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Abstract

We present the multicomponent functionalized free energies that characterize the low-
energy packings of amphiphilic molecules within a membrane through a correspondence to
connecting orbits within a reduced dynamical system. To each connecting orbits we associ-
ate a manifold of low energy membrane-type configurations parameterized by a large class
of admissible interfaces. The normal coercivity of the manifolds is established through cri-
teria depending solely on the structure of the associated connecting orbit. We present a class
of examples that arise naturally from geometric singular perturbation techniques, focusing
on a model that characterizes the stabilizing role of cholesterol-like glycolipids within phos-
pholipid membranes.

1 Introduction
Amphiphilic molecules play a fundamental role in the self-assembly of nanostructured mem-
branes. These include phospholipids, the building blocks of cellular membranes, and synthetic
polymers that are finding applications to drug delivery compounds and as active materials for
separator membranes in energy conversion devises, [5, 13, 25]. The scalar functionalized Cahn-
Hilliard free energy models the interaction of a single species of amphiphilic molecule with a
solvent, characterizing the density of the amphiphile through a phase function u ∈ H2(Ω) via
the free energy

FFCH[u] :=
∫

Ω

1
2

(ε2∆u −W ′(u))2 − εp
(
η1
ε2

2
|∇u|2 + η2W(u)

)
dx. (1.1)

Here W is a double well potential with two unequal depth minima at b− < b+ satisfying W(b−) =

0 > W(b+). The amphiphilic volume fraction is related to the density u−b− with the equilibrium
state u = b− corresponding to pure solvent. The strength of the lower order functionalization
terms are characterized by the value of p, generically selected as 1 or 2, and the values of η1 and
η2. These parameters encode the affinity of the charged elements of the amphiphilic molecule
for the solvent (called the solvent quality) and the aspect ratio of the amphiphilic molecule,
respectively, see [2, 5, 9].

Experimental investigations show that when single-species amphiphilic materials are dis-
persed in solvent, called casting, they self-assemble into a diverse array of molecular-width
structures, [10, 18]. The associated bifurcation diagram depends subtly upon both the aspect
ratio of the amphiphilic molecule and the solvent quality. Molecules with aspect ratio near
unity form two-molecule thick bilayer membranes familiar from cellular biology. Larger aspect
ratio molecules form higher codimensional structures such as filaments and micelles and com-
plex networks with triple junctions and end-caps. Within the casting experiments the genesis of
this structural diversity has been referred to as the onset of ’morphological complexity’, [17].
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Gradient flows of the scalar FCH free energy provide an accurate representation of this bifurca-
tion structure, providing a mechanism for the onset of morphological complexity via a transient
passage through a pearling instability that leads bilayers to and break into filaments and other
higher codimension morphologies, [9]. The single species bilayers supported by the scalar FCH
free energy are always neutrally stable to pearling bifurcations at leading order – opening the
door for lower order terms, including the system parameters η1 and η2 and the dynamic value of
the bulk density of amphiphilic material to play a decisive role, [20]. Indeed, previous work on
the scalar FCH has shown that the neutral modes of its bilayer interfaces are associated either to
motion of the underlying interface, termed meander, or to the short wave-length modulations of
their width associated to pearling, [16]. In regimes in which interfaces are stable to the pearling
bifurcation, the interfacial motion has been rigorously described through a normal velocity pro-
portional to curvature, with the proportionality constant depending upon the difference between
the evolving bulk density of amphiphilic materials away from the interface and the bilayer bulk-
density equilibrium value. Significantly this proportionality can be negative, which is typical in
casting experiments in which the bulk density is high, and leads to a curve lengthening motion
regularized by surface diffusion, [6].

In biologically relevant settings, phospholipid membranes are robustly stable to pearling bi-
furcations, which would generically be toxic to the living cell or to the organelle enclosed by
the membrane. Significantly phospholipid membranes are never comprised of a single species.
Generically significant amounts of cholesterol or other glycolipids are blended into the phos-
pholipid membranes. Indeed all eukaryotic plasma membranes contain large amounts of cho-
lesterol, often a 1-1 molar mixture of phospholipids and cholesterol [1]. While phospholipids
are classic amphiphilic materials with a charged head group and a hydrophobic tail, choles-
terol is a shorter, asymmetric molecule with a small, weakly charged head and a hydrophobic
body. Within a phospholipid membrane cholesterol typically wedges itself in the void space
between the amphiphilic phospholipid molecules, see Figure 1, where it significantly constrains
the motion of the lipids.

Figure 1: (left) (a) Chemical composition, (b) schematic, and (c) volume rendering of choles-
terol. (Right) Caricature of cholesterol residing with void space of a lipid bilayer. Its small head
group serves to orient the molecule and its asymmetric shape provides leverage on the lipid’s
tail groups to constraint their range of motion. Reprinted with permission from [1]

We introduce the multicomponent functionalized energy as a general framework for a system
of n+1 constituent species residing in a domain Ω ⊂ Rd, and provide a sharp characterization of
the bilayer structures that are robustly stable to pearling bifurcations. The characterization in-
volves only the spectrum of the linearization of the reduced dynamical system (1.5) that defines
the connecting profile. This framework contains the two-component singularly perturbed sys-
tems as a subfamily that describes strongly asymmetric two-component mixtures. Previous
work has exploited the asymmetry to provide explicit leading order constructions of homoclinic
connections [11]. In Theorems 3.5 and 3.9 we show that the robust pearling stability condition
corresponds to a natural geometric feature arising in the singular perturbation construction. We
develop a minimal two component phospholipid-cholesterol bilayer (PCB) model that mimics
essential features of this ubiquitous system. In particular the PCB model encodes two strong
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asymmetries: the ratio of the lengths of cholesterol and phospholipid, and the lever-arm nature
of cholesterol’s shape and its interdigitated packing that allows cholesterol to exert an outsized
influence on the phospholipid tails [22]. We propose that these asymmetries afford the mechan-
ism by which cholesterol type molecules robustly stabilize phospholipid membranes.

1.1 The Multicomponent Functionalized Energy
The multicomponent functionalized (MCF) energy takes the form

F [u] =

∫
Ω

1
2

∣∣∣D2ε2∆u − F(u)
∣∣∣2 − εpP(u,∇u) dx, (1.2)

with u ∈ H2(Ω), D is an n × n, positive diagonal matrix, F : Rn 7→ Rn is a smooth vector field,
and P : Rn×Rd×n 7→ R represents the lower order functionalization term. This model generalizes
the multicomponent functionalized Cahn-Hilliard free energy introduced in [24], replacing the
gradient form of the vector field with the more general function F whose non-gradient form
plays a central role in the generation of robust pearling stability.

The components {ui}
n
i=1 of u and un+1 := 1−u1− . . .−un represent the volume fractions of the

n + 1 constituent species. Each species is classified as either amphiphilic or solvent. There can
be more than one solvent phase, in which case they are generally immiscible, [4]. The critical
points {ai}

m
i=0 of F are associated to pure solvent phases and act as rest-states for the system. The

domains Ωi := {x ∈ Ω
∣∣∣ |u(x) − ai| = O(ε)} can have O(1) volume without generating leading

order contributions to the free energy. The dominant term in the multicomponent functional-
ized energy encodes proximity to “good packings” of the molecules identified as solutions, or
approximate solutions, of the packing relation: D2ε2∆u = F(u). The MCF energy is typically
coupled with a non-negative linear operator G, called the gradient, that annihilates the constants.
A canonical choice is G = −∆. The result is the gradient flow

ut = −G
δF

δu
,

u(0) = u0,

(1.3)

where the variational derivative is taken with respect to the L2(Ω) inner product. When com-
bined with appropriate boundary conditions, for example periodic boundary conditions, the res-
ult is a flow which decreases the energy F [u(t)] while preserving the total mass of each con-
stituent species. This work focuses on the properties of the energy, and constructions that lead
to normally coercive low-energy manifolds of F .

In section 2 we characterize the properties of connecting orbits that arise as the good pack-
ings that separate domains Ωi and Ω j with an O(ε) width interface comprised of amphiphilic
molecules. We take the interface to be flat, and measure normal distance in the scaled variable
z(x) := dist(x, ∂Ωi)/ε, and drop the lower order functionalization term P, so that the connecting
profiles can be characterized as minimizers of the codimension one reduced energy

F1[u] :=
∫
R

1
2

∣∣∣D2∂2
z u − F(u)

∣∣∣2 dz, (1.4)

subject to the constraint u − φi j ∈ H2(R) where φi j := a j + (ai − a j)(1 − tanh(z))/2 satisfies
φi j → a j as z → ∞ and φ → ai as z → −∞. When they exist, the absolute minimizers are the
orbits of the 2n dimensional dynamical system

D2∂2
z u − F(u) = 0, (1.5)

that are heteroclinic (or homoclinic) to the equilibria ai and a j. These orbits are global min-
imizers of F1, yielding zero energy. Correspondingly we call (1.5) the freeway system and the

3

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 19, 2019. ; https://doi.org/10.1101/2019.12.19.882092doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.882092


associated heteroclinic or homoclinic orbits the freeway connections. When the diagonal ele-
ments of D are strongly unequal, the freeway system fits within the framework of geometric
singular perturbation (GSP) theory.

The local minimizers of the reduced free energy, for which the quadratic residual is not zero,
also provide relevant connections between phases, especially when freeway connections do not
exist. They satisfy (

D2∂2
z − ∇uF(u)

)† (
D2∂2

z u − F(u)
)

= 0, (1.6)

subject the heteroclinic or homoclinic boundary conditions. Here † denotes L2 adjoint, see
subsection 1.2. This is a 4n dimensional dynamical system, and its solutions generically have
non-zero reduced energy. We call this the toll-road system, and the associated heteroclinic orbits
the toll-road connections. Even when matrix D has the singularly perturbed structure, the toll-
road system does not trivially fit within the classical singularly perturbed framework. However
we show that toll-road connections are generically generated at saddle-node bifurcations of
freeway connections, and characterize the energy of the associated toll-road connection in terms
of the saddle-node bifurcation parameter. These results establish the GSP theory as a powerful
tool for the construction of MCF energies that support families of robustly stable connections
with prescribed composition.

In section 3 we extend the zero-energy, flat-interface, freeway connections generated by
the GSP theory to low-energy, curved-interface functions in H2(Ω) through a dressing pro-
cess, given in Definition 3.2. This allows the construction of a low-energy, freeway manifold
parameterized by underlying “admissible interfaces”, given in Definition 3.1. The main analyt-
ical result, Theorem 3.5, characterizes homoclinic freeway connections for which the associated
freeway manifold is normally coercive, independent of ε sufficiently small. The principal loss of
coercivity in scalar systems arises through the onset of the pearling bifurcation which triggers
a high-frequency modulation of the bilayer width that can lead to its break-up into structures
with lower codimension, [9]. Indeed, the pearling bifurcation can be triggered dynamically by
O(ε) changes in the bulk lipid density. Theorem 3.5 specifically rules out these classes of in-
stability through a condition on the spectrum of the linearization, L of the homoclinic freeway
connection about the freeway system (1.5), see (3.10), that is readily verifiable within the GSP
framework. There is a significant literature that develops rigorous estimates on slow motion of
gradient flow systems near low-energy manifolds, see [23] and [3]. A key component of this
analysis is played by the uniform coercivity of the energy to perturbations normal to the man-
ifold, that allow the derivation of the asymptotic evolution of the system in the tangent plane
of the manifold. In [14] these slow flow results have been extended to recover leading order
dynamics associated to the slow flow, and we believe that the results of Theorem 3.5 will allow
the interfacial motion results in [6] to be extended rigorously to a wide class of gradient flows
of the MCF energy near the low-energy freeway manifolds constructed herein.

