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Abstract 

Polygenic risk scores (PRSs) capture the polygenic architecture of common diseases by aggregating 
genome-wide genetic variation into a single score that reflects individual’s disease risk, affording a 
new opportunity to identify downstream molecular pathways involved in disease pathogenesis. We 
performed an integrative analysis to characterise associations of PRSs of five cardiometabolic 
diseases with 3,442 plasma proteins in 3,175 healthy individuals. Through polygenic association 
scans we identified 48 plasma proteins whose levels were associated with PRSs for coronary artery 
disease (CAD), chronic kidney disease (CKD), or type 2 diabetes (T2D). This approach identified 
both well-known disease-associated proteins as well as those with previously no known link to 
these diseases. We found that PRSs to protein associations were largely truly polygenic; 
independent of single loci and genomic regions expected to have strong effects on protein levels. 
Our integrative analysis and laboratory experiments revealed a role for polygenic effects on several 
well-known disease proteins and identified several promising novel targets for follow-up studies, 
including genes which through Mendelian randomization analysis displayed causal evidence for 
effects on disease risk. Mouse studies highlighted specific tissues and phenotypes for PRS-
associated human proteins. We found that implicated genes were responsive to dietary intervention 
in mice and showed strong evidence of druggability in humans, consistent with PRS-associated 
proteins having therapeutic potential. Overall, our study provides a framework for polygenic 
association studies, and demonstrates the power of polygenic scores to unravel novel disease 
biology. 
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Introduction  

Common human diseases have been shown to be largely polygenic in architecture1–3. Polygenic risk 
scores (PRSs) capture this architecture by combining the effects of genome-wide genetic variation 
on risk of disease into a single score representing the aggregate of an individual’s genetic 
predisposition to disease. While PRSs have shown promise for risk prediction and early 
stratification4–7, there is parallel interest to utilise PRSs to dissect underlying disease biology. A key 
area of investigation is identification of the convergent pathways and biomolecules, which are 
perturbed by these aggregate polygenic effects in asymptomatic individuals, influencing the 
development and progression of disease over decades of exposure8–10. Therapeutic targeting of 
these convergent pathways represents a promising strategy for disease prevention by disrupting 
causal pathways that may promote pathogenesis. 

With its central role in homeostasis, the plasma proteome largely comprises secreted proteins with 
roles in intercellular communication, tissue remodelling, vascular and endothelial function, 
metabolism, and immune response11–13. Many plasma proteins play a causal role in disease 
processes and are thus considered important drug targets14. Previous genome-wide association 
studies (GWAS) have identified quantitative trait loci (QTL) associated with the plasma proteome 
and have demonstrated causal effects of plasma proteins levels on various diseases, particularly 
cardiovascular and metabolic aetiologies15–17. However, protein QTL (pQTL) GWAS do not 
quantify the total burden of polygenic effects across all disease risk alleles within an individual, 
therefore may not identify the molecular and pathway-level bottlenecks through which polygenic 
effects could be operating. 

Here, we use integrative analyses to characterise polygenic disease associations with the plasma 
proteome. First, we perform a polygenic association study utilising matched genotype and 
proteomic data in a cohort of 3,175 healthy participants to identify proteins in circulation whose 
levels are associated with polygenic risk of five cardiometabolic diseases: coronary artery disease 
(CAD), atrial fibrillation, type 2 diabetes (T2D), chronic kidney disease (CKD), and stroke. To 
explore the biological implications of PRS to protein associations, we used both computational and 
experimental approaches. First, we investigated the overlap of pQTLs and Mendelian 
randomisation- effects on their respective disease. Second, we used mouse models to identify 
associations between tissue-specific gene expression with cardiometabolic phenotypes as well as 
their response to dietary intervention. Lastly, we investigate potential opportunities for drug 
repurposing using PRS associations of protein targets with therapeutics on the market or in clinical 
trials. 

