.1.5.9) and
glucose oxidase (GOx, EC 1.1.2.4) families11.

2. Members of cytochrome P450 subfamily 2 (CYP2) play a key role in drug
and xenobiotic metabolism in metazoans12. Here we concentrated on the
CYP2U subfamily and two closely-related subfamilies, CYP2R, and CYP2D.

3. The IlvD/ED dehydratase family includes dihydroxy-acid dehydratase (EC
4.2.1.9) and several sugar acid dehydratases all containing iron-sulfur-clusters
and has broad taxonomic scope13. We refer to this family as DHAD. It is
present in bacteria, archaea, fungi, algae, and in some plants.

In addition, we also evaluated a large-scale inference of, but did not resurrect,
the following family.

4. The ketol-acid reductoisomerase (KARI) family includes enzymes in the
branched-chain amino acid biosynthetic pathway (similar to DHAD) present
in bacteria, fungi, and plants. We focused on KARI class I for a large-scale
inference, and class II for a comparison between existing tools, having pre-
viously successfully resurrected ancestors of class II enzymes7.

In brief, in this paper we demonstrate the capacity of an ASR approach based
on POGs and maximum likelihood inference to:

• perform ASR on proteins in a manner consistent with current tools when
restricted to smaller data set sizes;

• perform ASR for very large protein families; specifically, we explore the
impact of quantity, diversity, and taxonomic context of input sequences on
predicted sequences as well as resurrected structures and functions; and

• assist in the design of biocatalysts; we evaluate the novel prospect of using
ASR to track and re-purpose insertion and deletion (indel) events to compose
and resurrect hybrid ancestors.

Results

GRASP infers partially ordered ancestor graphs, representing substi-
tutions, insertions, and deletions

Unlike other reconstruction methods, GRASP uses POGs to assign sequence char-
acters from insertions, deletions, and recombination events over time and across
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clades to ensure that homologous positions are processed appropriately by an evo-
lutionary model and to defer decisions when there is ambiguity.

GRASP infers ancestor POGs from an input POG that represents a set of
aligned homologous sequences and an input phylogenetic tree describing their evo-
lutionary relationships. It does this in three stages that are designed to deconvolute
sources of sequence variation.

1. The most parsimonious history of composite indel events is determined and
mapped onto the phylogenetic tree. For each position in the alignment a
“character tree” is constructed that only contains phylogenetic branch points
with actual sequence content (Fig. 1a).

2. For each character tree, the most probable character (to explain those ob-
served at the leaves) is assigned to each phylogenetic branch point when
performing a joint reconstruction (Fig. 1b). Alternatively, the probabil-
ity distribution over all possible characters is inferred for each position at
a nominated phylogenetic branch point when performing a marginal recon-
struction (Fig. 1c).

3. For each phylogenetic branch point or ancestor, character trees are selec-
tively linked to form an individual POG with nodes for characters and edges
for all inferred combinations of indels, including a preferred path nominating
a single sequence.

Inference of ancient character states for the analysis of large protein families is
performed using maximum likelihood, leveraging efficient algorithms developed
for probabilistic graphical models, which allows unprecedented volumes of non-
redundant data to be used14. Inference of indel histories is done with a variation
of maximum parsimony that we refer to as bi-directional edge parsimony, which
tracks and scores the edges of a POG (see Methods for a complete description).

For GDH and GOx, we used GRASP to identify potential substitution variants
through analysis of inferred distributions via marginal reconstruction. This analysis
is an established approach which is frequently performed in ASR to account for
uncertainties in reconstructed sequences, suggest ancestor variants, and explore
properties such as thermal stability or substrate preference in inferred variants (Fig.
1c, Supplementary Table 1).

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2020. ; https://doi.org/10.1101/2019.12.30.891457doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.30.891457
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Phylogenetic tree showing a reconstruction of fungal GDH and GOx sequences
decorated with illustrations of key concepts used in GRASP. a, Two extant POGs (j indi-
cates extant sequence number) mapped to an ancestral POG. Each extant POG has a single
path through strictly ordered sequence positions (i indicates position). Ancestral states are
influenced by all sequences, which explains why i = 608 is inferred as glycine, despite
glycine not appearing in either sequence j = 359 or 360. b, Three ancestor POGs showing
most probable assignments from a joint reconstruction at positions i ∈ {315, ..., 327} for
nodes N7, N8, and N9. GRASP supports the simultaneous viewing of multiple ancestors
from a joint reconstruction, enabling a direct comparison at different time points. c, A sin-
gle ancestor POG showing inferred marginal distributions at positions i ∈ {243, ..., 254}
for node N320. For marginal reconstructions, nodes are coloured according to their poste-
rior probabilities and can be queried to view histograms of these underlying distributions,
as is done for position i = 244. The marginal reconstruction from (c) was used to re-
construct the inferred ancestor (N320) as well as an alternative ancestor in which a single
amino acid (N320 Y244E) was altered based on posterior probabilities from the marginal
distribution that resulted in increased thermal stability (Supplementary Table 1).

On smaller data sets, GRASP’s predictions are consistent with the pre-
dictions of existing methods

We compared GRASP against two alternative ASR tools, selected due to their dom-
inant use in the literature: FastML15 and the aaml program from the Phylogenetic
Analysis by Maximum Likelihood (PAML) package16. We were able to produce
ancestral proteins from reconstructions produced by GRASP, FastML, and PAML
on a CYP2U/CYP2R data set (359 sequences). The ultimate CYP2U ancestors
had ~95% sequence identity and regardless of the tool used; ancestral proteins ex-
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pressed at similar levels in Escherichia coli, displayed characteristic P450 spectra
and activities towards the luciferin MultiCYP substrate, and also had similar ther-
mal stabilities (Supplementary Fig. 1).

To make statements about the accuracy of ancestral predictions is problematic
as the historically correct and complete evolutionary record is unavailable. To
sidestep this issue, we first applied each tool and configuration to generate multiple
predictions of the same principal ancestor node based on stratified, down-sampled
data sets of a given sequence family. Secondly, we performed two tests asking: (a)
between tools, how similar is the prediction of one tool to those of others; and (b)
how similar is the prediction of one tool from the down-sampled data to a better-
sampled ancestor, predicted from the complete family? We reasoned that a better
method would be one which tended to agree with the majority of others, and one
that with less data tended to agree with a prediction based on more data (assuming
that more data help to improve a prediction).

A large alignment with 1,682 sequences (KARI class II, adapted from Gumulya
et al.7) and the corresponding phylogenetic tree were divided into sub-groups and
used to assess the effect of tool, data set size, and reconstruction parameters on
ancestral inference (see Methods for details). We sought to corroborate any trends
using a second independent data set (CYP2 with 975 sequences).

Test (a) measured similarity between ancestors at a given set of tool parameters
and group size (Fig. 2a and Supplementary Fig. 2a); specifically, we observed frac-
tional distances D/L (where D is the number of substitutions, of L non-gapped,
homologous positions) between sequences predicted for each condition tested. Test
(b) measured similarity in terms of fractional distances between ancestor predic-
tions of an individual tool (with a set of parameters and group sample size) and
a better-sampled ancestor using all available data (Fig. 2b and Supplementary
Fig. 2b). The better-sampled ancestor for the comparison in (b) was predicted by
GRASP, since a data set of this size could not be completed by FastML or PAML.
A series of statistical tests were performed; first ANOVA evaluated whether choice
of tool, data set size, and rate parameter setting were factors in determining how
similar a predicted ancestor sequence (grouped by a specified setting) was, relative
to those of alternative tools with the same setting (test a) and relative to those gen-
erated from the complete data set (test b). The t-test was then used to identify the
pairs of labels (on groups) that best explained observed differences (Supplementary
Figs. 3 and 4).