In Section 4 we examine the structure of the MCF energy in the neighborhood of a saddle
node bifurcation of freeway homoclinics within the GSP framework. At the bifurcation point
the kernel of L is not simple, rendering Theorem 3.5 inapplicable. Modulo non-degeneracy
assumptions Theorem 4.2 shows that the freeway saddle node bifurcation induces a toll-road
homoclinic and characterizes its energy as quadratic function of the distance of the bifurcation
parameter past criticality. In particular, we give an explicit example of a freeway saddle node
bifurcation within the PCB model, characterizing the energy of the toll-road homoclinic in terms
of the readily computable geometric features of the model.

The synergy between the MCF energy and the GSP theory is particularly fortuitous, as there
is limited intuition for the relation between the structure of the nonlinearity in higher-order,
multicomponent models and the physical properties of the constituent molecules. Rigorous de-
rivation of higher-order free energies from more fundamental models, such as the derivation of
the Ohta-Kawasaki free energy from the self-consistent mean field theory, have been performed,
see [7, 8] for a general framework and [27, 28] for models specific to surfactants. However the
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analysis in such derivations is generically weakly nonlinear, and affords little information on
nonlinear interactions beyond those imposed in an ad-hoc manner, generically through incom-
pressibility arguments. The MCF energies constructed from the GSP approach are strongly
nonlinear and strongly asymmetric in their nonlinear terms. This asymmetry plays an essential
role in the analysis, rendering the operator L strongly non-selfadjoint and sweeping its spectrum
off of the positive real axis and into the complex plane. This complexification is stabilizing
as neutral modes in the linearization of the MCH about a homoclinic freeway connection arise
from a balance between positive real spectrum of L against negative spectrum of the surface
diffusion operator.

The phospholipid-cholesterol bilayer model presented in Section 2.3, is the minimal GSP
based model that supports both a single-phase pearling-neutral phospholipid bilayer, and a two-
phase phospholipid-cholesterol bilayer that is robustly stable to pearling. It is tempting to find
synergy between the generic, geometric nature of these stability results and the generic pres-
ence of cholesterol within phospholipid membranes. Cholesterol’s interdigitation between lipid
molecules leads to a core density peak and an outsized impact on lipid mobility that inhibits the
lipid tail compression required for the onset of pearling bifurcations, [22]. It may be that the
genome has latched upon the generic, geometric, singular role of cholesterol as a mechanism
to prevent formation of micelles and other higher codimensional defects within phospholipid
membranes.

1.2 Notation
Consider a function f : R 7→ X where X is a Banach space and s ∈ R is a parameter in f . We
say that f is s-exponentially small in X if there exists ν > 0 such that ‖ f ‖X ≤ e−ν/s for s > 0 as
s � 1 tends to zero.

We use t to denote the transpose of a matrix or a vector in the usual Euclidean inner product
and † to denote the an adjoint operator or eigenfunction in the L2(Ω) inner product.

2 Connecting Orbits
In this section we establish the structure of the freeway and toll-road connection problems and
the existence of specific solutions in the context of the geometric singular perturbation scaling.

2.1 Freeway and Toll-road connections
We assume that F : Rn 7→ Rn is smooth and has m + 1 critical points a0, · · · , am for which
F(ai) = 0, and D is an n × n, non-negative diagonal matrix. Generically the phase space is
mapped onto species densities with the variable ui denoting the volume fraction of species i,
residing in

D :=

u
∣∣∣∣ ui ≥ 0, i = 1, . . . , n,

n∑
i=1

ui ≤ 1

 .
Critical points of F denote the solvent phases, and when modeling a mixture with a single
solvent it is generically taken as a0 := (0, . . . , 0) with {u1, . . . , un} denoting n amphiphilic phases.
In low energy configurations these surfactants reside on thin interfaces generically of codimen-
sion one or higher, that are O(ε) thin in one or more directions (the co-dimensions). We focus
on codimension one geometries, and in this section fix the interface Γ to be a flat d − 1 dimen-
sional hypersurface, so that the minimization problem reduces at leading order to the system for
F1 given in (1.4). The infimum is non-negative and if attained, then the minimizer is smooth
and satisfies the associated Euler-Lagrange equation (1.6), which we call the toll-road system.
Setting G = D−2F, it is convenient to write the toll-road system as a 4n dimensional, first-order
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system,
uz = p,
pz = v + G(u),
vz = q,
qz = ∇uG(u)tv,

(2.1)

where as a consequence v := uzz − G(u)t. An equilibrium a of F is normally hyperbolic if the
linearization about the equilibrium A := (a, 0, 0, 0)t ∈ R4n of (2.1) has no purely imaginary
eigenvalues.

Lemma 2.1. An equilibrium a ∈ Rn of F is normally hyperbolic (2.1) if and only if the n × n
matrix D−2∇uF(a) has no eigenvalues in the set R− = (−∞, 0]. In this case A = (a, 0, 0, 0)t has
a 2n dimensional stable and 2n dimensional unstable manifold within (2.1). The system (2.1)
has a conserved quantity H : R4n 7→ R given by

H(u,uz, v, vz) := uz · vz −
1
2
|v|2 − v · D−2F(u). (2.2)

In particular homoclinic and heteroclinic solutions of (2.1) lie on the R4n−1 dimensional {H = 0}
level set. Let ai and a j be two normally hyperbolic equilibria and Φ = Φi j(z; γ) be a smooth
k ≥ 1 dimensional manifold of connections between ai and a j. Then there exists αi j ∈ R+ such
that F1(Φ) = αi j for all connecting orbits Φ on the manifold.

Proof. Using the relation v = uzz − G(u)t we take the dot product with uz

ut
zvzz − ut

z∇uG(u)tv = 0, (2.3)

and equivalently, since a scalar equals its own transpose, we have

d
dz

(
ut

zvz

)
− ut

zzvz − vt∇uG(u)uz = 0. (2.4)

Substituting uzz = v + G(u) we find

d
dz

H(u,uz, v, vz) = 0. (2.5)

where H is as defined in (2.2).
Each of the critical points a of F satisfies H(a, 0, 0, 0) = 0, and since H is conserved under the

flow the orbits connecting these critical points reside on the 4n−1 dimensional level set {H = 0}.
If a is a critical point of G then the linearization of the system (2.1) about A := (a, 0, 0, 0)t, takes
the form Uz = MU, where

M :=


0 In×n 0 0

∇uG(a) 0 In×n 0
0 0 0 In×n

0 0 ∇uG(a)t 0

 . (2.6)

We compute that λ ∈ σ(∇u(G(a))) if and only if the four values {±
√
λ,±
√
λ∗} lie in σ(M) up

to algebraic multiplicity. In particular the isolated critical point a of F is normally hyperbolic
within the toll-road system if and only if D−2∇u(F(a)) has no purely real, negative eigenvalues.
If a is normally hyperbolic, the symmetry of the spectrum of M guarantees that the stable and
unstable manifolds of the 4n dimensional system has equal dimension, hence they are both 2n
dimensional.

To establish the uniformity of the energy over the manifold of connections, we insert Φi j

into (1.6) are rewrite it in the form

D2∂2
z Φi j − F(Φi j) = Ψ̃i j(γ), (2.7)
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where the right-hand side, Ψ̃i j, lies in the kernel of the adjoint of

L := D2∂2
z − ∇uF(Φi j). (2.8)

Taking the partial of (2.7) with respect to γ yields the relation

L
∂Φi j

∂γ
=
∂Ψ̃i j

∂γ
. (2.9)

This implies that the right-hand side is L2(R) orthogonal to the kernel of Lt and hence to Ψ̃i j. In
particular ∂γ

∥∥∥ Ψ̃i j

∥∥∥2
L2 = 0 and we may write Ψ̃i j(γ) = αi jΨi j(γ) where ‖Ψi j(γ)‖L2 = 1. The result

follows since F1(Φi j) = ‖Ψ̃i j‖L2(R) = αi j is independent of γ.

We reinforce this dichotomy of zero-energy and non-zero energy connections through the
following definition.

Definition 2.2. If a manifold of connections Φi j has zero energy, αi j = 0, then the constituent
orbits satisfy the freeway sub-system (1.5). We call these orbits freeway connections.

2.2 Freeway homoclinic connections in singularly perturbed systems
Establishing the existence of connections in n-dimensional dynamical systems of the general
form (1.5) is nontrivial. However, when the eigenvalues of the matrix D exhibit a wide range of
magnitudes, controlled by a small parameter 0 < δ � 1, then the associated dynamical system
may have orbits that can be rigorously constructed via geometric singular perturbation theory
by gluing together solutions of the so-called slow and fast sub-systems of reduced dimension.
In [11], theory was developed that provides for the existence and spectral analysis of homoclinic
connections in a general class of two-component, singularly perturbed vector fields for the case
in which the vector field is strongly non-symmetric. The homoclinic connection problem is
equivalent to the freeway system (1.5) with n = 2, and D = diag(1, δ), where 0 < δ � 1, and
the vector field F takes the form

F(u; δ) =

(
F11(u1; δ) + 1

δ
F12(u1, u2; δ)

F2(u1, u2; δ)

)
. (2.10)

The component functions Fi j obey mild regularity assumptions [11]. The resulting model can
be written as a first order dynamical system in the form (1.6), which in the fast spatial variable
ζ := z/δ takes the form

(u1)ζ = δ p1,

(p1)ζ = δF11(u1; δ) + F12(u1, u2; δ),
(u2)ζ = p2,

(p2)ζ = F2(u1, u2; δ).

(2.11)

We require that the following structural assumptions hold:

Assumption 2.3. The point a = (0, 0) is an isolated, hyperbolic equilibrium of (1.5). The
component functions satisfy F12(u1, 0; δ) = 0 and F2(u1, 0; δ) = 0 for every u1 ∈ R. There exists
an open set V ⊂ R, such that the planar system (u2)ζζ − F2(s, u2; 0) = 0 admits a symmetric
solution u2,h(ζ; s) that is homoclinic to u2 = 0 for every s ∈ V.

Remark 2.4. The parameter δ is taken asymptotically small in the GSP theory, however in the
context of the MCF energy it denotes the ratio of lengths comparable molecules, and is not
vanishingly small. Correspondingly we take δ sufficiently small to apply the GSP theory, but
then consider it to be a fixed parameter in the subsequent analysis of the MCF energy. In
particular the upper bound ε0, on the value of admissible ε will depend upon the fixed value of
δ. In effect the GSP theory applies in the regime ε � δ � 1, as is consistent with applications.
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Ws
u((0, 0))

Td

s*

Ws
s((0, 0))

To

u1

p1

Figure 2: A schematic representation of the reduced slow flow on M0. The slow stable and
unstable manifoldsWu,s

s (0, 0) are indicated in blue, the take-off and touchdown curves To and Td
are indicated in green. The jump through the fast field at a transversal intersection ofWu

s (0, 0)
and To for u1 = s∗ is indicated in red.