Results 

INTERVAL is a cohort of approximately 50,000 adult blood donors recruited from 25 centres 
across England between 2012–2014 (Methods)18,19 with built-in exclusion at recruitment of people 
who had relevant baseline diseases (i.e., heart disease, stroke, diabetes, atrial fibrillation). These 
conditions (as well as infection or other recent illness) are routine exclusions from blood donation 
in the UK, thereby avoiding potential bias due to prevalent disease in genomic-proteomic 
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associations (Methods). In this study, we analysed 3,175 individuals with matched genotypes and 
quantitative SomaLogic SOMAscan profiles of 3,442 plasma proteins (Table S1)15. A workflow of 
the study is given in Figure 1. For each individual in INTERVAL, we calculated standardised PRS 
levels for five cardiometabolic diseases: CAD, T2D, CKD, atrial fibrillation, and stroke (Methods, 
Table S2).  

For polygenic association analyses, we regressed normalised protein levels on each PRS (Methods, 
Table S3). Quantile-quantile (QQ) plots showed substantial enrichment of low P-values for CKD, 
CAD, and T2D polygenic risk scores, with weak or no enrichment for atrial fibrillation and stroke 
(Figure 2A). Across the five cardiometabolic diseases, we identified 49 PRS-protein associations 
for 48 unique proteins at a false discovery rate (FDR) threshold of 5%: 7 proteins for CKD PRS, 11 
proteins for CAD PRS, and 31 proteins for T2D PRS (Table 1, Figure 2B, Table S4). A further 26 
associations (6 proteins for CKD PRS, 20 for T2D PRS) showed suggestive significance at FDR 
threshold 10% (Table S5). Protein associations were largely specific to each PRS, with the 
exception of sex hormone-binding globulin (SHBG) which showed independent, inverse 
associations with T2D and CAD PRS (Figure S1). The polygenic association analysis identified 
proteins with established roles in their respective disease, such as cystatin-c (CST3) with CKD20,21, 
apolipoprotein E (APOE) with CAD22,23, and sex hormone binding globulin (SHBG) with T2D24, as 
well as those with very little or no known role (Table 1). 

To test the robustness of PRS to protein associations using an orthogonal technology, we utilised 
Olink quantitative protein assays in a largely separate set of 4,811 genotyped individuals from 
INTERVAL (n=692 also with SomaLogic protein levels) (Methods)25. These allowed us to 
independently test four proteins with significant PRS associations. Effect size estimates were 
directionally consistent and strongly correlated between the SomaLogic and Olink platforms (r = 
0.86, Figure S2), and all but one PRS association (T2D PRS to TIMP4) remained nominally 
significant (P < 0.05) (Figure S2). PRS to protein associations were robust to circadian and 
seasonal effects, and with the exception of the T2D PRS to protein associations, robust to 
adjustment for body mass index (BMI) (Figure S3). Six of 31 (19%) T2D PRS to protein 
associations were attenuated (P > 0.05) by BMI adjustment (Table S6, Figure S3), and in 
multivariable models, both the T2D PRS and each of these protein remained independently 
associated with BMI (Table S6), indicating these associations between the T2D PRS and protein 
levels are mediated by BMI. 

To disentangle whether PRS to protein associations were attributable by polygenic effects or 
individual locus-level effects (e.g. pQTLs in linkage disequilibrium with variants composing the 
PRS), two parallel analyses were performed for each PRS to protein association (Methods): (1) 
adjusting the association for each of the protein’s known pQTLs15, and (2) retesting the association 
after removing from the PRS all genetic variants within 1Mb of the protein or any known pQTL. Of 
the 48 proteins associated with any PRS, 28 had one or more pQTLs (58%) in a previous pQTL 
study in INTERVAL15, a substantially higher rate than across all SOMAscan protein aptamers 
(41%). All but two PRS to protein associations (CKD PRS to PDE4D/PDE4A and CKD PRS to 
PRSS3) remained significant when adjusting for potential pQTLs effects (Figure S4, Table S7). 
These results indicate the observed PRS to protein associations were, in the majority of cases, truly 
polygenic. Further, these results suggest that polygenic risk could enhance or buffer the locus-
specific effects on protein levels of disease-associated variants overlapping with pQTLs.  
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To triangulate the biological implications of PRS to protein associations, we performed a series of 
follow-up analyses: (1) assessment of the consistency of T2D PRS associated proteins in a separate 
Icelandic study of proteomics and T2D26; (2) Mendelian randomisation to test for causal 
relationships between protein levels and the PRS associated disease; (3) tissue-specific gene 
expression analysis from multiple mouse models including dietary intervention experiments. 