While GRASP performs character inference via standard models and algo-
rithms, it does not support variable evolutionary rates at this stage. When com-
paring predictions between tools (test a) or between tool and better-sampled an-
cestor (test b), both the choice of tool and data set size separately and consistently
explained the observed differences in distances; however the rate setting did not.

The choice of tool mattered for both types of comparisons across the two data
sets; in most cases PAML-predicted sequences have a greater mean fractional dis-
tance to those of GRASP and FastML, than any of the alternatives. GRASP and
FastML predictions were broadly indifferent, both relative to the better-sampled
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ancestor and relative to PAML’s ancestors. Indeed, greater sequence numbers gen-
erally reduced distances between tools and reduced distances between a tool’s pre-
dictions and the ancestor based on the complete data set.

We calculated the time taken for all tools to complete the reconstructions with
a run time cut-off of 48 hours (Supplementary Fig. 5) and highlighted the time
taken for GRASP and FastML to complete the two larger data set sizes (Fig. 2c).
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Figure 2: Tool comparison on KARI data. a, Average fractional distance between tools,
calculated as pairwise fractional distances for each ancestral prediction for a given tool
against all other ancestral predictions of other tools at 5 groups of 336 or 337 sequences,
10 groups of 168 or 169 sequences, and 20 groups of 84 or 85 sequences. Parameter com-
binations are joint and marginal reconstruction; and fixed or variable evolutionary rates
(FastML and PAML only). b, Average fractional distance between a better-sampled an-
cestor inferred by GRASP using 1,682 sequences and each tool / parameter combination
at 5, 10, and 20 groups. c, Run times of tools for GRASP and FastML at 5 and 10 groups;
PAML is omitted due to long run times. Run times for all tools at 10 and 20 groups are
shown in Supplementary Fig. 5.
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Increasing sequences constrains inferred ancestral sequences

GRASP is able to process very large numbers of sequences (i.e., greater than
10,000), which is a requirement to capture the true diversity of the sequence space.
Intuitively, more data equates to better coverage (and resolution) of the biological
sequence space, which, if we had perfect knowledge of the true homologous re-
lationships between residues, would imply that possible ancestral states are more
robustly constrained towards canonical sequences.

In practice, we must account for obscured homology due to substitutions and
indel events. Indel handling is critical for ASR, yet routinely problematic, and
the accurate management of indel events is essential to decide on which sequence
content to include for any particular ancestor. As data set sizes grow, the number
of columns in a sequence alignment, or positions in a POG, increases substan-
tially and the indel histories become more complicated. Therefore, increasing the
number of sequences does not necessarily lead to data saturation and ancestral in-
ferences that approach a stable, canonical sequence.

To test the effect of increasing data set size on ancestral inference, we assem-
bled sequence data sets for the DHAD and CYP2U protein families via increments
of sequence data (see Methods) and compared the ancestral inferences for each
data set size (Fig. 3a-d), ranging from between 1,612 to 9,112 sequences for
DHAD and between 165 and 595 sequences for CYP2U. The DHAD data sets
were increased by adding sequences from across the DHAD taxonomic space,
while the CYP2U data sets were increased by adding sequences from sister groups
CYP2R and CYP2D while retaining the same number of CYP2U sequences at each
point. For the DHAD data set we also performed a sparse reconstruction of 585
sequences, containing primarily reviewed Swiss-Prot sequences.
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Figure 3: a, Phylogenetic trees of the smallest and largest DHAD data sets after producing
14 randomly sampled data sets in 500 sequence increments, added to our base data set of
1,612 sequences and reaching a maximum size of 9,112 sequences. b, Distance maps of
the fractional distance between three nominated nodes from DHAD at incremental data set
sizes. c, Phylogenetic trees of the smallest and largest data sets after increasing CYP2U
sequences via addition of homologous subfamilies, starting with 165 CYP2U sequences
then growing to 359 sequences and reaching a maximum of 595 sequences via addition of
sequences from CYP2R and CYP2D, respectively. d, Distance maps of the fractional dis-
tance between two nominated nodes from CYP2U at incremental data set sizes. Ancestors
from the N4/N5 equivalent nodes across the three data set sizes are not shown but had 98%
identity. e, Distance map of the average fractional distance between 50 randomly selected
ancestors in the KARI I data set, ranging from 1,176 to 11,756 sequences.
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With GRASP, we observed that as data set size increased, the predicted an-
cestor sequences approached canonical forms in terms of amino acid composition
at equivalent phylogenetic nodes between different tree sizes. To further illustrate
these trends, we inferred KARI ancestors in regular increments ranging from 1,176
sequences to 11,756 sequences. These ancestors also converged towards canonical
forms with the addition of sequences (Fig. 3e). While the number of positions in
the input sequence alignment generally increases with coverage, the length of the
ancestor sequences is not correlated with the number of input sequences (Supple-
mentary Fig. 6).

GRASP is able to complete the reconstruction of the largest data sets in this
study within 7 hours for DHAD (9,112 sequences, 1,381 positions in alignment)
and within 6 hours for KARI (11,756 sequences, 667 positions) (Supplementary
Fig. 7).

Ancestral proteins inferred from the smallest and largest data sets for both
DHAD and CYP2U are active towards expected substrates, despite differences in
ancestral sequence identity between the two extremes of data set size (DHAD 75%,
CYP2U 80%). All DHAD ancestors displayed enzymatic activity to D-gluconate
and included products of a control DHAD and traces of additional products (Sup-
plementary Fig. 8a). We observed that three DHAD ancestral proteins from the
smallest data set have thermal shift profiles comparable to those of the three ances-
tors that are located in equivalent tree positions in the largest data set (Supplemen-
tary Fig. 8b). For two of the three DHAD reference ancestors the melting points in
the proteins from the larger reconstruction are increased by approximately 5 ◦C rel-
ative to their counterparts from the smaller data set (Supplementary Fig. 8b). Like-
wise, the inclusion of the sister clades for the CYP2U reconstruction increased the
thermal stability of the ultimate CYP2U ancestors and the ancestors at each point
(165, 359, and 595 sequences) were all shown to be active towards the substrate
luciferin MultiCYP (Supplementary Fig. 9).

Indel variation can be used to create hybrid ancestors

A common technique to explore plausible alternative amino acids at particular sites
is to select residues that show a relatively high posterior probability in a marginal
reconstruction7. Mutations can be introduced at these positions to test the robust-
ness of prediction and to create alternative ancestors. GRASP is able to prioritise
mutations that best capture inferred probability distributions by minimising the ex-
pected relative entropy.

We hypothesised that indel events suggest plausible blocks of sequence content
that could be included or excluded in identified ancestors as a novel approach to
creating ancestral variants, orthogonal to substitution. GRASP utilises the history
of indel events to predict modular blocks of content capable of being removed from
ancestors in which they occur or inserted into ancestors that never contained these
modules. In doing this, GRASP fundamentally extends the nature and practical
application of modulating variation within ancestors and is capable of identifying
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modular insertions that, in the case of the CYP2U ancestors, alter the protein ther-
mal stability and substrate selectivity towards two different probe substrates. The
ability to manipulate both of these properties is desirable for protein engineering.