From these assumptions, it directly follows that the origin of (2.11) is a hyperbolic equilib-
rium. Moreover, we see that the manifold M0 := {u2 = p2 = 0} is invariant under the flow of
(2.11). The flow onM0, which we call the reduced slow flow, is given to leading order in δ in
the slow variables by

(u1)zz = F11(u1; 0). (2.12)

From the assumptions, the point (u1, p1) = (0, 0) is a hyperbolic equilibrium of (2.12) and the
associated (slow) stable and unstable manifolds Wu,s

s (0, 0) ⊂ M0 are one-dimensional, and
equal to the other’s reflection about the u1-axis; see Figure 2. Defining us

1,s(z; s) as the unique
positive solution to (2.12) satisfying us

1,s(0; s) = s and limz→∞ us
1,s(z; s) = 0, we see that the

one-dimensional (slow) stable manifold of the originWs
s(0, 0) ⊂ M0 for u1 > 0 is given by the

orbit of us
1,s. Moreover, both the stable and unstable manifolds, Wu,s

s (0, 0), lie on the level set{
(u1, p1) : 1

2 p2
1 +

∫ u1

0 F11(û1; 0) dû1 = 0
}
.

Conversely, in the fast scaling (2.11), we see that to leading order in δ, u1 = s is constant,

p1(ζ) = p0 +

∫ ζ

0
F12(s, u2(ζ̂); 0) dζ̂,

while u2 obeys the so-called reduced fast flow

(u2)ζζ − F2(s, u2; 0) = 0. (2.13)

The manifold M0 is exactly the set of trivial equilibria of (2.13); by the requirements of As-
sumption 2.3, these trivial equilibria are hyperbolic. Moreover, there exists an open subsetM1 ⊂

M0,M1 := {u2 = p2 = 0, u1 ∈ V}, such that the reduced fast flow connects (s, p1,o, 0, 0) ∈ M1
to (s, p1,d, 0, 0) ∈ M1 through the symmetric fast homoclinic orbit u2,h(ζ; s). In this reduced
limit, the jump in u1’s derivative satisfies

∆p(s) := p1,d − p1,o =

∫
R

F12(s, u2,h(ζ; s); 0) dζ.

This suggests the definition of a pair of curves onM0, called the “take-off” and “touchdown”
curves, for which ∆p transports the orbit first away from, and then back toM0 in a symmetric
fashion. The take-off curve is given by To :=

{
p1 = − 1

2 ∆p(u1)
}
, while the touchdown curve Td

is given by its reflection about the u1-axis; see Figure 2.
A homoclinic orbit of the GSP scaling of the 4-dimensional freeway problem lies in the

transversal (first) intersection of the 2-dimensional stable and unstable manifolds of the origin
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(0, 0, 0, 0). The scale separation present in the system allows us to decompose this intersection
into a first slow segment that followsWu

s (0, 0) ⊂ M0 closely, then makes a fast excursion away
from M0, but O(δ) close to u2,h(ζ, s∗) for some s∗, and then touches down again near M0 to
closely followWs

s(0, 0) ⊂ M0 back to the origin (0, 0, 0, 0). In the singular limit, this concaten-
ation procedure provides a homoclinic orbit precisely when the take-off curve To intersects the
slow unstable manifold Wu

s (0, 0); see Figure 2. When this intersection is nongenerate, trans-
versality arguments imply that the singular orbit persists for sufficiently small 0 < δ � 1; for
the full analysis, see [11].

We define the function ρ : V 7→ R

ρ(s) :=
∫ s

0
F11(û1; 0) dû1 −

1
8

(∫
R

F12(s, u2,h(ζ; s); 0) dζ
)2

. (2.14)

One can deduce that if the take-off curve To and the slow unstable manifoldWu
s (0, 0) intersect

transversally at u1 = s∗, then the function ρ has a nondegenerate root at s = s∗. However, ρ
also vanishes when To intersects the slow stable manifold Ws

s(0, 0), which does not lead to a
meaningful geometric construction whenWu

s (0, 0) ∩Ws
s(0, 0) = ∅. To exclude these spurious

roots, we employ the explicit characterisation of Wu
s (0, 0) by the solution us

1,s, and introduce

the condition that sgn
dus

1,s

dz (0; s∗) = sgn 1
2 ∆p(s∗).

The following is a reformulation of [11, Theorem 2.1].

Theorem 2.5. Assume n = 2, D = diag(1, δ), that F takes the form (2.10), and that the condi-
tions of Assumption 2.3 hold. Fix δ > 0 sufficiently small. Let N denote the number of nonde-
generate roots of ρ, defined in (2.14), that lie in the set V, and that obey the condition

dus
1,s

dz
(0; s∗)

∫
R

F12(s∗, u2,h(ζ; s∗); 0) dζ > 0. (2.15)

Here, us
1,s(z; s) is the unique positive solution to (2.12) satisfying us

1,s(0; s) = s and us
1,s(z; s) →

0 as z → ∞. Then there are N symmetric, positive, one-circuit solutions to (1.5) that are
homoclinic to a = (0, 0). In particular, for each root s∗ the associated homoclinic connection
(u1,∗(z), u2,∗(z)), translated to be even about z = 0, has the following spatial structure:

1. for 0 ≤ z <
√
δ, u1,∗(z) = s∗ and u2,∗(z) = u2,h(z/δ; s∗) to leading order in δ;

2. for
√
δ ≤ z, u1,∗(z) = us

1,s(z; s∗) to leading order in δ, while u2,∗(z) is δ-exponentially small.

Remark 2.6. The result from [11] encompasses a larger class of systems, in particular the equi-
librium a may lie on the boundary of the domain of definition of the vector field F. This neces-
sitates additional technical assumptions on F, see [11, Assumptions (A1-4)].

2.3 A minimal phospholipid-cholesterol model
We apply the singularly perturbed framework presented in section 2.2 to develop a minimal
model of a phospholipid-cholesterol bilayer (PCB) membrane that supports both a pearling
neutral bilayer membrane in the absence of cholesterol and a robustly stable membrane with
an optimal phospholipid-cholesterol balance. The minimal PCB model takes the form

FPCB(u; δ) =

(
W ′(u1) − 1

3δ f (u1)2u2
2To(u1)

u2 − f (u1)u2
2

)
, (2.16)

where f is a smooth, positive, non-increasing function. The slow component, u1, denotes the
volume fraction of phospholipid while the fast component, u2, denotes that of cholesterol. The
take-off curve To –which is directly present in the model formulation– is smooth and specified
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Ws
u((0, 0))

s*

To

Ws
s((0, 0))

Td

u1

p1

u2

u1

s*

z

Figure 3: (left) The phospholipid cholesterol bilayer system (2.16) has two fast-slow homoclinic
freeway connections, corresponding to the two intersections of the take-off curve To with the
unstable manifoldWu

s (0, 0) of the origin of the slow system (u1)zz = W ′(u1) (2.12). The left-
most intersection, at u1 = s∗ has ρ′(s∗) > 0 and will yield robustly stable bilayer interfaces. The
rightmost intersection yields a fast slow connection with ρ′ < 0. The system also supports a
slow-only homoclinic with u2 ≡ 0. (right) Depiction of the fast-slow homoclinic connection for
the u1 = s∗ intersection, corresponding to a cross section of a bilayer membrane with phospho-
lipid (u1) on the outside and interdigitated cholesterol (u2) in the core. The maximum value of
the slow component occurs at the take-off intersection point. The fast component u2 = u2,h(ζ) is
scaled by f (s∗).

below. The scalar potential W is precisely the smooth double-well from (1.1) with minima at
b− = 0 and b+ = 1 satisfying W(0) = 0 > W(1). In particular W ′(u1) has a unique transverse
zero u1 = u1,max that lies in (0, 1), so that the slow stable and unstable manifolds Wu,s

s ((0, 0))
coincide for u1 > 0, leading to the existence of a fully slow homoclinic orbit onM0. Moreover,
since f is positive everywhere, the fast subsystem (2.13) admits a homoclinic orbit for every
value of u1 = s, hence we may take V = R in Assumption 2.3.

The homoclinic orbit u2,h in the fast system (2.13) has the explicit expression

u2,h(ζ; s) =
3

2 f (s)
sech2(ζ/2), (2.17)

allowing us to evaluate the integral

∆p(s) =

∫
R

F12(u1, u2,h(ζ; s); 0) dζ = −
f 2(s)To(s)

3

∫
R

u2
2,h dζ = −2To(s). (2.18)

Since F11(u1; 0) = W ′(u1) and W(0) = 0 the first integral in (2.14) takes the values W(s).
Moreover, the portion of the unstable slow manifold in the first quadrant can be given as the
graph

{
(s, ωu(s))

∣∣∣ s ∈ (0, u1)
}
, where ωu(s) :=

√
2W(s). We calculate that

ρPCB(s) = W(s) −
1
2

To(s)2 =
1
2

(ωu(s) − To(s)) (ωu(s) + To(s)) . (2.19)

As established in section 2.2, the zeros of ρPCB correspond to the crossings of the take-off curve
with the graph of the unstable slow manifold. We choose the take-off curve to have a transverse
intersection with the unstable manifold at the phospholipid density u1 = s∗ corresponding to a
bilayer membrane fully interdigitated with cholesterol. The cholesterol density is modulated by
adjusting the value of f (s∗), see (2.17). For the slow subsystem, the slow stable and unstable
manifolds of the origin Wu,s

s (0, 0) coincide, so that condition (2.15) is automatically satisfied
– that is, every root of ρ(s) is a valid candidate for the construction outlined in section 2.2. In
Figure 3, the dynamics onM0 and a corresponding pulse are shown for a specific choice of To.
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3 Normal Coercivity of Homoclinic Freeway Manifolds
In this section we extend the freeway connections, generating the freeway manifold of low en-
ergy solutions associated to a wide class of admissible interfaces. We identify conditions which
guarantee the normal coercivity of homoclinic freeway manifolds, and relate the stability con-
ditions back to the construction of the homoclinic freeway connections within the GSP context.

3.1 Freeway Manifolds
We consider a codimension one interface Γ given by the local parameterization

x = γ(s) + εzν(s),

with γ : S ⊂ Rd−1 7→ Γ ⊂ Ω and ν(s) the outward normal to Γ at γ(s). The pair (s, z) forms
a local coordinate system, for which s = s(x) parameterizes location on Γ and z = z(x) is the
ε-scaled signed distance to Γ. The line segments {γ(s) + tν(s)

∣∣∣ |t| < `}s∈S are called the whiskers
of length ` of Γ.

Definition 3.1. For any K, ` > 0 the family GK,` of admissible interfaces is comprised of closed
(compact and without boundary), oriented d − 1 dimensional manifolds Γ embedded in Ω ⊂

Rd, which are far from self-intersection and posses a smooth second fundamental form. More
precisely, 2`K < 1, the W4,∞(S) norm of the principal curvatures of Γ is bounded by K, the
whiskers of length 2` do not intersect each-other nor the boundary of Ω, and the surface area,
|Γ|, of Γ is bounded by K. We call the set Γ2` := {x

∣∣∣ |z(x)| < 2`/ε}, the reach of Γ.