Our findings were strongly consistent with a recent study of SomaLogic proteins in serum and 
incident T2D in the AGES-Reykjavik cohort26, providing support for both the T2D PRS 
associations and the temporality of polygenic associations with proteins which precede T2D 
incidence. Twenty-three of our 31 T2D PRS associated proteins (74%) were associated with 
prevalent T2D, and 17 (55%) were associated with 5-year risk of incident T2D (Table S8; Fisher’s 
exact test P-value = 5×10-19). Of our 12 novel protein associations with the T2D PRS (Table 1), 10 
(83%) and 7 (58%) proteins were associated with prevalent or incident T2D, respectively.  

To investigate the overlap between proteins associated with polygenic disease risk and those that 
could be tested for causal effects on disease, we used two-sample Mendelian randomisation27 with 
publicly available pQTL and disease GWAS summary statistics (Methods). Of the 48 PRS-
associated proteins, only 14 (29%) had sufficient independent genetic instruments to test for causal 
effects (Methods, Table S9). Among these, three proteins showed significant evidence of causal 
effects on disease risk, all of which were for T2D (Figure 3, Table S10, Figure S5). We found a 
strong and consistent inverse causal estimate for the known causal effect of decreased sex hormone 
binding globulin (SHBG) on increased T2D risk24 (Figure 3, Table S10). Consistent with the 
Mendelian randomisation analysis in the AGES-Reykjavik cohort26, we found an inverse causal 
estimate for WFIKKN2 on T2D risk. We additionally found an inverse causal estimate for 
complement factor I (CFI) on T2D risk. For SHBG and WFIKKN2, but not for CFI, the direction of 
the estimated causal effects of protein levels on T2D risk were consistent with the directions of 
association between T2D PRS levels with the proteins’ levels (Figure 3, Figure 2B). This suggests 
that T2D polygenic risk influences T2D pathogenesis by lowering SHBG and WFIKKN2 levels. 

To investigate the tissue-specific role of PRS-associated proteins in cardiometabolic disease, we 
utilised two mouse reference datasets (Methods): (1) the hybrid mouse diversity panel28 (HMDP; 
n=706 mice from 100 inbred strains) fed a standard chow diet, and (2) an F2 cross of the inbred 
ApoE-/- C57BL/6J and C3H/HeJ strains (n=334) fed a western diet (high fat and high cholesterol) to 
enrich for cardiovascular disease traits29. In total, 45 of 48 PRS-associated proteins had mouse 
orthologs30 (Table S11), for which we observed widespread correlations between tissue-specific 
gene expression with a variety of cardiometabolic traits, including lipid dysregulation, insulin 
resistance, and atherosclerosis (Figure 4). Among the proteins with no previous known link to 
cardiometabolic disease (Table 1), we observed particularly strong correlations with relevant 
cardiometabolic traits for tissue-specific expression of DUSP26, TP53I11, CRYZL1, CPM, 
INHBC, IGFBP2, and MUSK (Figure 4). Across all PRS-associated proteins, adipose tissue 
expression most commonly associated with cardiometabolic traits for proteins associated with PRSs 
for CKD and CAD (Figure 4B). In contrast, for proteins associated with the T2D PRS, trait-
associated gene expression was widely distributed across tissues, with the strongest associations in 
liver (Figure 4). Our subsequent dietary intervention experiments in C57BL/6J mice (Methods), 
revealed significant differences in tissue-specific gene expression between standard chow, high fat, 
and western diets after 12 weeks for the proteins CRYZL1 and FAH (Figure S6), with the strongest 
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effects between western diet and standard chow. These data suggest that these proteins may play a 
role in lipid metabolism and the setting of dyslipidaemia. 