We used GRASP to identify two distinct lineage-specific insertions within the
CYP2U/CYP2R/CYP2D data set, occurring at the nodes N5 and N51 (Fig. 4). We
synthesised the inferred ancestors N5 and N51, as well as a more ancient ancestor,
N2, that did not contain either insertion. We removed the insertion LSEE from
N5 at sequence position 153 (N5 153dLSEE) and removed the insertion LLSPP
from N51 at sequence position 27 (N51 27dLLSPP). We preempted their predicted
occurrence by separately inserting them into N2 at the equivalent sequence posi-
tions 152 (N2 152iLSEE) and 27 (N2 27iLLSPP). We also tested two variants of
the N1 CYP2U ancestor. One form contained a CYP2U-specific insertion of 19
amino acids (N1), and the other removed this insertion to resemble the CYP2R and
CYP2D sequences (N1 19dIPP...RR).

All ancestral proteins inferred via this process were heterologously expressed
in E. coli and characterised. They were shown to express at similar levels, have
the same fold, and form intact haem-thiolate linkages as indicated by the charac-
teristic spectral peak at 450 nm in the Fe(II).CO vs. Fe(II) difference spectrum
(Supplementary Fig. 10). All were catalytically active towards at least one sub-
strate, when tested with three different P450-GloTM pro-luciferin probe substrates,
luciferins MultiCYP, ME-EGE, and CEE. Therefore, the presence or absence of
these lineage-specific insertions was not essential for the protein folding, co-factor
binding, or interaction with the cytochrome P450 reductase. However, it was ob-
served that the lineage-specific insertions did alter the substrate selectivity of the
otherwise identical ancestors.

Both N5 and N51 are active towards both luciferins CEE and ME-EGE, while
N2 is only active toward luciferin ME-EGE. Loss of the insertion LLSPP from
N51 reduces its activity towards luciferin CEE, and the corresponding gain of the
LLSPP insertion in the N2 ancestor increases its activity towards luciferin CEE.
Neither loss of the insertion LSEE from N5 or gain of the insertion LSEE in N2
has an effect on luciferin CEE activity. The presence of the LSEE insertion in the
N2 and N5 ancestors increased both ancestors’ activity towards luciferin ME-EGE.
Inclusion of the LLSPP insertion did not have a consistent effect in activity towards
luciferin ME-EGE, whereas inclusion increased activity towards ME-EGE in N2,
but not in N51. The N1 ancestor was only active towards luciferin MultiCYP,
but N1 19dIPP...RR was slightly active towards all three pro-luciferin substrates,
suggesting this insertion may also alter the selectivity of the ancestor.

The LLSPP insertion also modulated the thermal stability of the ancestors;
the insertion produced a small but statistically significant increase in the thermal
stability in both the N2 and N51 ancestors, compared to their variants lacking this
insertion (Fig. 4c). This effect was not seen for the LSEE insertion (Fig. 4c),
suggesting that these effects are protein and sequence specific.
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Figure 4: a, Phylogenetic tree showing positions of ancestors chosen for synthesis and
evaluation. Coloured boxes indicate the content that was removed from correspondingly
coloured ancestral nodes (N51, N5, and N1) and, in the case of the N51 and N5 insertions,
preemptively inserted into N2. b, Amino acid sequences surrounding and including the
insertion or deletion of the content at each ancestor. Numbers under sequences indicate the
position numbers of the start and end columns represented in the alignment. c, Thermal
stability assays for each ancestor with and without inserted content. d,e, Activity assays
for the substrates luciferin CEE and luciferin ME-EGE for each ancestor with and without
inserted content. Different symbols indicate different experimental repeats, lines indicate
mean and standard deviation, and p-values were determined by a two-tailed Student’s t-
test. No data points were excluded.
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Discussion

Increasing the scale at which ASR can be performed means that greater sequence
and functional diversity can be explored and more complicated phylogenetic rela-
tionships can be assessed9. Incorporating more data from sister clades and remote
homologs can allow ancestors to be inferred for more ancient evolutionary times.
We substantiated these points computationally and experimentally by resurrecting
twenty ancestral variants from different time points across three enzyme families
(GDH/GOx, DHAD, and CYP2U), all of which were shown to be catalytically
active.

ASR has been used extensively in recent years4,9,8 and it is important to under-
stand the relative performance of different tools, and to recognise proven principles
that underpin successful methods. We note FastML is in broad agreement with
GRASP, with it having closer evolutionary distances to GRASP’s predictions than
to PAML. This trend holds true even when FastML and PAML incorporate vari-
able evolutionary rates. We also demonstrated that incorporating more sequence
data resulted in smaller fractional distances between inferred ancestors, regardless
of tool. GRASP uniquely scales to input data with more than 10,000 sequences.

Based on the analyses of KARI and DHAD we demonstrated that despite an
increase in diversity, ancestral sequences converge toward canonical forms when
using large data sets. Ancestral sequences generated from smaller data sets exhibit
greater variation in ancestral sequence identity relative to the ancestral sequences
from the larger data sets. This supports the notion that greater representation of
a family provides a constraint for the ancestor, i.e. that robust reconstructions are
best achieved when available sequence data is exploited to the most full extent
possible.

At the core of GRASP’s approach is the POG data structure, originally pro-
posed to facilitate multiple sequence alignment17,18. We developed bi-directional
edge parsimony to directly use the POG data structure during inference and pin-
point likely phylogenetic positions for indel events once homologs are placed in an
alignment; it effectively delineates sequence content at all internal nodes of a given
phylogenetic tree, collectively tracing the evolutionary relationships between all
sequences. As a consequence, evolutionary events are isolated to specific clades,
and alignment ambiguities that are difficult to resolve at a single branch point can
be disentangled across evolutionary time, here applied to enzyme families with
members across different phyla.

ASR often requires judgements to be made as to whether ancestors contained
an insertion present in only some of the multiple descendent branches of a phylo-
genetic tree. The presence of these events may pinpoint loop remodelling events19

or other conformational diversity in the family. In turn, the evolution of conforma-
tional diversity may promote new functions8.

In contrast to current approaches based on gapped sequence representations,
POGs enable the identification of all supported indel histories across a recon-
structed family. Hybrid ancestors represent a novel class of variant that can readily
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be identified and resurrected through the partitioning of indel events onto indi-
vidual edges within a POG. In GRASP, edges that are parsimonious but are not
chosen to form the preferred ancestral sequence are visualised as alternative paths
through the POG; multiple branch points can be inspected and contrasted at once.
GRASP provides a framework to delete, reintroduce, or preemptively include indel
variation that supports both exploring and creating new function.