For an admissible Γ the change of variables x 7→ (s, z) is a C4 diffeomorphism of Γ2`,
see section 6 of [16] . To each class GK,` we associate a symmetric, compactly supported C∞

function ξ that is monotone on R+ and takes values 1 on [−`, `] and is 0 on R\[−2`, 2`].

Definition 3.2. For each function u which tends at an exponential rate to constant values u →
u± as z→ ±∞, we define its Γ-dressing as the L2(Ω) function

uΓ(x) := u(z)ξ(zε) + ξ(zε)usign(z),

where ξ := 1 − ξ.

We will denote both the Γ-dressing and the original L2(R) function by u where doing so does
not introduce confusion. The function ξ(εz(x)) lies in H4(Ω), even though the distance function
z is not smooth outside the set Γ2`.

Definition 3.3. To each freeway connection u∗ of the subsystem (1.5) and admissible family of
interfaces GK,` we associate the corresponding freeway manifold

MK,`(u∗) := {uΓ

∣∣∣ Γ ∈ GK,`}. (3.1)

comprised of the dressings of the admissible interfaces by u∗.

On the reach of Γ the (s, z) coordinate system induces a representation of the Cartesian
Laplacian (denoted ∆x to avoid ambiguity) in the form

∆x = ∂2
z + εκ(s, z)∂z + ε2∆s + ε3zDs,2, (3.2)

where κ(s, z) = H(s) + O(εz) is an extension of the mean curvature H(s) of Γ, ∆s is the Laplace-
Beltrami operator associated to Γ, and Ds,2 is a second order operator in ∇s with coefficients
whose W4,∞ norm is bounded by K, see Proposition 6.6 of [16]. The eigenfunctions of ∆s are
given by {θ j}

∞
j=0 with eigenvalues {−β2

j }
∞
j=0 which satisfy 0 = β0 < β1 ≤ β2 · · · , see [21].
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For functions supported in Γ2`, the L2 inner product takes the inner form

〈f, g〉2 :=
∫ 2`/ε

−2`/ε

∫
S

f(z, s) · g(s, z)J(s) ds dz, (3.3)

where J is the Jacobian of the change of coordinate map from x to (z, s). In particular J(s, z) =

J0(s)J̃(s, z) where J0 is the square root of the determinant of the first fundamental form of Γ and
J̃ admits the expansion

J̃(s, z) = ε

d−1∏
i=1

(1 − εzki) = ε

d∑
j=0

(εz) jK j(s), (3.4)

where k1, . . . , kd−1 are the principal curvatures of Γ, while K0 = 1 and for i = 1, . . . d − 1,
Ki = Ki(s) are (−1)i times the sum of the all products of i curvatures of Γ. From the condition
2`K < 1 for interfacial admissibility we deduce that

ε2−(d−1) ≤ J̃ ≤ ε
3
2

d−1

, (3.5)

and hence after a scaling by ε, the inner product

〈f, g〉2,J0 :=
∫ 2`/ε

−2`/ε

∫
S

f(z, s) · g(s, z)J0(s) ds dz, (3.6)

induces a norm equivalent to the usual L2 norm on Γ2`. The Laplace-Beltrami eigenmodes are
orthonormal in the inner product

〈α, β〉s :=
∫

S
α(s)β(s)J0(s) ds. (3.7)

Proposition 3.4. Let u∗ be a freeway connection between two equilibrium a− and a+ of F.
The freeway manifold associated to u∗ lies in H2(Ω). If the functionalization term within the
multicomponent functionalized energy (1.2) satisfies P(a±, 0) = 0, then

P(s; Γ) :=
∫
R

P(u∗, ν(s)∂zu∗) dz, (3.8)

is finite, and the dressings u = uΓ ∈ MK,`(u∗) have leading order energy

F [u] = ε3‖D∂zu∗‖2L2(R)

∫
S
|H(s)|2 J0(s) ds + εp+1

∫
S

P(s; Γ) J0(s)ds + O(ε4, εp+2), (3.9)

where H denotes the mean curvature and ν the outer normal of Γ.

The proof of this result is a direct modification of prior results, see [12, eqn (3.3) and Pro-
position 4.1], and is omitted.

3.2 Normal coercivity
In the sequel we assume that a0 = 0 is a hyperbolic equilibrium of the vector field F, and
that u∗ is a freeway connection homoclinic to a0. Without loss of generality we may set the
functionalization term P equal to zero as it lower order in ε and does not impact the ε-uniform
coercivity bounds we seek in (3.18), see also Remark 3.6. We let L denote the linearization of
the freeway system (1.5) about u∗,

L := D2∂2
z − ∇uF(u∗). (3.10)
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Let u∗ = u∗(Γ) denote the dressing of an admissible interface Γ by the homoclinic freeway
connection u∗. Our goal is to derive estimates on lower bounds of the spectrum of the second
variational derivative of F at u∗, given by the operator

L = L(u; Γ) :=
δ2F

δu2 (u∗) = L†L ≥ 0, (3.11)

where we have introduced
L := ε2D2∆x − ∇uF(u∗). (3.12)

Within the reach of Γ the operator admits the exact expansion

L = D2
(
∂2

z + εκ(s, z)∂z + ε2∆s + ε3zDs,2

)
− ∇uF(u∗). (3.13)

This motivates the introduction of

Lin,0 := L + ε2D2∆s, (3.14)

and the inner decomposition of L as

L := Lin,0 + εLin,1, (3.15)

where Lin,1 := D2(κ(s, z)∂z + ε2Ds,2). On the complement of the reach of Γ the operator L is an
ε-exponentially small perturbation of the constant-coefficient operator

Lout,0 := ε2D2∆ − ∇uF(a0). (3.16)

While L from (3.11) is self-adjoint, its factor L is not, indeed the spectrum of L is precisely the
singular values of L. The spectrum of L is clearly real and non-negative. We define the space
of meander modes which closely approximate an N-dimensional subspace of the tangent plane
ofMK,`(u∗),

XN :=
{
ξ(zε)ψ1(z)θ j(s)

∣∣∣ j = 1, . . .N
}
, (3.17)

where the translational eigenfunction ψ1 = ∂zu∗ ∈ ker(L). We also introduce X†N which is the
adjoint space obtained by replacing ψ1 with the adjoint eigenfunction ψ†1. We show that for N
sufficiently large that ε2β2

N is O(1), then the operator L is coercive on (X†N)⊥, uniformly in ε, if
the spectrum of D−2L as an operator on L2(R) has no strictly positive real spectrum.

Theorem 3.5. Let a0 = 0 be a normally hyperbolic equilibrium of F and let u∗ be a solution
of the freeway system (1.5) which is homoclinic to a0, and letMK,` be the associated freeway
manifold. Let the operators L = L(u∗) and L = L(u∗; Γ) be as given in (3.10) and (3.11) re-
spectively. If σp(D−2L)∩R+ = {0} with a simple kernel spanned by ∂zu∗, then for `K sufficiently
small and for any fixed γ0 > 0, there exists ε0, µ > 0 such that for all ε ∈ (0, ε0) and all Γ ∈ GK,`

〈Lv, v〉L2(Ω) ≥ µ
(
ε4‖∆v‖2L2(Ω) + ‖v‖2L2(Ω)

)
, (3.18)

for all v ∈ (X†N)⊥ where N = N(ε) is chosen to satisfy γ0 < β
2
Nε

2 < 2γ0.

Remark 3.6. The coercivity extends to any O(ε) regular perturbation of L. Specifically the
functionalization terms εpP in F add an O(εp) regular perturbation to L that does not impact the
coercivity. Neither the functionalization terms nor perturbations to the form of u∗ will impact
the coercivity, and specifically they cannot induce the pearling bifurcations to which the freeway
manifolds of the scalar FCH are susceptible.
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Proof. The operator L admits distinct formulations when acting on functions supported in Γ2`
and on those supported in Ω \ Γ2`. We decompose v ∈ X⊥N as

v = v− + v+ := ξ(εz)v + ξ(εz)v, (3.19)

and writing L = L†L, we expand the left-hand side of (3.18) as

〈Lv, v〉L2(Ω) = ‖Lv−‖2L2(Ω) + 2 〈Lv−,Lv+〉L2(Ω) + ‖Lv+‖
2
L2(Ω), (3.20)

denoting the summands on the right-hand side as the inner, mixed, and outer bilinear terms
respectively, we estimate them individually.

Inner bilinear term: From the inner formulation, (3.15), of L we focus on the leader-order
operator Lin,0 = L

†

in,0Lin,0, and consider it as acting on functions defined on the abstract set
S∞ := S × R formed from the unbounded whiskers. This is not a subset of Ω as the whiskers of
length greater than 2` generically intersect. We first establish the coercivity of the operator Lin,0
in the L2(S∞) norm, defined as

‖f‖2L2(S∞) =

∫
R

∫
S
|f|2J0(s) dsdz. (3.21)

As observed in (3.5), for admissible interfaces Γ ∈ GK,` there exists c > 0 such that

ε

c
‖f‖2L2(S∞) ≤ ‖f‖

2
L2(Γ2`)

≤ cε‖f‖2L2(S∞), (3.22)

for all f ∈ L2(Γ2`). We also introduce function space H2(S∞) with norm given by

‖f‖2H2(S∞) =

∫
R

∫
S

(
|∂2

z f|2 + ε4|∆sf|2 + |f|2
)

J0(s) dsdz. (3.23)

For functions supported in Γ2` the inner expression for ε2∆ given in (3.2) affords the estimates

ε

c
‖f‖2H2(S∞) ≤ ‖ε

2∆f‖2L2(Γ2`)
+ ‖f‖2L2(Γ2`)

≤ cε‖f‖2H2(S∞). (3.24)

Lemma 3.7. There exist µ0 > 0 such that for all ε ∈ (0, ε0) and all Γ ∈ GK,`

‖Lin,0f‖2L2(S∞) ≥ µ0 ‖f‖2H2(S∞), (3.25)

for all f ∈ (X†N)⊥ ∩ H2(S∞)

Proof. We decompose
f = f⊥ + f‖, (3.26)

where f‖ the component of f that lies in the L2(S∞)-tangent plane to XN , precisely,

f‖ =

n∑
j=0

c jξ(εz)ψ1(z)θ j(s), c j =
〈
f, ξ(εz)ψ1(z)θ j(s)

〉
L2(S∞)

(3.27)

Step 1: Control of f‖ in H2(S∞). Since the {θ j}
n
j=0 are orthonormal in L2(S) and |ε2β2

j | ≤ 2γ0 for
all j = 0, . . . , n, we have the estimate

‖f‖‖2H2(S∞) ≤
(
1 + ‖ψ′1‖

2
L2(R) + 4γ2

0

) n∑
j=0

c2
j . (3.28)

From the assumption f⊥ξψθ j in L2(Ω) and the inner product representation (3.3), we derive