Finally, to identify druggable targets associated with polygenic disease risk and potential drug 
repurposing opportunities, we intersected PRS-associated proteins with the DrugBank database31. 
We found 17 of the 48 PRS associated proteins were known druggable targets (Table 2; Table 
S12). We identified seven drugs whose effects on these proteins were consistent with the PRS 
associations (Table 3). This included the well-known T2D medication metformin32 as well as two 
drugs for T2D, Managlinat dialanetil and MB-07803, that have completed phase II clinical trials. 
Metformin is a GPD1 inhibitor, and Managlinat dialanetil and MB-07803 are FBP1 antagonists, 
consistent with the associations between the T2D PRS and both GPD1 and FBP1 (Table 1, Figure 
2). Our PRS analyses suggested multiple on-market drugs may be repurposing opportunities for 
T2D or CKD (Table 3). One of these, Pegvisomant, has completed a phase II clinical trial for 
modulating insulin sensitivity in subjects with pre-diabetes (NCT02023918). Pegvisomant is used 
to treat acromegaly by blocking the binding of endogenous growth hormone to growth hormone 
receptor (GHR)33–35, and has been shown to improve insulin sensitivity in acromegaly patients36,37. 
The association between the T2D PRS and GHR levels was consistent with repurposing, suggesting 
Pegvisomant may reduce T2D risk by inhibiting GHR function. Further, individuals with GHR loss-
of-function mutations have been found to be at decreased T2D risk38. A further three drugs may be 
potential T2D or CKD repurposing opportunities: (1) Iloprost, a drug for treating pulmonary arterial 
hypertension39, may also reduce CKD risk by inducing the function of PDE4A and PDE4D40,41; (2) 
Adenosine phosphate, a supplement used to treat dietary shortage or imbalance, may also reduce 
T2D risk by inhibiting FBP1 thereby increasing gluconeogenesis independently of insulin42; and (3) 
Fostamatinib, a drug used to treat immune thrombocytopenic purpura43, may also reduce T2D risk 
by inhibiting the signalling activity of MUSK44.  

 

  

Discussion 

PRSs for disease are explicitly constructed to maximise risk prediction, irrespective of the 
underlying biology of the individual genetic variants composing the PRS. However, in capturing the 
maximal aggregate disease-associated variance, PRSs also hold considerable promise for 
identifying molecular pathways in the development and progression of the diseases they predict8,45. 

In a series of computational analyses, we identified 48 plasma proteins that were significantly 
associated with predicted lifetime risk for CAD, CKD, and T2D. These proteins included both well-
known disease associated proteins as well as novel associations, i.e., proteins with no previous 
known link to the associated disease. PRS to protein associations were robust to technical, 
physiological, and seasonal confounding. PRS to protein associations were also largely independent 
of any pQTLs for the given protein, indicating the associations between PRSs and protein levels 
were truly polygenic. 
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In several cases our results were consistent with, and provided support for, proteins with previously 
limited evidence for disease association. Here, we highlight several examples including: (i) GRN 
(granulin) has been suggested to play a role in atherosclerotic plaque formation46, (ii) plasma PRCP 
(lysosomal pro-X carboxypeptidase) levels have been shown to be elevated in individuals with 
T2D47, (iii) recessive deletion in PDE4D (cAMP-specific 3',5'-cyclic phosphodiesterase 4D) has 
been associated with CKD48; (iv) ACY1 (aminoacylase-1) levels have been shown to be higher in 
hepatic lipid droplets in diabetes susceptible mice compared to controls49, and (v) elevated IGFBP1 
(insulin-like growth factor-binding protein 1) levels have been shown to increase insulin sensitivity 
in mice50. 

Our analyses into the biological implications of PRS to protein associations revealed an 
unappreciated role for polygenic effects on several well-known disease proteins and highlighted 
several novel protein associations that represent promising targets for follow-up studies. Mendelian 
randomisation analysis revealed that SHBG and WFIKKN2 likely lie on causal pathways from 
polygenic risk to T2D, with increased PRS levels leading to decreased SHBG and WFIKKN2, 
levels which themselves are causal for increased T2D risk. Mouse tissue-specific gene expression 
analyses revealed DUSP26, TP53I11, CRYZL1, CPM, INHBC, IGFBP2, and MUSK as promising 
novel CAD and T2D candidates for future experimental follow-up. These mouse data also revealed 
that many correlations between tissue-specific gene expression and cardiometabolic traits were 
stronger in mice fed a high fat and high cholesterol diet. Subsequent dietary intervention 
experiments in mice revealed particularly strong effects of lipid dietary intervention on tissue-
specific gene expression of orthologs for human proteins CRYZL1 and FAH. Finally, overlaying 
our PRS to protein associations with drug target information revealed 17 proteins were druggable 
targets, and revealed promising potential drug repurposing opportunities for on-market drugs 
Fostamatinib and Adenosine phosphate, via MUSK and FBP1 respectively, for treating or 
preventing T2D; as well as the on-market drug Iloprost, which targets PDE4A and PDE4D, for 
treating or preventing CKD.  