The modular identification of alternative indels, each compatible with a given
ancestor (or those near it) can be used to test alternative hypotheses about the true
progression of events. In addition, combinations of compatible indels can be sam-
pled in order to engineer novel sequences by including or removing blocks of se-
quence content. Using the analysed CYP2U data set, we showed that inclusion
of these modular blocks allowed for increased thermal stability and altered sub-
strate preference. We stress that we are not attributing the increased stability or
interaction with a specific substrate solely to the identified insertion, but rather that
we have identified blocks of content that are likely to be tolerated and which in
turn affect the folding and function of these ancestral proteins. Due to the com-
plex nature of protein folding, these blocks will not always behave in predictable
ways and effects will depend on the ancestral sequence and sequence context into
which they are being inserted. Strikingly, given the substantial impact that indel
events are likely to have on any protein sequence, coupled with the divergence
between CYP2U ancestral sequences chosen, the hybrid ancestors folded to form
holoenzymes that are catalytically active when tested in vitro and are capable of
interacting with the native human reductase.

The identification of modular insertions altered the substrate selectivity, not
unlike how substitution variants identified by marginal reconstruction have in pre-
vious studies7. This study provides a proof-of-concept that indel histories can sug-
gest a form of variation that protein engineers can use that is orthogonal to varying
specific amino acids. We foresee this as being of practical use for (1) altering func-
tion through the addition and removal of discrete, evolutionarily-defined building
blocks to engineer variants with altered catalytic and physical properties (e.g. ther-
mal stability) and (2) exploring alternative ancestors where there is ambiguity in
the true phylogenetic position of an indel.

Methods

The three main stages of GRASP are (1) to construct an indel history for every
position in the alignment, (2) to infer character states for all positions not removed
in each ancestor, and (3) to form a POG by linking positions inferred for each
ancestor.

GRASP infers ancestor character states from a set of M input sequences S =
{Sj : j ∈ J} where J = {1, 2, ...,M}; S has N aligned positions, indexed with
i ∈ I, where I = {1, 2, ..., N}. In classical sequence alignments, positions with-
out sequence content are padded, often shown as ‘−’; we use I(j) ⊆ I to index
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positions in sequence j with actual sequence content, Sji = x where x ∈ A when
i ∈ I(j) and A is the set of amino acids. Later, it will be convenient to refer to the
transpose of I(j), namely J(i) which indexes all sequences with content at position
i.

Inference is based on a given phylogenetic tree T with a nominated root, that
has M − 1 branch points (if bifurcating, fewer when multifurcating) indexed by
K = {M + 1,M + 2, ..., 2M − 1}; we designate the index k = M + 1 for the
root of the tree. The superset of extant and ancestor sequences (matched to POGs)
is indexed by Z = J ∪ K. The topology of T defines parent-child relationships,
Z(k) ⊆ Z indexes the ancestral descendants of an ancestor k; conversely, we define
a function κ(k′) = k′′ to indicate that k′′ is the direct ancestor of k′, where k′ ∈
Z(k′′).

Character states are inferred with an evolutionary model (in the form of an
instantaneous rate matrix, indexed by A); and maximum likelihood20, by using a
Bayesian network that shares the topology of the position-specific character tree,
which is determined by parsimony.

Below, we first define key data structures, then we distinguish between (a) the
handling of where homologous positions are placed relative to one another in the
trace of ancestral sequences via POGs; and (b) the principles with which homolo-
gous positions in extant sequences are used to determine ancestral character states
at branch points in the phylogenetic tree. The principles under (b) are unremark-
able in themselves, but key benefits are achieved by using them in the ancestor POG
from (a). For succinctness, we describe this procedure as it applies to a bifurcating
tree, however the same principles seamlessly extend to multifurcating trees.

Representing sequence content as a partial order graph (POG)

A POG is a directed acyclic graph whose elements are ordered relative to other
elements; a strict ordering is enforced within a subset of elements, but not always
between subsets. When an order is imposed amongst elements the relationship
must be reflexive, anti-symmetric, and transitive10. A growing body of work in
sequence alignment has demonstrated the flexibility that POGs offer for detecting
and representing homologous sequence elements during alignment17,18,21. We take
advantage of the flexibility of POGs when projecting homologous elements back in
time; they represent deletions and insertions by edges that exclude and include al-
ternative character subsets, respectively, allowing for optional histories by offering
multiple paths at ancestral branch points.

Formally, a POG is defined by a set of (up to) N nodes that are indexed by
i ∈ I. The indices are determined by performing a topological sort on the in-
put POG (see below); this gives at least one linear and complete ordering (out of
several possible). Nodes are connected by a set of directed edges, which is conve-
niently represented by a matrix E, where E(a, b) is set to 1 if there is an edge from
a to b, else 0. We introduce an extended index-set I∗ for rows and columns in E,
with 0 and N + 1 to start and terminate the POG, so a ∈ I∗ and b ∈ I∗. We define
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next(E, a) = {b : E(a, b) > 0} and prev(E, b) = {a : E(a, b) > 0} to refer to
sets of nodes that occur after and before a node with a given index, respectively.
next(E, 0) would thus give all possible start indices, and prev(E, N + 1) all ter-
minating indices. Moreover, we define path(E) to return all indices in I that can
be accessed from 0, and N + 1, via recursive application of next and prev.

We distinguish between three types of POGs, the first two are determined di-
rectly from S, and the third by inference. All POGs share the node index I, which
allows character states to be mapped across extant sequences and ancestors (illus-
trated in Fig. 1).

• an “extant POG”, is defined by a set of edges E(j) specific to an extant se-
quence Sj , where j ∈ J. path(E(j)) recovers the indices in I(j); it forms a
single path of “character” nodes Xji = Sji where i ∈ I(j).

• an “input POG”, denoted E∗ =
∑

j∈JE
(j) represents the joint set of edges

collected from extant sequences. The presence of an edge between a and b
is indicated by E∗(a, b) > 0.

• an “ancestor POG”, is inferred to have a set of edges E(k) where k ∈ K.
It links a series of nodes Yki where i ∈ I(k); each node either identifies a
character state, or defines a probability distribution over character states; the
latter is referred to as a “distribution” node. Once the POG for ancestor k is
inferred, path(E(k)) recovers its valid indices I(k).

Inference of ancestral states, insertions, and deletions

The phylogenetic tree with a nominated root and the collection of extant POGs
serve as input to inference. GRASP supports two types of inference:

• Marginal reconstruction at a specified ancestral branch point in the phylo-
genetic tree; as a result of inference, the nominated ancestor POG will con-
tain distribution nodes that represent the marginal distributions of character
states.

• Joint reconstruction of all ancestral branch points; all ancestor POGs will
contain character nodes that represent the most probable character state.

Inferring insertions and deletions at ancestor branch points

POG E(k) at an ancestor k defines all possible paths that can form a valid sequence
and therefore determines if a character state needs to be inferred at any given posi-
tion. This subsection describes how E(k) is determined, and I(k) by implication.

GRASP considers all edges in E∗ and seeks to jointly identify the most parsi-
monious set of edges across all branches in the tree. To decompose this problem,
GRASP scores edges leaving (δ = OUT) and edges entering (δ = IN) for a single
position at a time. This process starts at the top-most branch point in the tree, and
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by dynamic programming finds the edges at all descendant ancestors that imply the
smallest cost across the tree.

Eq. 1 defines a score for each edge (between a and b, with direction δ) at a
given ancestor k. The parsimony score of that edge depends on which edges are
selected at its descendants: staying with the same edge is costless, changing to any
other edge will cost 1. Except for the base case when the descendant is an extant
sequence, the cost from the descendants are propagated recursively, and (all) edge
choices that ultimately lead to the best parsimony score at the top-most branch
point are recorded. The edge with the best score (i′ in Eq. 1, relative to either a or
b depending on δ) is assigned a score of 1 to indicate it was most parsimonious in
that direction: E(k)(i, i′) = 1 for both δ = OUT and δ = IN, at any position i ∈ I.
(Note that δ = OUT references only one half of the matrix (i < i′) and δ = IN

references the other (i > i′).)