0 = ε
〈
f, ξψ1(z)θ j(s)

〉
L2(S∞)

+
〈
f, ξψ1(z)θ j(s)(J̃(s, z) − ε)

〉
L2(S∞)

, (3.29)
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which allows us to rewrite the expression for c j in (3.27) as

c j = −
〈
fξ(J̃ − ε)/ε, ψ1θ j

〉
L2(S∞)

. (3.30)

We carry out the z integral θ j and express the remainder in the inner product (3.7),

c j =
〈
f̃(s), θ j

〉
s
, (3.31)

where we have introduced

f̃(s) := −
∫
R

(f · ψ1)ξ(J̃ − ε)/ε dz. (3.32)

Using Hölder’s inequality we bound

‖f̃‖L2(S) ≤ ε
−1‖(J̃ − ε)ψ1‖L2(S∞)‖f‖L2(S∞) ≤ Cε‖f‖L2(S∞). (3.33)

For the last estimate we employed the second identify in (3.4) together with the fact that the
higher order curvatures K j are uniformly bounded and and ψ1 converges to zero exponentially
in |z| so that |z|kψ1 is uniformly bounded in L2(R) for k = 0, . . . , d − 1. The functions {θ j(s)} are
orthonormal in the inner product (3.7), so Plancherel’s identity implies

n∑
j=0

c2
j ≤ ‖f̃‖

2
L2(S) ≤ Cε2‖f‖2L2(S∞). (3.34)

for a different constant C. In particular, from (3.22) and (3.28) it follows that

‖f‖‖H2(S∞) ≤ Cε‖f‖L2(S∞) ≤ Cε1/2‖f‖L2(Γ2`). (3.35)

Step 2: L2(S∞)-coercivity of Lin,0 on (X†N,S)⊥. The spaces XN,S and X†N,S are the analogues of XN

and X†N in L2(S∞) obtained by dropping the ξ cut-off in (3.17). We establish the coercivity

‖Lin,0f⊥‖L2(S∞) ≥ M−1‖f⊥‖H2(S∞), (3.36)

for f⊥ ∈ (X†N,S)⊥ through the equivalent estimate

‖L−1
in,0g⊥‖H2(S∞) ≤ M‖g⊥‖L2(S∞), (3.37)

for all g⊥ ∈ (X†N,S)⊥. Since X†N,S is comprised of eigenspaces ofL†in,0 it follows that the condition
g ⊥ X†N,S follows if and only if f = L−1

in,0g ⊥ X†N,S. In the remainder of step 2 we drop the ⊥
superscript on f and g, bounding f ∈ H2(S∞) where f solves

Lin,0f = g, (3.38)

subject to g ∈ (X†N,S)⊥. We decompose g and f into their inner Fourier components via the
decomposition

g =

∞∑
j=0

g j(z)θ j(s), (3.39)

where the inner coefficients are given via formula

g j(z) := 〈g, θ j〉s. (3.40)

using the inner product from 3.7. This yields the uncoupled sub-problems

(L − D2ε2β2
j )f j = g j.
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Since u∗ is a homoclinic and defined on all R, the operators have natural extension to L2(R). We
replace ε2β2

j with k and define the family of operators {Lk}k≥0, where Lk := (L − D2k). For each
h ∈ L2(R) we form the function

G(k) := ‖L−1
k h‖H2(R).

By the spectral assumption of Theorem 3.5, the operator L = L0 has a simple eigenvalue at 0,
which is removed by the projection off of ψ†1, while for all k > 0, Lk is invertible from L2(R)
in H2(R). For j = 0, . . . ,N(ε), corresponding to k = ε2β2

j ∈ [0, γ0], we have g j ∈ {ψ
†

1}
⊥.

Consequently, for k ∈ [0, γ0] we consider h ∈[ker(L†0)]⊥ = {ψ†1}
⊥ so that G is defined, finite at

k = 0 and continuous in k on [0, γ0]. Since [0, γ0] is compact, G is uniformly bounded on this set
for each h. From the uniform boundedness principal we conclude that the operators {L−1

k }k∈[0,γ0]
are uniformly norm bounded from {ψ1}

⊥ ⊂ L2(R) to H2(R). For k ≥ γ0 we consider h ∈ L2(R),
and observe that G is finite for each k, continuous in k, and converges to zero as k → +∞. For
each h ∈ L2(R), we deduce that supk≥γ0

G(k) < ∞, and from the uniform boundedness principal
we conclude that the operators {L−1

k }k≥γ0 are uniformly norm bounded from L2(R) to H2(R).
These bounds are independent of ε ∈ (0, ε0) as the operators are independent of ε. Since

L−1
in,0 g =

∞∑
j=0

θ jL−1
ε2β2

j
g j,

and since the Laplace-Beltrami eigenmodes are orthonormal in the L2(S∞) inner product, we
deduce the existence of M > 0 such that (3.37) holds, and hence (3.36) follows. Since ξ(zε)ψ†1
and ψ†1 are ε-exponentially close, the coercivity in X⊥N follows with an ε−exponentially small
modification to M−1 > 0.

Step 3: Coercivity of Lin,0 on X⊥N in L2(Ω). The decomposition (3.26) provides the lower bound

‖Lin,0f‖2L2(S∞) ≥
1
2
‖Lin,0f⊥‖2L2(S∞) − ‖Lin,0f‖‖2L2(S∞) (3.41)

By the coercivity of Lin,0 in Step 2, the first positive term has a H2(S∞) lower bound while the
negative term can be bounded by H2(S∞)-norm of f‖. More precisely,

‖Lin,0f‖2L2(S∞) ≥
M−1

2
‖f⊥‖2H2(S∞) −C‖f‖‖2H2(S∞). (3.42)

On the other hand, a second application of (3.26) yields

‖f⊥‖2H2(S∞) ≥
1
2
‖f‖2H2(S∞) − ‖f

‖‖2H2(S∞), (3.43)

which combined with the previous inequality implies

‖Lin,0f‖2L2(S∞) ≥
M−1

4
‖f‖2H2(S∞) −C‖f‖‖2H2(S∞) (3.44)

for a different constant C. The coercivity Lemma follows from (3.35) by replacing the H2(S∞)
bound of f⊥ with the L2(S∞) bound of f.

To derive a lower bound on the inner bilinear form we account for the lower order terms.
Since the support of v− lies in Γ2` we may apply the decomposition (3.15)

‖Lv−‖2L2(Ω) = ‖(Lin,0 + εLin,1)v−‖2L2(Ω), (3.45)

expand the quadratic form, and apply Young’s inequality to the sign-undeterminate term,

‖Lv−‖2L2(Ω) ≥
1
2
‖Lin,0v−‖2L2(Ω) − ε

2‖Lin,1v−‖2L2(Ω). (3.46)
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Since the support of v− lies inside Γ2` its L2(Ω) and L2(S∞) norms satisfy the ε-equivalency of
(3.24). Applying the L2-coercivity of Lemma 3.7, we arrive at the lower bound

1
2
‖Lin,0v−‖2L2(Ω) ≥

ε

4
‖Lin,0v−‖2L2(S∞) ≥

εµ0

4
‖v−‖2H2(S∞) ≥

µ0

8

(
‖v−‖2L2(Ω) + ‖ε2∆v−‖2L2(Ω)

)
.

(3.47)
In addition, in light of the definition (3.15) of Lin,1,

ε2‖Lin,1v−‖2L2(Ω) ≤ 2ε2‖κ‖2L∞(Γ2`)‖∂zv−‖2L2(Ω) + 2‖εz‖2L∞(Γ2`)‖ε
2Ds,2v−‖2L2(Ω),

≤ 2Kε2‖∂zv−‖2L2(Ω) + 2(K`)2‖ε2Ds,2v−‖2L2(Ω),

≤ εC(ε2 + (K`)2)‖v−‖2H2(S∞) ≤ C(ε2 + (K`)2)
(
‖v−‖2L2(Ω) + ‖ε2∆v−‖2L2(Ω)

)
.

(3.48)
Here we used the Gargliardo-Nirenberg embedding inequality and the ε-equivalence of the
H2(Ω) and H2(S∞) norms. Combining (3.46)-(3.48) and taking ε and K` sufficiently small
yields the inner coercivity:

‖Lv−‖2L2(Ω) ≥
µ0

16

(
‖v−‖2L2(Ω) + ‖ε2∆v−‖2L2(Ω)

)
. (3.49)

Outer bilinear term: Recalling the leading order, constant coefficient outer form Lout,0 of L,
given in (3.16), we define the outer operator Lout,0 := L†out,0Lout,0.

Lemma 3.8. For any f ∈ H2(Ω), there exist µ0 > 0 such that

〈Lout,0f, f〉L2(Ω) ≥ µ0‖f‖2L2(Ω). (3.50)

Proof. By assumption a = 0 is a normally hyperbolic equilibrium of F, in particular from
Lemma 2.1 we know that σ(D−2∇uF(0)) has no eigenvalues in (−∞, 0]. Form the form of Lout,0
we have ker(Lout,0) = ker(Lout,0), and since Ω is a rectangular box subject to periodic boundary
conditions, the kernel of Lout,0 is comprised of functions of the form eik·xU, where U ∈ Rd is a
constant vector. This function lies in the kernel only if

−ε2|k|2D2U − ∇uF(0)U = 0,

or equivalently
−ε2|k|2 ∈ σ(D−2∇uF(0)).

However this is precisely the condition precluded by the assumption that a = 0 is normally
hyperbolic, thus we deduce that Lout,0 has no kernel and is invertible. However we can make a
stronger statement. The spectrum of Lout,0 is discrete, but lies on the curves of essential spectrum
defined as the finite family of dispersion relations λ = λ(k) for which the d × d matrix

M(k, λ) := −ε2|k|2D2 − ∇uF(0) − λ,

has a kernel, see chapter 3 of [19]. The assumption of normal hyperbolicity implies that none of
the dispersion relation curves pass through the origin. Indeed, rescaling k ∈ Rd, the dispersion
relation curves can be made independent of ε, and tend to −∞ as |k| → ∞. This implies that the
curves lie a finite distance µ0 > 0 to the origin, which is wholly independent of ε. Since Lout,0 is
self-adjoint and non-negative, this spectral bound provides the coercivity estimate (3.50).

We expand the outer bilinear term as

‖Lv+‖
2
L2(Ω) =

∫
Ω

|Lout,0v+ + (∇uF(0) − ∇uF(u∗)) v+|
2dx, (3.51)
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which from Young’s inequality enjoys the lower bound

‖Lv+‖
2
L2(Ω) ≥

1
2
‖Lout,0v+‖

2
L2(Ω) − 2‖ (∇uF(0) − ∇uF(u∗)) v+‖

2
L2(Ω). (3.52)

Since the support of v+ lies in Ω \ Γ`, we have the bound

2‖ (∇uF(0) − ∇uF(u∗)) v+‖
2
L2(Ω) ≤ 2‖∇uF(0) − ∇uF(u∗)‖2L∞(Ω\Γ`)‖v+‖

2
L2(Ω). (3.53)

The homoclinic connection u∗ converges to 0 with an exponential rate as z goes to infinity and
the function F is smooth, so the L∞-norm of the difference on Ω \ Γ2` is ε-exponential small.
This establishes the bound

‖Lv+‖
2
L2(Ω) ≥

µ0

2
‖v+‖

2
L2(Ω) −Ce−`/ε‖v+‖

2
L2(Ω) ≥

µ0

4
‖v+‖

2
L2(Ω). (3.54)

Here the constant C depends only on F and the decay rates of u∗ in z.