Overall, our study provides a framework for polygenic association studies, and demonstrates the 
power of polygenic scores to unravel novel disease biology through integration with information on 
intermediary molecular pathways preceding disease onset. 

 

 

Methods 

INTERVAL cohort data quantification, processing, and quality control 
INTERVAL is a cohort of approximately 50,000 participants nested within a randomised trial 
studying the safety of varying frequency of blood donation, led by Cambridge University in 
collaboration with National Health Service (NHS) Blood and Transplant, the national blood service 
of England18,19. Participants were blood donors aged 18 years and older recruited between June 
2012 and June 2014 from each of the 25 fixed NHSBT centres across England. Upon joining the 
study, participants completed an online questionnaire about their demographic and lifestyle 
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including their age, sex, weight, height, alcohol intake and smoking habits, and diet. The collection 
of blood samples for research purposes has been extensively described previously18. Briefly, blood 
samples were collected in 6-ml EDTA tubes using standard venepuncture protocols. These tubes 
were inverted three times then transferred to the UK Biocentre (Stockport, UK) at ambient 
temperature for processing. Plasma was extracted by centrifugation into two 0.8-ml aliquots then 
stored at −80 °C before use. Participants gave informed consent and this study was approved by the 
National Research Ethics Service (11/EE/0538). 

Although prevalent disease and medication usage information was not specifically collected or 
recorded for this cohort, NHSBT criteria (https://www.blood.co.uk/who-can-give-blood/) meant 
people with a history of major diseases, recent illness, or infection were very unlikely to be included 
in this study18. Specifically for the five diseases studied here, blood donation criteria excluded 
individuals diagnosed with atrial fibrillation, with a history of any stroke, or history of major heart 
disease (including heart failure, coronary thrombosis, myocardial infarction, cardiomyopathy, 
ischaemic heart disease, and arrhythmia, or surgery for a non-congenital heart conditions). 
Individuals with hypercholesterolaemia and hypertension were not excluded provided their 
respective conditions were well controlled, unless taking regular aspirin or other blood thinners. An 
extended list of specific medications and eligibility criteria for those with hypertension or 
hypercholesterolaemia can be found at https://my.blood.co.uk/knowledgebase. Blood donation 
criteria did not exclude people with type 2 diabetes provided it was well controlled by diet alone, 
did not require regular insulin treatment, and the individual had not required insulin treatment in the 
four weeks prior to attempted blood donation. Blood donation criteria did not exclude people with 
pre-diabetes or those with a history of gestational diabetes provided they did not require treatment 
at the time of donation. Although NHSBT criteria do not explicitly exclude those with chronic 
kidney disease, people with CKD were unlikely to be eligible blood donors because they frequently 
have comorbidities that would exclude them from donation. 

Body mass index (BMI) was calculated from self-reported weight and height. Self-reported weight 
ranged from 49 kg to 177 kg (mean 78.6 kg) and self-reported height ranged from 1.07 m to 2.41 m 
(mean 1.73 m). Computed BMI ranged from 13.1 to 81.5 (mean 26.4). Sixteen samples with outlier 
BMI were removed by excluding samples with self-reported weight < 50 kg or > 160 kg; weights 
outside the range for blood donation eligibility criteria, and samples with self-reported height < 1.47 
m or > 2.1 m; clinical thresholds for dwarfism and gigantism respectively. After outlier exclusion 
the range of participant BMI was 17.0–55.8 (mean 26.3).  