σ(k, δ, a, b) =
Z(k)∑
c


min

next(E∗,a)
i′

{
0 if b = i′

1 otherwise
+

{
0 if c ∈ J
σ(c, δ, a, i′) if c ∈ K

if δ = OUT

min
prev(E∗,b)
i′

{
0 if a = i′

1 otherwise
+

{
0 if c ∈ J
σ(c, δ, i′, b) if c ∈ K

if δ = IN

(1)
For an ancestor k, an edge (a, b) is included if E(k)(a, b) + E(k)(b, a) > 0; if

the sum is 2, it is bi-directionally parsimonious, which implies it is preferred when
identifying ancestor sequences. There is no guarantee that there is a complete path
through the POG where all edges are bi-directionally parsimonious, but in practice
this turns out to be mostly the case.

Inferring the character state of ancestor nodes

For GRASP to infer character states and operate efficiently, we make several stan-
dard assumptions. First, each sequence position, i, can be modelled indepen-
dently20. Second, we assume that character substitutions depend only on the state
of the immediate ancestor20. Third, we assume that each position mutates at the
same rate. Modelling variable rates across positions22,23 compromises our ability
to efficiently process large data sets, we presently opt not to do this. Instead, we
leverage efficient procedures of graphical models for inference14.

The topology of the phylogenetic tree maps to a character tree for each position,
subject to the position i ∈ I(k) in an ancestor k forming part of a valid sequence;
for later, we define the transpose of that mapping as k ∈ K(i), i.e. the subset of
ancestors that have character content for a position i.

Each position-specific character tree maps to a directed Bayesian network,
which is parameterised to reflect evolutionary distances (additively) at each branch,
from the provided phylogenetic tree. The network is created with “observable”
variables, instantiated to the characters in extant sequences Xji = x. “Non-
observable” variables in the Bayesian network correspond to the ancestors Yki

18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2020. ; https://doi.org/10.1101/2019.12.30.891457doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.30.891457
http://creativecommons.org/licenses/by-nc-nd/4.0/


where i ∈ I(k); how the character state or distribution for Yki is inferred is de-
scribed below.

A Bayesian network node is a conditional probability P (Xji|Yκ(j)i, dj) or
P (Yki|Yκ(k)i, dk), for j ∈ J(i) and k ∈ K(i) and is parameterised by their respec-
tive distances (dj or dk; which refer to their closest ancestor branch point, κ(j) or
κ(k), respectively).

The matrix of conditional probabilities is eQ(d) where Q is the instantaneous
rate matrix given by the evolutionary model. GRASP supports all popular mod-
els24,25,26,27. Inference of the joint ancestral character state at a position i is then
defined by:

P ({Yki : k ∈ K(i)}|{Xji : j ∈ J(i)}, T ) ∝∏
j∈J(i)

P (Xji|Yκ(j)i, dj)
∏

k∈K(i)

P (Yki|Yκ(k)i, dk) (2)

where T is the tree with distances for all branches. The implementation uses an
adaptation of variable elimination14,28, which decomposes the inference into an
efficient series of products given the hierarchical topology of the tree. Ancestral
states are determined by the highest joint probability across all non-observed vari-
ables (all ancestors, all positions). From the above, GRASP is also capable of
inferring the marginal probability distribution for each position in a given ances-
tor, by summing out all other non-observed variables. All inferences are exact (not
approximated).

Identifying a single, preferred ancestor sequence

Not uncommonly, multiple indel histories are equally parsimonious, implying that
several ancestor candidate sequences can be identified by traversing an ancestor
POG; however, in some applications it is necessary to nominate a single sequence.

To determine a “preferred” path through an ancestor POG, we first define a
subset of extant sequences J(k) that are in the subtree under a given ancestor, k. To
express preference between multiple edges, we calculate the proportion of extant
sequences that contain a particular edge (see Eq. 3).

wk(a, b) =

∑
j∈J(k)

{
1 if E(j)(a, b) = 1

0 otherwise

|J(k)|
(3)

Identifying the preferred path

GRASP uses the A* algorithm29 to determine the selection of edges in a POG that
jointly minimise the cost, travelling from the N- to the C-terminus.

The cost assigned to an edge is given by Eq. 4:

γk(a, b) = (1 + (ηk(a, b) · (1− wk(a, b)))) · (b− a) (4)
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η is defined in Eq. 5 and imposes an absolute preference for bi-directionally
parsimonious edges; a uni-directional edge is only chosen in the absence of bi-
directional edges to complete the traversal. The exception is the edge to the first
node, and the edge from the last node, where bi-directionality is disregarded. The
impact of the weight is normalised by the number of positions skipped by a given
edge, b − a. This ensures that each complete ancestral sequence is scored evenly,
regardless of the number of edges it takes to form.

ηk(a, b) =

{
N if E(k)(a, b) +E(k)(b, a) < 2, a 6= 0 and b 6= N + 1

1 otherwise
(5)

Access to tools and data

GRASP is freely accessible via a web server at http://grasp.scmb.uq.
edu.au. The online service allows users to upload their own data sets and pre-
dict ancestors. The results are presented to allow exploration of ancestral POGs
and their states via an interactive phylogenetic tree. Numerous other functions are
available including annotation of trees with taxonomy and user specified terms,
inspection of probability distributions for the identification of mutations for alter-
native ancestors, and sharing of entire reconstructions. A tutorial, user guide, and
several example reconstructions are also available from the web site.

Data sets reported in the manuscript and a suite of tools to assist in the applica-
tion of GRASP are available at https://bodenlab.github.io/GRASP-suite.
In particular, a command-line version of the prediction method without visualisa-
tion features is available.

The implementation in Java and a web application are available from the same
site. The software is available under the GNU General Public License v3.0.

GDH-GOx experimental methods

GDH-GOx ancestral inference

Starting from an aligned data set and phylogenetic tree previously established by
Sützl et al.11 for the GDH-GOx cluster, only the four major clades (GOx, GDH
I, GDH II, and GDH III) were selected together with the second small GDH III
clade. All sequences with >800 amino acids as well as manually selected se-
quences showing large insertions were removed from the selection, resulting in 399
sequences. This sequence selection was aligned by MAFFT v7.271 G-INS-i30, the
alignment trimmed for positions with >99% gaps by trimAl v1.231, and pruned
using Gblocks 0.91b32 with a less stringent block selection. The phylogenetic tree
was inferred by PhyML33 with default settings with SPR moves to optimise tree
topology, Smart Model Selection (SMS), and aLRT SH-like branch support. The
tree was rooted on the midpoint. Marginal reconstruction of ancestral nodes was
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performed with the LG evolutionary rate model27 after the N- and C-termini of the
alignment had been trimmed.