Mixed bilinear terms: The support of v+v− is contained in the overlap region Γ2` \ Γ`. On this
set the difference ∇uF(u∗) − ∇uF(0) is ε-exponentially small, and we use the outer expansion of
L to obtain

〈Lv−,Lv+〉L2(Ω) ≥
〈
Lout,0v−,Lout,0v+

〉
L2(Ω) −Ce−`/ε

(
〈|v−|, |Lv+|〉L2(Ω) + 〈|Lv−|, |v+|〉L2(Ω)

)
.

(3.55)
Applying Hölder’s inequality, the negative term on the right hand side can be bounded by

Ce−`/ε
(
‖v−‖2L2(Ω) + ‖v+‖

2
L2(Ω) + ‖Lv−‖2L2(Ω) + ‖Lv+‖

2
L2(Ω)

)
. (3.56)

Since v− = ξ(εz)v(x), its support is contained with Γ2` and we may use the inner expression
for the Laplacian to obtain a lower bound on the first term on the right-hand side of (3.55).
Moreover ξ is slowly varying in x and independent of s. With these observations we obtain the
expansion

ε2∆v− =ξ ε2∆v + 2εξ′∂zv + ε2ξ′′v + ε2κξ′v, (3.57)

with a similar expansion for v+ with ξ replaced with ξ. Since ξ and its derivatives are uniformly
bounded, independent of ε, we obtain〈

Lout,0v−,Lout,0v+

〉
L2(Ω)

≥
〈
ξLout,0v, ξLout,0v

〉
L2(Ω)

−Cε
(
‖ε2∆v‖2L2(Ω) + ‖∂zv‖2L2(Γ2`\Γ`)

+ ‖v‖2L2(Ω)

)
.

(3.58)

The first term on the right-hand side of (3.58) is positive since the product ξξ is non-negative.
Using the ε-equivalence of L2(Ω) and L2(S∞) norms from (3.22), and standard embedding in-
equalities, we obtain

‖∂zv‖2L2(Γ2`\Γ`)
≤ ε‖∂zvχ{x∈Γ2`\Γ`}‖

2
L2(S∞) ≤ Cε‖v‖H2(S∞). (3.59)

Finally, from the H2-norm ε-equivalence given in (3.24) we deduce〈
Lout,0v−,Lout,0v+

〉
L2(Ω) ≥ −Cε

(
‖ε2∆v‖2L2(Ω) + ‖v‖2L2(Ω)

)
. (3.60)

Combining the lower bounds on the inner, (3.49), outer (3.54), and mixed (3.60) bilinear
forms, with the decomposition (3.20), we obtain the existence of µ̃ > 0, independent of ε for
which

〈Lv, v〉L2(Ω) ≥ µ̃‖v‖2L2(Ω) −Cε‖ε2∆v‖2L2(Ω). (3.61)

From the form of L, elliptic regularity theory affords the existence of γ > 0, independent of
ε > 0, such that

〈(L + γ)v, v〉L2(Ω) ≥ ‖ε
2∆v‖2L2(Ω),
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for all v ∈ H2(Ω). Then for any t ∈ (0, 1) we may interpolate

〈Lv, v〉L2(Ω) ≥ t〈(L + γ)v, v〉L2(Ω) + ((1 − t)µ0 − tγ) ‖v‖2L2(Ω) −Cε(1 − t)‖ε2∆v‖2L2(Ω),

≥ (t −C(1 − t)ε) ‖ε2∆v‖2L2(Ω) + (m̃u − t(µ̃ + γ)) ‖v‖2L2(Ω).
(3.62)

The choice t := µ̃+Cε
1+µ̃+γ+Cε yields the estimate (3.18) with

µ =
µ̃

2(1 + µ̃ + γ)
> 0, (3.63)

independent of ε.

3.3 Normal coercivity of singular homoclinic freeway manifolds
The results of section 2.2 provide constructive conditions for the existence of homoclinic free-
way connections in the freeway system (1.5) with F as in (2.10). Section 3.1 constructs the
corresponding freeway manifold, which from Proposition 3.4 is comprised of low energy func-
tions. Theorem 3.5 of section 3.2 equates the normal coercivity of the associated freeway man-
ifold to a spectral condition on the linearization (3.10) of the one-dimensional freeway system
at the underlying homoclinic freeway connection, u∗. For the singularly perturbed systems of
section 2.2, the spectral problem has been been analyzed in detail [11]. In particular the sta-
bility hypothesis of Theorem 3.5 can be related to simple geometric conditions arising in the
construction of the slow-fast homoclinic freeway connections.

Assume the framework of section 2.2 and that the function ρ, defined in (2.14), has a simple
root s∗ > 0. Let u∗ be the associated slow-fast homoclinic freeway connection. Then, under the
assumption that ∫

R

F12(s∗, u2,h(ζ; s∗); 0) dζ , 0, (3.64)

[11, Corollary 5.10 and eq. (5.16)] imply that the kernel of L, and hence that of D−2L, is simple
and spanned by the translational eigenmode ∂zu∗. To apply Theorem 3.5 it remains to verify
that σp(D−2L) has no strictly positive elements. To this end it is convenient to consider the point
spectrum of the operator pencil D−2 (L − λ) for λ ∈ C. For any k ∈ σp(D−2 (L − λ)) there exists
a solution ψ ∈ L2(R) to the eigenvalue problem

Lψ =

(
λ + k 0

0 λ + δ2k

)
ψ. (3.65)

This eigenvalue problem has precisely the same structure as that in [11, eq (3.2)], modulo the
replacement of ‘λ’ by ‘λ + k’ in the first component and ‘λ’ by the asymptotically close value
‘λ + δ2k’ in the second component. All the assumptions of [11] hold for this extended prob-
lem, as do each of the steps of the subsequent analysis. Indeed, the set-up of this situation is
has similarities to the stability analysis of homoclinic stripes in singularly perturbed reaction-
diffusion systems conducted in [26] with the exception that the case k > 0 was not considered
therein. It follows from the prior analysis that there exists an extended analytic Evans func-
tion D(λ, k, δ) whose roots coincide with the point spectrum of the operator pencil D−2(L − λ),
including multiplicity. Moreover, there exists an analytic fast transmission function t f ,+ and a
meromorphic slow transmission function ts,+ such that the extended Evans function admits the
slow-fast decomposition

D(λ, k, δ) = 4δ t f ,+(λ + δ2k, δ) ts,+(λ, k, δ)
√
∂u1 F2(0, 0; δ) + λ + δ2k

√
F ′11(0; δ) + λ + k, (3.66)

see [11, eq. (4.4)]. This Evans function decomposition, which follows from the strong struc-
tural similarity between the eigenvalue problem (3.65) and the stability problem studied in [11],
allows us to prove the following Theorem.

19

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 19, 2019. ; https://doi.org/10.1101/2019.12.19.882092doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.882092


Theorem 3.9. Suppose that the vector field F(u; δ) is as given in (2.10), the assumptions of
section 2.2 hold, and s∗ is a simple root of ρ given in (2.14). Let u∗ be the associated freeway
homoclinic connection to a = 0. Suppose that, in addition,

ρ′(s∗) >0, (3.67)∫
R

F12(s∗, u2,h(ζ; s∗); 0) dζ <0, (3.68)

where u2,h(ζ; u1) is as defined in Assumption 2.3. Then, the set σp

(
D−2L

)
∩ R+ consists of

precisely one simple eigenvalue at the origin.

Proof. The assumption (3.68), together with the fact that s∗ is a simple root of ρ, guarantees
the simplicity of the eigenvalue at zero. Hence, it is sufficient to show that the Evans function
D(0, k, δ) (3.66) has no zeroes for k > 0 and δ sufficiently small. By [11, Lemma 4.3], the roots
of the fast transmission function t f ,+(λ, δ) are to leading order in δ given by the eigenvalues of
the fast Sturm-Liouville operator L f := ∂2

ζ −∂u2 F2(s∗, u2,h(ζ; s∗)). Since L f is the linearization of
(2.13) at the planar homoclinic u2,h, it has a kernel associated to the translational invariance of
the planar system. This kernel is isolated and simple by the Sturm separation theorem. Hence,
by the inverse function theorem, t f ,+(δ2k, δ) , 0 for sufficiently small δ.

By [11, Theorem 4.4], we can express the slow transmission function ts,+(λ, k, δ) to leading
order in δ as

ts,+(λ, k, 0) = −
B2
−(λ + k)
Λs(k)

[
B′−(λ + k)
B−(λ + k)

−
B′−(λ)
B−(λ)

−
Λs(0)
B2
−(λ)

ts,+(λ, 0, 0)
]
, (3.69)

where Λs(λ) =
√

F′11(0; δ) + λ > 0 (cf. [11, eq. (3.8)]) and B−(λ), B′−(λ) are as defined in [11,
Theorem 4.4]. By [11, Lemma 5.9], for λ = 0, we can write

ts,+(0, 0, 0) = −cs ρ
′(s∗)

∫
R

F12(s∗, u2,h(ζ; s∗); 0) dζ, (3.70)

with cs > 0, using [11, eq. (2.9)]. From [11, Lemma 5.6] we know that B−(λ) , 0 for all λ ≥ 0
if and only if y∗ > 0, where

sgn y∗ = −sgn
∫
R

F12(s∗, u2,h(ζ; s∗); 0) dζ, (3.71)

see [11, Lemma 2.2]. We employ a Prüfer transformation [11, eq. (5.5)] to write

B′−(λ + k)
B−(λ + k)

= tan θ(λ + k), (3.72)

where θ : R 7→ R. From the statement of [11, Lemma 5.4] we deduce the strict monotonicity of
θ, and conclude

B′−(k)
B−(k)

<
B′−(0)
B−(0)

(3.73)

for all k > 0. Combining (3.70) with the assumptions (3.67) and (3.68) implies that

Λs(0)
B2
−(λ)

ts,+(λ, 0, 0) > 0, (3.74)

which can be taken together with (3.73) to conclude that factor within the square brackets
in (3.69) is negative, while the prefactor B−(λ + k) is finite and never zero. We deduce that
ts,+(0, k, 0) > 0 for all k > 0. The non-vanishing of the Evans function (3.66) for λ = 0 now
follows from [11, Corollary 4.2].
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Corollary 3.10. Suppose that the assumptions of Theorems 3.5 and 3.9 are met. Then, there
exists δ0, G0>0 for which each δ ∈ (0, δ0) and each K, ` > 0 satisfying K` < G0 yield an ε0 > 0
and a µ > 0 such that the freeway homoclinic connection u∗ of (1.5) corresponding to the
system presented in (2.10) generates a normally coercive manifoldMK,`(u∗), satisfying (3.18)
with coercivity constant µ for all L = LΓ with Γ ∈ GK,`.

The PCB system presented in section 2.3 prescribes a take-off curve and an unstable slow
manifold, as depicted in Figure 3. When the take-off curve crosses the unstable manifold from
above, as it does at u1 = s∗, then ρ′(s∗) > 0 and Corollary 3.10 holds. In particular the freeway
manifold generated by u∗ is normally coercive in the sense of Theorem 3.5.

4 Freeway to Toll-Road Bifurcations
Minimizers of the reduced free energy (1.4) solve the toll-road system (1.6). In this section we
consider bifurcations within the freeway system (1.5) that induce changes in solution type within
the larger toll-road system. We insert a parameter, µ, within the vector field F = F(·; µ). When
written as pair of second order systems, the toll-road system (2.1) has the equivalent formulation

D2 uzz = F(u; µ) + v, (4.1a)

D2 vzz = ∇uF(u; µ)†v. (4.1b)

The freeway solutions satisfy (4.1) with v = 0.

In this section, we assume that for µ ≥ 0 the toll-road system (4.1) admits a one-parameter
pair of freeway connections (u±(µ), 0)t between the fixed equilibria ai and a j. Moreover, we
assume that the two branches merge at µ = 0 through a saddle-node bifurcation, with u+(0) =

u−(0) := u0. We shift the origin (u, v) 7→ (u0 + u, v) and expand (4.1) around the connection
(u0, 0)t at the saddle-node bifurcation µ = 0. This results in the formulation

L̂

(
u
v

)
+ R(u, v; µ) = 0, (4.2)

where we have introduced

L̂ =

(
L −I
0 L†

)
, R(u, v; µ) = −

(
F(u0 + u; µ) − F(u0; 0) − ∇uF(u0; 0) u[
∇uF(u0 + u; µ)† − ∇uF(u0; 0)†

]
v

)
. (4.3)

As before L, defined in (3.10), is the linearization of (1.5) at u0 with µ = 0. The nonlinear
remainder term R(u, v; µ) (4.3) can be expanded for small (u, v)t and small µ, yielding

R(u, v; µ) = −

(
µ∂µF + 1

2 (∇2
uF)(u,u) + (∂µ∇uF) µu

(∇2
uF†)(u, v) + (∂µ∇uF†) µv

)
+ O

(
(‖(u, v)t‖ + |µ|)3

)
, (4.4)

where we assume for simplicity that F(u; µ) depends linearly on µ, i.e. ∂2
µF(u; µ) ≡ 0.

We assume that the saddle-node bifurcation at µ = 0 is non-degenerate. Due to translational
invariance ψ1 := ∂zu0 ∈ ker(L) and the saddle-node bifurcation yields another central direction.
Specifically

ker(L) = {ψ0, ψ1} , (4.5)

with
ψ0 = lim

µ↓0

1
2
√
µ

(u+(µ) − u−(µ)) . (4.6)
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From the structure of L̂ and the Fredholm alternative we deduce that

ker( L̂) =

{(
ψ0
0

)
,

(
ψ1
0

)}
, (4.7)

where ψ0 and ψ1 are even and odd, respectively, about z = 0. We introduce ker
(
L†

)
=

{
ψ†0, ψ

†

1

}
,

with ψ†0 and ψ†1 also even resp. odd about z = 0. The spectral projections onto ψ j and ψ†j are
given by

Π ju =
〈u, ψ†j〉

〈ψ j, ψ
†

j〉
ψ j and Π

†

ju =
〈u, ψ j〉

〈ψ†j , ψ j〉
ψ†j , j = 0 or 1, (4.8)

with complementary projections Π̃ j = I − Π j and Π̃
†

j = I − Π
†

j .

4.1 Normal form expansion
We perform a normal form expansion in (4.2). We write the perturbative term (u, v)t in the form(

u
v

)
= ρ

(
ψ0
0

)
+

(
Φ(ρψ0, µ)
Ψ(ρψ0, µ)

)
, (4.9)

where the nonlinear functions Φ,Ψ are expanded as

Φ(ρψ0, µ) = µΦ01 +
∑

2≤p+q≤N

ρpµqΦpq(ψ0, ψ0, . . . , ψ0) + O
(
(ρ + µ)N+1

)
(4.10)

for small ρ and µ; here, Φpq is a q-linear map. Ψ is expanded analogously.

Remark 4.1. While the translational invariance of (1.6) introduces a central direction through
the z-derivative of u0, the same translational invariance precludes ψ1 = ∂zu0 to play a direct role
in the normal form expansion (4.9). This is a direct consequence of [15, Theorem 3.19], see
also [29, Theorem 3.3]. Hence, (4.9) does not contain a linear term of the form ρ̂ (ψ1, 0)t, nor do
the nonlinear functions Φ and Ψ explicitly depend on ρ̂ ψ1.

Substitution of the normal form expansion (4.9) in (4.2) yields at O(µ)

L̂

(
Φ01
Ψ01

)
=

(
∂µF
0

)
F=F(u0;0)

, (4.11)

which by the definition of L̂ (4.3) is equivalent to

LΦ01 = ∂µF(u0; 0) + Ψ01, (4.12a)

L†Ψ01 = 0. (4.12b)

We see that Ψ01 ∈ ker(L†); hence, the solvability condition of (4.12a) yields(
Φ01
Ψ01

)
=

(
L−1Π̃

†

0∂µF
−Π

†

0∂µF

)
F=F(u0;0)

+ α01

(
ψ0
0

)
+ β01

(
ψ1
0

)
, (4.13)

with α01 and β01 yet to be determined. Next, we consider the equation at O(µ2)

L̂

(
Φ02
Ψ02

)
=

( 1
2 (∇2

uF)(Φ01,Φ01) + (∂µ∇uF) Φ01
(∇2

uF†)(Φ01,Ψ01) + (∂µ∇uF†)Ψ01

)
F=F(u0;0)

. (4.14)

The solvability condition for the equation for Ψ02 stipulates that

− (∇2
uF(u0; 0)†)(L−1Π̃

†

0∂µF(u0; 0),Π†0∂µF(u0; 0)) − α01(∇2
uF(u0; 0)†)(ψ0,Π

†

0∂µF(u0; 0))

− β01(∇2
uF(u0; 0)†)(ψ1,Π

†

0∂µF(u0; 0)) − (∂µ∇uF(u0; 0)†)Π†0∂µF(u0; 0) ⊥ ker(L), (4.15)
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from which follows that β01 = 0 and

α01Π0(∇2
uF(u0; 0)†)(ψ0, ψ

†

0) = Π0

(
(∇2

uF(u0; 0)†)(L−1Π̃
†

0∂µF(u0; 0), ψ†0) + ∂µ∇uF(u0; 0)†ψ†0
)
.

(4.16)
The equation at O(ρ2)

L̂

(
Φ20
Ψ20

)
=

( 1
2 (∇2

uF)(ψ0, ψ0)
0

)
F=F(u0;0)

, (4.17)

being of the same qualitative form as (4.11), can be solved to obtain(
Φ20
Ψ20

)
=

(
L−1Π̃

†

0
1
2 (∇2

uF)(ψ0, ψ0)
−Π

†

0
1
2 (∇2

uF)(ψ0, ψ0)

)
F=F(u0;0)

+ α20

(
ψ0
0

)
+ β20

(
ψ1
0

)
. (4.18)

However, the equation at O(ρµ)

L̂

(
Φ11
Ψ11

)
=

(
(∇2

uF)(ψ0,Φ01) + (∂µ∇uF)ψ0
(∇2

uF†)(ψ0,Ψ01)

)
F=F(u0;0)

(4.19)

yields as solvability condition for Ψ11

(∇2
uF(u0; 0)†)(ψ0,Ψ01) = −(∇2

uF(u0; 0)†)(ψ0,Π
†

0∂µF(u0; 0)) ⊥ ker(L), (4.20)

which is in general not satisfied. At the next order, we encounter a similar situation at O(ρ3),
where the equation

L̂

(
Φ30
Ψ30

)
=

(
(∇2

uF)(ψ0,Φ20) + 1
6 (∇3

uF)(ψ0, ψ0, ψ0)
(∇2

uF†)(ψ0,Ψ20)

)
F=F(u0;0)

(4.21)

yields as solvability condition for Ψ30

(∇2
uF(u0; 0)†)(ψ0,Ψ20) = −(∇2

uF(u0; 0)†)(ψ0,Π
†

0
1
2

(∇2
uF(u0; 0))(ψ0, ψ0)) ⊥ ker(L), (4.22)

which is also in general not satisfied. Furthermore, the equations at O(ρµ2) and O(ρ2µ) explicitly
depend on Ψ11, the term that yielded the problematic solvability condition (4.20).

To resolve these issues, we assume a resonance for the problematic equations at O(ρµ) and
O(ρ3) [15]. We take p, q ∈ Z≥0, p + q ≥ 1, such that ρµ = ρpµq; likewise, we assume that there
exist r, s ∈ Z≥0, r + s ≥ 1, such that ρ3 = ρrµs. From these assumptions, it follows that

ρ = µ
1
3 , ρ = µ

1
2 or ρ = µ, (4.23)

where we ruled out ρ = µk with k > 1, by standard arguments. The choice ρ = µ
1
3 yields

the same insolvable equation at O(µ) = O(ρ3) while the choice ρ = µ
1
2 yields a transverse

bifurcation with persistence of the freeway solutions for µ > 0. Hence, the only relevant scaling
choice to be investigated is ρ = µ.

To simplify notation, we rewrite the normal form expansion (4.9), (4.10) and set(
u
v

)
=

N∑
i=1

µi
(
Φtr

i
Ψtr

i

)
+ O(µN+1). (4.24)

Substitution of the normal form expansion (4.24) in (4.2) yields at O(µ)

L̂

(
Φtr

1
Ψtr

1

)
=

(
∂µF
0

)
F=F(u0;0)

, (4.25)
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which is equivalent to (4.11); hence, we obtain(
Φtr

1
Ψtr

1

)
=

(
L−1Π̃

†

0∂µF
−Π

†

0∂µF

)
F=F(u0;0)

+ αtr
1

(
ψ0
0

)
+ βtr

1

(
ψ1
0

)
, (4.26)

with αtr
1 and βtr

1 to be determined at the next order. At O(µ2), we find

L̂

(
Φtr

2
Ψtr

2

)
=

(
(∂µ∇uF)Φtr

1 + 1
2 (∇2

uF)(Φtr
1 ,Φ

tr
1 )

(∂µ∇uF†)Ψtr
1 + (∇2

uF†)(Φtr
1 ,Ψ

tr
1 )

)
F=F(u0;0)

; (4.27)

the solvability condition for Ψtr
2 yields βtr

1 = 0 and

αtr
1 Π0(∇2

uF(u0; 0)†)(ψ0,Π
†

0∂µF(u0; 0)) = −Π0(∂µ∇uF(u0; 0)†)Π†0∂µF(u0; 0)

− Π0(∇2
uF(u0; 0)†)(L−1Π̃

†

0∂µF(u0; 0),Π†0∂µF(u0; 0)), (4.28)

which fully determines Φtr
1 (4.26). Furthermore, we obtain(

Φtr
2

Ψtr
2

)
=

(
1 1
0 1

)  L−1
[
(∂µ∇uF)Φtr

1 + 1
2 (∇2

uF)(Φtr
1 ,Φ

tr
1 )

]
(L†)−1

[
(∂µ∇uF†)Ψtr

1 + (∇2
uF†)(Φtr

1 ,Ψ
tr
1 )

]
F=F(u0;0)

+ αtr
2

(
ψ0
0

)
+ βtr

2

(
ψ1
0

)
, (4.29)

with αtr
2 and βtr

2 to be determined at the next order. This expansion allows us to formulate the
following Theorem:

Theorem 4.2. Let 0 < δ � 1 be sufficiently small. Assume that there exists µ0 > 0 such that
the freeway system (1.5) admits a pair of orbit families u±(µ) connecting the same equilibria ai

and a j for all 0 < µ < µ0; assume that this pair of orbit families coincides and terminates at
u+(0) = u−(0) = u0 through a saddle-node bifurcation; assume that this saddle-node bifurcation
is nondegenerate. Denote the linearization of (1.5) at u0 by L (3.10). Then, there exists an open
neighbourhood U of µ = 0 such that for all µ ∈ U, there exists a minimizer utr(µ) of the reduced
free energy F1 (1.4), with energy value

F1[utr(µ)] =
µ2

2
〈∂µF(u0; 0), ψ0〉

2

〈ψ†0, ψ0〉
2

‖ψ†0‖
2 + O(µ3), (4.30)

with ψ0 as in (4.6), and where ψ†0 is the unique element of ker(L†) that is even as a function of z.