GDH-GOx synthesis and cloning

The N- and C-terminal sequences not present in the ancestral sequences were re-
placed by the equivalent amino acid sequences of GOx from Aspergillus niger,
‘MQTLLVSSLVVSLAAALPHYIRSNGIEASLLTDPKDVSGRT’ and ‘ASMQ’, re-
spectively. Resulting ancestral genes were ordered at BioCat GmbH, cloned into
the expression vector pPICZ A together with an added polyhistidine tag (6 x His),
and codon-optimised for Komagataella phaffi (formerly Pichia pastoris) expres-
sion. Constructs were linearized with PvuII and transformed into K. phaffii via
electroporation.

GDH-GOx expression

Ancestral and extant GOx and GDH genes were expressed in K. phaffii under the
AOX1 promoter with methanol induction. Routine cultivations and selection of the
transformed cells were done in liquid YPD medium supplemented with zeocin (100
mg/L) at 30 ◦C and 130 rpm. Expression was done in shake flasks at 30 ◦C and
130 rpm on modified BMMY medium (20 g/L peptone from casein, 10 g/L yeast
extract, 100 mM potassium phosphate buffer pH 6.0, 10 g/L (NH4)2SO4, 3.4 g/L
yeast nitrogen base (without amino acids and (NH4)2SO4), and 0.4 mg/L biotin)
together with 12 g/L sorbitol and 2% methanol. After centrifugation at 6,000xg
and 4 ◦C for 30 minutes, supernatants were loaded onto an equilibrated 5 mL His-
Trap column (GE Healthcare) and washed with binding buffer (50 mM potassium
phosphate buffer pH 6.5, 500 mM NaCl, and 20 mM imidazole). Proteins were
eluted using a linear gradient of 50 mM potassium phosphate buffer pH 6.5 con-
taining 500 mM NaCl and 500 mM imidazole. Manually collected fractions were
concentrated and desalted (50 mM phosphate buffer pH 6.5) in Vivaspin 20 tubes
(Sartorius) with 30,000 Da molecular mass cut-off.

GDH-GOx activity assays

Both GDH and GOx activity were measured spectrophotometrically at 30 ◦C on a
UV/Vis spectrophotometer (Lambda 35, Perkin Elmer), using appropriately diluted
enzyme solution, 20 mM D-glucose, and the respective electron acceptor in 50
mM potassium phosphate buffer pH 6.5. The electron acceptors 1,4-benzoquinone
(BQ) and ferrocenium-hexafluorophosphate (FcPF6) were used at 0.5 and 0.2 mM,
and their reduction was followed at 290 and 300 nm, respectively. Reduction of
the electron acceptor oxygen was measured using the peroxidase-coupled ABTS
assay34, following the reduction of 0.1 mM 2,2’-azino-bis(3-ethylbenzothiazoline-
6-sulphonic acid) (ABTS) at 420 nm.
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GDH-GOx thermal stability assays

Thermal stability of GDH-GOx enzymes was assessed by differential scanning
calorimetry conducted on a PEAQ-DSC automated instrument (Malvern Panalyti-
cal). All enzyme samples were diluted to 5 µM (~0.33 mg/ml) in 50 mM potassium
phosphate buffer pH 6.5, and scanned from 20–90 ◦C with a scan rate of 60 ◦C/h
and feedback set to high. Instrument blanks were recorded using buffer only and
rescans were measured for all samples. Data analysis was performed by using the
MicroCal PEAQ-DSC software V.1.22. The background signal was subtracted us-
ing rescans whenever applicable or buffer blanks otherwise, the baseline was fitted
using the spline method, and peaks were fitted with a non-two-state model.

DHAD experimental methods

DHAD ancestral inference

A minimal 585-sequence set was created, consisting of members annotated with
family “Ilvd/Edd” in UniProt, and excluding sequence fragments (as defined by
UniProt). Most sequences were from Swiss-Prot, with several TrEMBL entries
added due to function and structural data being available. A baseline data set of
1,612 sequences was created from the minimal data set, ensuring that 19 nominated
enzymes with experimental data (functional and/or structural) were included, as
well as members of their UniRef90 clusters. A background data set of 8,221 se-
quences included annotated members from the broadest assortment of species, only
filtered to be non-redundant at 90% identity (using UniRef90). All three data sets
were checked for the aligned location of two motifs (CDK and PCN/PGH/SAH
with provision for a substitution) that are associated with the active site35; se-
quences that did not exhibit these motifs were removed.

The background data set was then repeatedly and independently sampled to
extend the baseline data set to up to 9,112 sequences. At each size increment of 500
sequences an alignment was created using Clustal Omega36, and a phylogenetic
tree was inferred using FastTree37 and rooted using phosphogluconate dehydratase
as an outgroup. Despite differences in alignments and phylogenetic trees at each
data size increment, we were able to map any ancestor in a smaller tree to an
ancestor in a larger tree by maximising shared inclusions and exclusions of member
proteins of the ancestral subtrees. Joint reconstruction was performed with the JTT
evolutionary model25.

DHAD synthesis and cloning

The inferred DHAD ancestral genes N1, N423, and N560 from the 585 data set,
and the equivalent nodes N9, N1442, and N1443 from the 9,112 data set were opti-
mised for E. coli expression and synthesised by Twist Bioscience and ATG:biosynthetics
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GmbH, respectively. After amplification, the purified DNA fragments were di-
gested with SapI, followed by ligation into a modified pET26 vector (p7XNH3)38.

DHAD expression

Expression of the inferred DHAD and the PiDHAD genes was performed in shak-
ing flasks. E. coli BL21 (DE3) cells transformed with the p7XNH3 plasmid and
the appropriate inserted gene fragment were grown as an overnight pre-culture
in Lysogeny Broth supplemented with kanamycin (100 µg/ml), and then 1:50 in-
oculated into auto-induction ZP-5052 medium39 supplemented with kanamycin
(100 µg/ml). These cultures were incubated at 90 rpm and 37 ◦C for 3 hours and
then overnight at 18 ◦C in a horizontal orbital shaking incubator. Cells were dis-
rupted by sonication in binding buffer (50 mM potassium phosphate buffer, 500
mM NaCl, 10% glycerol, and 20 mM imidazole) at pH 8.0. Cell debris was pel-
leted by centrifugation. Proteins were purified using an ÄKTA Purifier FPLC sys-
tem and a HisTrap HP Nickel column (GE Healthcare). Filtered samples were
loaded onto the column and washed with binding buffer. The His-tagged proteins
were then eluted with elution buffer (50 mM potassium phosphate buffer, 500 mM
NaCl, 10% glycerol, and 500 mM imidazole) at pH 8.0. Desalting of the enzymes
was carried out using HEPES buffer pH 7.0.

DHAD activity assays

DHAD activity was analysed by HPLC of an assay mixture containing the respec-
tive DHAD, 25 mM HEPES buffer pH 7.0, 5 mM MgSO4, and 25 mM of sodium
D-gluconate, and incubated at 30 ◦C. Samples were taken every few hours for 3
days. The enzyme was removed by ultrafiltration (PES 10 kDa MWCO, VWR) and
the samples were stored at -20 ◦C until analysed by HPLC. HPLC measurements
were performed on an Ultimate-3000 HPLC system (Dionex), equipped with an
auto-sampler and diode-array detector. D-gluconate and products were separated
by using a Metrosep A supp10-250/40 column (250 mm, particle size 4.6 µm,
Metrohm) at 65 ◦C by isocratic elution with 12 mM ammonium bicarbonate at pH
10.02, followed by a washing step with 30 mM sodium carbonate at pH 10.4 and
a flow rate of 0.2 ml/min. Each sample injection volume was 10 µl. System peak
calibration was performed using external standards of the known compounds.