Proof. The local existence of utr(µ) for small µ is an immediate consequence of the normal
form expansion in section 4.1. The reduced free energy (1.4) can be written in terms of the
norm induced by the L2(R)-inner product as F1[u] = 1

2‖D
2uzz − F(u; µ)‖2 = 1

2 ‖v‖
2 by (4.1a).

The leading order expansion of v given in (4.26) yields the energy value to leading order in µ.

Remark 4.3. The existence of homoclinic orbits in (1.5) as presented in [11] is a consequence
of the transversal intersection of manifolds, which is directly equivalent to the invertibility of L
(3.10) (up to translation). This implies invertibility of L̂ (4.3), and ensures the unique local em-
bedding of solutions of (1.5) in the phase space of (4.1). The toll-road branch utr that intersects
the freeway homoclinic families u± at µ = 0, exists precisely because the invertibility of L fails
at µ = 0, introducing a nontrivial (even) kernel element ψ0, which is the basis for the normal
form expansion in Section 4.1.
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4.2 Toll-road connections in the PCB model
The bifurcation analysis of section 4 allows the construction of low-energy toll-road connec-
tions. This is relevant to situations in which mass constraints prevent the formation of freeway
connections. For the PCB model of section 2.3, the results of Theorem 4.2 can be applied by
extending the take-off curve to depend upon the bifurcation parameter µ, that is To(s) = To(s; µ).
In particular we make the following assumptions.

Assumption 4.4. Let To(s) = To(s; µ) depend on a parameter µ, and let ρPCB = ρPCB(s; µ)
accordingly be as in (2.19). There exists ssn ∈ (0, u1,max) for which ρPCB(ssn; 0) = ρ′PCB(ssn; 0) =

0 and
ρ′′PCB(ssn; 0)

∂ρPCB

∂µ
(ssn; 0) < 0.

These assumptions guarantee the local existence of a pair of families of homoclinic orbits
in the freeway system (1.5) that terminates in a nondegenerate saddle-node bifurcation when
µ = 0. For the PCB model (2.16), we find

∂µFPCB(u0; 0) =

(
− 1

3δ f 2(usn,1)u2
sn,2

∂To
∂µ

(usn,1; 0)
0

)
, (4.31)

where usn =
(
usn,1, usn,2

)t is the (degenerate) homoclinic orbit at the saddle-node bifurcation.
Using Theorem 2.5, we can obtain an explicit expression for ψ0 as defined in (4.6), as follows.
From Assumption 4.4, it follows that the pair of solutions s±(µ) to ρPCB(s; µ) = 0 can be expan-
ded as s±(µ) = ssn ±

√
µ s1 + O(µ), with

s1 :=

∣∣∣∣∣∣∣∣∣
√

2 ∂ρPCB
∂µ√

−ρ′′PCB
∂ρPCB
∂µ

∣∣∣∣∣∣∣∣∣
(s;µ)=(ssn;0)

=

∣∣∣∣∣∣∣∣∣
√

2 To
∂To
∂µ√

To
∂To
∂µ

(
W ′′ − T ′2o − ToT ′′o

)
∣∣∣∣∣∣∣∣∣
(s;µ)=(ssn;0)

. (4.32)

Moreover, writing û(z) := us
1,s(z; ssn) (for the definition of us

1,s, see Theorem 2.5), we see that
there exists a shift z1 < 0 such that us

s,1(z; s±(µ)) = û(z±
√
µ z1 +O(µ)); a direct calculation shows

that z1 = s1/û′(0). Hence, the saddle-node eigenvector ψ0 has, by Theorem 2.5, the following
leading order structure:

ψ0 =


(
1,− f ′(ssn)

f (ssn) u2,h(z/δ; ssn)
)t

if 0 ≤ z <
√
δ,(

1
û′(0) û

′(z), 0
)t

if
√
δ ≤ z,

(4.33)

where ψ0 has been scaled by s1 compared to its original definition (4.6). We now use (4.33) to
calculate

〈∂µF(u0; 0), ψ0〉 = −
1
3δ

∫
R

f 2(usn,1)u2
sn,2

∂To

∂µ
(usn,1; 0) (ψ0)1 dz

= −
1
3

f 2(ssn)
∂To

∂µ
(ssn; 0)

∫
R

u2,h(ζ; ssn)2dζ + O(δ), (4.34)

= −2
∂To

∂µ
(ssn; 0) + O(δ) (4.35)

by (2.17). Furthermore, we know that ψ†0 is the unique even element of ker L†, which therefore
solves the system[

∂2
z −W ′′(usn,1) +

1
3δ

f (usn,1)2
(
T ′o(usn,1; 0) + 2

f ′(usn,1)
f (usn,1)

To(usn,1; 0)
)

u2
sn,2

] (
ψ†0

)
1

+ f ′(usn,1)u2
sn,2

(
ψ†0

)
2

= 0, (4.36a)

2
3δ

f (usn,1)2To(usn,1; 0)usn,2

(
ψ†0

)
1

+
[
δ2∂2

z − 1 + 2 f (usn,1)usn,2

] (
ψ†0

)
2

= 0. (4.36b)
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This system can be significantly simplified using the scale separated structure of the underlying
homoclinic usn as given in Theorem 2.5. In particular, outside the symmetric interval I f :=
(−
√
δ,
√
δ), system (4.36) reduces to[

∂2
z −W ′′(usn,1)

] (
ψ†0

)
1

= 0, (4.37a)(
ψ†0

)
2

= 0, (4.37b)

up to δ-exponentially small terms. We note that
(
ψ†0

)
1

must be a multiple of û′(z), and fix(
ψ†0

)
1

= 1
û′(0) û

′(z) = (ψ0)1 without loss of generality. Inside I f , we rescale ζ = z/δ and find[
∂2
ζ − δ

2W ′′(ssn) +
δ

3
f (ssn)2

(
T ′o(ssn; 0) + 2

f ′(ssn)
f (ssn)

To(ssn; 0)
)

u2,h(ζ; ssn)2
] (
ψ†0

)
1

+δ2 f ′(ssn)u2,h(ζ; ssn)2
(
ψ†0

)
2

= 0, (4.38a)

2
3δ

f (ssn)2To(ssn; 0)u2,h(ζ; ssn)
(
ψ†0

)
1

+
[
∂2
ζ − 1 + 2 f (ssn, 1)u2,h(ζ; ssn)

] (
ψ†0

)
2

= 0. (4.38b)

From (4.38b), we infer that
(
ψ†0

)
2

scales with 1/δ. For the first component
(
ψ†0

)
1
, this yields

∂2
ζ

(
ψ†0

)
1

= O(δ) from which we conclude
(
ψ†0

)
1

= 1 by continuity. Rescaling the second com-

ponent
(
ψ̂†0

)
2

:= δ
(
ψ†0

)
2
, it obeys[

∂2
ζ − 1 + 2 f (ssn)u2,h(ζ; ssn)

] (
ψ̂†0

)
2

= −
2
3

f (ssn)2To(ssn; 0)u2,h(ζ; ssn). (4.39)

Using (2.17), we can reduce (4.39) to[
∂2
ζ − 1 + 3 sech2(ζ/2)

] (
ψ̂†0

)
2

= − f (ssn)To(ssn; 0) sech2(ζ/2), (4.40)

which can be solved explicitly, yielding(
ψ̂†0

)
2

= − f (ssn)To(ssn; 0) sech2(ζ/2) (1 − (ζ/2)tanh (ζ/2)) . (4.41)

To summarize, we have found to leading order in δ

ψ†0 =


(
1,− 1

δ
f (ssn)To(ssn; 0) sech2(ζ/2) (1 − (ζ/2)tanh (ζ/2))

)t
if 0 ≤ z <

√
δ,(

1
û′(0) û

′(z), 0
)t

if
√
δ ≤ z.

(4.42)

This allows us to calculate

‖ψ†0‖
2 =

1
δ

∫
R

(
ψ̂†0

)2

2
dζ + O(1) =

1
δ

f (ssn)2To(ssn; 0)2
(

4
3

+
2π2

45

)
+ O(1) (4.43)

and

〈ψ†0, ψ0〉 =

∫
R

(ψ0)1

(
ψ†0

)
1

dz +
1
δ

∫
R

(ψ0)2

(
ψ̂†0

)
2

dz (4.44)

= 2
∫ ∞

0

1
û(0)2 û(z)2dz +

3
2

f ′(ssn)
f (ssn)

To(ssn; 0)
∫
R

sech4(ζ/2) (1 − (ζ/2)tanh (ζ/2)) dζ

=
1

W(ssn)

∫ ssn

0

√
2W(û) dû + 3

f ′(ssn)
f (ssn)

To(ssn; 0) (4.45)

to leading order in δ. Using the results obtained so far, we calculate the value of the reduced
free energy of the toll-road branch in the PCB model:

F1[utr(µ)] =
1
δ

µ2

2

[
F 0

1 (ssn) + O (δ, µ)
]
, (4.46)
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with

F 0
1 (ssn) =

 2 f (ssn)To(ssn; 0) ∂To
∂µ

(ssn; 0)
1

W(ssn)

∫ ssn

0

√
2W(û) dû + 3 f ′(ssn)

f (ssn) To(ssn; 0)


2 (

4
3

+
2π2

45

)
. (4.47)

For a PCB model with a prescribed take-off curve, embedding the take-off curve in a larger
familty To(s, µ) which has a saddle-node bifurcation at µ = 0 and reverts to the original take-off

curve at µ = µ∗, provides for the existence of a toll-road connection with cholesterol mass scaled
by f (ssn) with energy given by (4.46) with µ = µ∗. This relates the distance of the take-off curve
to the unstable slow manifold to the existence and energy of an associated toll-road connection.
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