CYP2U experimental methods

CYP2U ancestral inference

Five candidate CYP2U proteins were chosen, one each from Andrias davidianus,
Python bivittatus, Marmota marmota, Poecilia reticulata, and Amazona aestiva. A
pBLAST search of each of the candidates excluding hits from plants (taxonomic
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id:3193) or fungi (taxonomic id:4751) was conducted (E-Value = 0.00001). Se-
quences from the pBLAST search were retained if they had at least 55% sequence
identity to the original candidate sequence. This procedure was also repeated re-
taining sequences with at least 50% sequence identity, however, the additional se-
quences from this lower bound were all removed at later stages of curation, indi-
cating that 55% was an appropriate level of identity. Sequences from the pBLAST
searches were collated and identical sequences were removed. Sequences were
excluded if they were below 400 amino acids in length or if they contained uniden-
tified amino acids in their sequences. Sequences were aligned using MAFFT (L-
INS-i) with default parameters30. Removal of sequences with indel events over
20 amino acids (suggestive of incorrect annotation of splice sites) was completed
in an iterative manner by first identifying which sequence had the longest indel
over 20 amino acids, removing it and realigning the remaining sequences, and then
continuing until no sequence had an indel over 20 amino acids. Sequences were
manually inspected and any sequences with apparent frameshift mutations were
removed. Sequences were mapped back to their exon structure and removed if
they had more than two exons difference to the accepted number of five exons for
CYP2U sequences. Sequences missing the conserved cysteine residue character-
istic of cytochrome P450 enzymes were removed. Similar procedures were used
to generate the CYP2R and CYP2D families. Phylogenetic trees were inferred
using RAxML40. A CYP2R Latimeria chalumnae sequence (XP 005989762.1)
was manually shifted on the phylogenetic tree to better represent the known phy-
logeny41, while retaining each sequence’s overall evolutionary distance to the root.
Joint reconstruction was performed with the JTT evolutionary rate model25.

CYP2U synthesis and cloning

The amino acid sequences of CYP2U ancestors were inferred starting from the
conserved PPGP motif, which signifies the end of the transmembrane domain. For
expression of the resurrected ancestors in bacteria, this region was replaced with
an N-terminal sequence (MAKKTSSKGKL) that is known to improve expression
yields of microsomal P450s in bacteria42 and had been used to express human
CYP2U1 in E. coli43. To enable purification, a flexible ST linker followed by a
polyhistidine tag (6 x His) was added to the C-terminus of the sequences. All an-
cestor sequences were codon-optimised for E. coli expression, and the N-termini
were optimised initially using mRNA optimiser44 and subsequently manually until
the free energy was less than -15 kJ/mol. The genes were synthesised as Gen-
eStrings (GeneArt, Invitrogen) designed with 60 bp 5’ and 3’ end extensions com-
plementary to the WW vector, cloned by Gibson assembly, and then sequence-
verified by dideoxy sequencing (Australian Genome Research Facility). Correct
inserts were subcloned into a bicistronic pCW vector upstream of the open reading
frame for the human cytochrome P450 reductase (hCPR) using the NdeI and XbaI
sites.

24

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2020. ; https://doi.org/10.1101/2019.12.30.891457doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.30.891457
http://creativecommons.org/licenses/by-nc-nd/4.0/


CYP2U expression

DH5a F’ IQ E. coli cells carrying the pGro7 plasmid were transformed with pCW
vectors containing the relevant P450 and CPR genes or the empty vector (“pCW
controls”), and selected using chloramphenicol (20 µg/ml) and ampicillin (100
µg/ml). Single colonies were used to inoculate overnight cultures in Lysogeny
Broth with antibiotics. Batch cultures were grown at 25 ◦C, 180 rpm in 500 ml
flasks containing 50 ml Terrific Broth supplemented with trace elements, 1 mM
thiamine, and antibiotics. Cultures were induced after 5 hours with 1 mM IPTG
and 4 mg/ml L-arabinose, and supplemented with 500 mM delta-aminolaevulinic
acid. Cultures were grown for a further 43 hours before harvesting by centrifu-
gation at 6,000xg for 10 minutes. E. coli pellets were weighed and resuspended
in 2 ml/g (wet weight) sonication buffer (100 mM potassium phosphate buffer pH
7.4, 20% (w/v) glycerol, 6 mM magnesium acetate, 1 mM PMSF, and protease
inhibitor cocktail (Sigma-Aldrich)). Cells were lysed using a Constant Systems
OneShot cell disruptor followed by centrifugation at 10,000xg for 20 minutes. The
supernatant was centrifuged at 180,000xg for 1 hour and the pellet was resuspended
in TES (100 mM Tris acetate, 500 mM sucrose, and 0.5 mM EDTA pH 7.6) or the
relevant solubilisation buffer using a Potter-Elvehjem homogeniser. The P450 con-
centration was determined in intact cells and membranes using Fe(II).CO vs. Fe(II)
difference spectroscopy45.

CYP2U activity assays

P450 (0.02 µM), added in membranes prepared from bacteria coexpressing hCPR,
was premixed with 50 µM luciferin CEE or luciferin ME-EGE (Promega) in 100
mM potassium phosphate pH 7.4, and incubated at 37 ◦C for 10 minutes. Reac-
tions were initiated by addition of the NADPH-regenerating system (NGS; 0.25
mM NADP+, 10 mM glucose-6-phosphate, and 0.5 U/ml glucose-6-phosphate de-
hydrogenase), and incubated with shaking at 37 ◦C for 30 minutes. An equal vol-
ume of the luciferin detection reagent was added, and reactions were incubated for
a further 20 minutes at room temperature. Luminescence was measured using a
CLARIOstar multimodal plate reader (BMG Labtech).

CYP2U thermal stability assays

Ancestors were expressed in E. coli as described above and cell pellets were resus-
pended in whole cell spectral assay buffer (WCAB; 100 mM potassium phosphate,
20 mM D-glucose, and 6 mM magnesium acetate pH 7.4) to one eighth of the orig-
inal culture volume. The resuspended cultures, distributed into tubes in 200 µL
volumes, were incubated at a range of temperatures (25-80 ◦C, in 5 ◦C increments)
for 60 minutes, followed by a 5 minute recovery at 4 ◦C and equilibration at 25
◦C. The remaining P450 content was measured in intact cells using the method of
Johnston et al.45. The proportion of total P450 content compared to the unheated
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control (25 ◦C) was plotted against temperature and the 60T50 value was calcu-
lated by fitting the data to a variable slope (4-parameter) dose response curve in
GraphPad Prism 8.0.

KARI experimental methods

KARI ancestral inference

We created two separate data sets representing KARI class I and class II, respec-
tively. The sequence alignment for class II was taken directly from Gumulya et
al.7 and used to compare tools. Class I sequences were compiled by searching
for both reviewed and unreviewed proteins in UniProt, designated as bacterial and
belonging to the family (26,485 sequences). We removed all fragments and se-
quences above the length of 400 to exclude obvious cases of class II enzymes. The
sequence set was redundancy-reduced with CD-HIT at 99%46, resulting in 11,920
sequences, from which 57 sequences were manually removed by observing a C-
terminal knotted domain, indicative of class II. After aligning all sequences with
Clustal Omega36, the Shannon entropy of gap vs. character content was determined
for all columns and sequences with high entropy over consecutive columns were
removed, resulting in a final set of 11,756 sequences. Phylogenetic tree inference
was carried out using FastTree37.

In contrast to the DHAD data sets, the KARI class I data sets were created by
decreasing their size from 11,756 via 10 regular decrements reaching a minimum
representation of 1,176 sequences. For each subset, the alignment was recalculated
independently. For each alignment, a new tree was calculated, and rooted by using
KARI sequences in Aquificae and Thermotogae as an outgroup. For each subset,
we computed reconstructions for 50 randomly chosen ancestor nodes (mapped be-
tween each subset as described for the DHAD data sets). Joint reconstruction was
performed with the JTT evolutionary model25.

GRASP, FastML, and PAML comparison method

The following procedure was used to evaluate each of the tools: (1) the input mul-
tiple sequence alignment was randomly divided into G groups of alignments with
approximately equal numbers of sequences, where G ∈ {5, 10, 20}; (2) for each
sub-alignment, the input phylogenetic tree constructed from the full alignment was
pruned to remove sequences not in the sub-alignment. To represent the same prin-
cipal ancestor across all groups, as well as to maintain a valid tree, branches in
the original phylogenetic tree with removed sequences were collapsed and branch
distances added together; (3) sub-alignments and corresponding pruned trees were
therefore pared-down representatives of the same family and used as input to each
of the ASR tools; (4) the process was repeated until 20 ancestral sequences had
been generated for each configuration, e.g., when G = 5 the process is repeated
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four times. This procedure therefore results in sequences that belong to multiple
groups across replicates for G = 5 and G = 10.

The JTT evolutionary rate model25 was used for all inferences and variable
rates were calculated from a discrete gamma distribution with eight categories.
To remove confounding effects of different strategies for dealing with gaps, we
removed any column that contained a deletion, leaving 455 and 242 columns in the
KARI and CYP2 multiple sequence alignments, respectively.
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Supplementary Material

Thermal transitions [°C]
Tm1 Tm2

AnGOx 58.2 63.1
N320 67.4 70.0
N320 Y244E 71.0 73.9

Table 1: Comparison of thermal transitions from differential scanning calorimetry
of an extant glucose oxidase from Aspergillus niger, the ancestor inferred at node
N320, and the ancestor inferred at node N320 with a single amino acid change
based on marginal distributions.

32

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2020. ; https://doi.org/10.1101/2019.12.30.891457doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.30.891457
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Comparison between ancestors generated using GRASP, FastML, and PAML.
a, Expression level of CYP2U ancestors in E. coli cultures quantified using Fe(II) vs.
Fe(II).CO difference spectroscopy. Data are means +/- SEM, N = 3. b, Fe(II) vs.
Fe(II).CO difference spectra for ancestors generated using GRASP, FastML, and PAML
in E. coli membranes. c, Turnover of luciferin MultiCYP by CYP2U ancestors in E. coli
membranes, also containing human CPR, after 30 minutes at 37 ◦C. Data are means +/-
SEM, N = 3. d, Comparison of T50 values after a 60 minute incubation at a range of
temperatures (25-80 ◦C) for ancestors generated using GRASP, FastML, and PAML. Data
are means +/- SEM, N = 2.
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Figure 2: Tool comparison on CYP2 data. a, Average fractional distance between tools,
calculated as pairwise fractional distances for each ancestral prediction for a given tool
against all other ancestral predictions of other tools at 5 groups of 195 sequences, 10 groups
of 97 or 98 sequences, and 20 groups of 48 or 49 sequences. Parameter combinations are
joint and marginal reconstruction; and fixed or variable evolutionary rates (FastML and
PAML only). b, Average fractional distance between a better-sampled ancestor inferred
by GRASP using 975 sequences and each tool / parameter combination at 5, 10, and 20
groups.
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Figure 3: Statistical evaluation of determinants of ancestor prediction performance using
1,682 KARI sequences. a, Between tool distances grouped by tool within data set size.
b, Distance to better-sampled ancestor grouped by tool within data set size. c, Distance
to better-sampled ancestor grouped by size within tool. d, Distance to better-sampled
ancestor grouped by rate parameter within data set size. PAML was excluded for the
largest data set size; variable rates were not used for the largest data set size. All p-values
were determined by a two-tailed Student’s t-test. Only significant comparisons are shown
(* means p < 0.05, ** means p < 0.01, *** means p < 0.001, **** means at limits of
precision of test). All parameter settings are from Fig. 2.
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Figure 4: Statistical evaluation of determinants of ancestor prediction performance using
975 CYP2 sequences. a, Between tool distances grouped by tool within data set size.
b, Distance to better-sampled ancestor grouped by tool within data set size. c, Distance
to better-sampled ancestor grouped by size within tool. d, Distance to better-sampled
ancestor grouped by rate parameter within data set size. All p-values were determined by
a two-tailed Student’s t-test. Only significant comparisons are shown (* means p < 0.05,
** means p < 0.01, *** means p < 0.001, **** means at limits of precision of test). All
parameter settings are from Supplementary Fig. 2.
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Figure 5: Run times of GRASP, FastML, and PAML at different parameter combinations
and group sizes on the KARI data set. Parameter combinations are joint and marginal
reconstruction; and fixed or variable evolutionary rates (FastML and PAML only).
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Figure 6: Predicted ancestor sequence lengths are unaffected by size of reconstruction.
Mean and standard deviation of the lengths of 50 ancestor sequences mapped are plotted
for different reconstructions and data set sizes for DHAD and KARI.
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Figure 7: Run times for the DHAD and KARI enzyme families as data set size increases.
Reconstructions were performed using GRASP running on 64 GB RAM, 5 threads on 2x
2.6 GHz 14C Xeon VM.
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Figure 8: a, Chromatogram assays of an extant DHAD showing a typical profile peak when
incubated with D-gluconate, and the same peak appearing in assays of ancestral DHAD
proteins N9, N1442, and N1443 as inferred in the 9,112 DHAD data set. b, Thermal shift
assays showing increase in temperature between equivalent ancestral nodes N423 (585 data
set size) and N1442 (9,112 data set size), and equivalent ancestral nodes N560 (585 data
set size) and N1443 (9,112 data set size).

40

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 21, 2020. ; https://doi.org/10.1101/2019.12.30.891457doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.30.891457
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 9: Thermal stability and activity for the CYP2U, CYP2U/CYP2R, and
CYP2U/CYP2R/CYP2D ancestors with luciferin MultiCYP. a, Comparison of T50 val-
ues after a 60 minute incubation at a range of temperatures (25-80 ◦C). Data are means +/-
SEM, N = 2. b, Turnover of luciferin MultiCYP by CYP2U ancestors in E. coli mem-
branes, also containing human CPR, after 30 minutes at 37 ◦C. Data are means +/- SEM,
N = 3.
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Figure 10: Expression of CYP2U hybrid ancestors. a, Fe(II) vs. Fe(II).CO difference spec-
tra for CYP2U ancestors in E. coli membranes. b, Expression level of CYP2U ancestors
in E. coli cultures quantified using Fe(II) vs. Fe(II).CO difference spectroscopy. Data are
means +/- SEM, N = 3.
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