Quantification of protein levels using the SomaLogic SOMAscan arrays in INTERVAL has 
previously been described in detail15. Briefly, the relative concentration of 3,617 human plasma 
proteins and protein complexes targeted by 4,034 aptamers on the SOMAscan array51,52 were 
measured in 3,562 INTERVAL participants in two batches (n=2,731 and n=831) from 150-μl 
aliquots of plasma by SomaLogic Inc. (Boulder Colorado, US). Quality control was performed by 
SomaLogic using calibrator samples and control aptamers to remove systematic variability in 
hybridization and within-run and between-run technical variability. Within each batch, raw aptamer 
levels (relative fluorescence units) were natural log transformed then adjusted for age, sex, the first 
three genetic principal components and duration between blood draw and sample processing (1 day 
vs >1 day), and the residuals were inverse normal rank transformed. For this study we did not 
exclude protein aptamers with greater than 20% coefficient of variation in either batch. We 
subsequently filtered the data to 3,793 high quality aptamers targeting 3,442 proteins after obtaining 
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the latest information about aptamer sensitivity and specificity from SomaLogic. In total 241 
aptamers were excluded which targeting non-human proteins, or which since the original 
quantification in INTERVAL had been (1) deprecated by SomaLogic, (2) found to be measuring the 
fusion construct rather than the target protein, or (3) measuring a common contaminant. Information 
about each aptamers targeted protein were extracted from the UniProtKB page associated with each 
aptamer’s associated UniProt IDs supplied by SomaLogic and from the NCBI gene webpage 
corresponding to the Entrez IDs associated with each UniProt ID. Mapping between UniProt IDs 
was performed with Ensembl biomart, or by searching the primary gene symbol listed on the 
UniProt page where biomart returned no Entrez identifiers. Information was manually verified 
where there was discordance between information provided by SomaLogic or obtained from 
UniProt or NCBI gene.  

Quantification of protein levels using Olink proximity extension assays25 was performed in 5,000 
INTERVAL participants using three Olink panels (Olink Bioscience, Uppsala, Sweden), each 
quantifying 92 proteins: their “inflammation panel”, “cardiovascular II panel”, and “cardiovascular 
III panel”. Participants were selected to be at least 50 years old at baseline with limited overlap with 
participants with SomaLogic SOMAscan array data. There was limited overlap in protein content 
between the significant PRS associated proteins (quantified by the SOMAscan assay), occurring 
only for four proteins quantified by the cardiovascular III panel. For the cardiovascular III panel, 
normalised protein levels on log2 scale (NPX) were regressed on age, sex, sample measurement 
plate, time from blood draw to sample processing (number of days), and season (categorical: spring, 
summer, autumn, winter), then inverse rank normal transformed. After quality control there were 
4,811 INTERVAL participants with protein measurements on the Olink cardiovascular III panel 
including 692 participants with SOMAscan assay data. 

Genotyping of INTERVAL participants has been described in detail previously53. In total 48,813 
samples were genotyped using the Affymetrix UK Biobank Axiom array in ten batches. Samples 
failing the following QC were removed: those with sex mismatch, extreme heterozygosity, were of 
non-European descent, or were duplicate samples. Related samples were removed by excluding on 
participant from each pair of close relatives (first or second degree; identity-by-descent �� � 0.187). 
Variants were filtered to a set of 655,966 high-quality autosomal variants for imputation. Variants 
were excluded if they were monomorphic, if they were bi-allelic and had HWE p-value < 5×10-6, or 
if they had call rate < 99% across batches or < 75% across all batches. SHAPEIT3 was used to 
phase variants, then imputation to the UK10K/1000 Genomes panel was performed using the 
Sanger Imputation Server (https://imputation.sanger.ac.uk) resulting in 87,696,888 imputed variants 
for 43,059 samples. In total there were 3,175 participants with matched genotype and proteomic 
data.  

Polygenic risk scores 
The PRS used for CAD was our previously published CAD metaGRS54; a polygenic score 
comprising 1.75 million variants derived from a meta-analysis of three PRSs for CAD in UK 
Biobank. The variants and weights composing the CAD metaGRS are available from the polygenic 
score (PGS) Catalog55 (https://www.pgscatalog.org/) with identifier PGS000018. Briefly, the three 
meta-analysed CAD PRSs were: (1) our previously published PRS56 comprising 46,000 metabochip 
variants and their log odds for CAD in the 2013 CARDIoGRAMplusC4D consortium GWAS meta-
analysis57 (PGS000012); (2) a PRS comprising 202 variants whose association with CAD in the 
2015 CARDIoGRAMplusC4D consortium GWAS meta-analysis58 were significant at a false 
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discovery rate (FDR) < 0.05; and (3) a genome-wide PRS derived from the same summary 
statistics58 linkage disequilibrium thinned at r2=0.9 threshold in UK Biobank (version 2 genotype 
data, imputed to the HRC panel only). 

PRSs for CKD, T2D, atrial fibrillation, and stroke were derived from summary statistics from their 
respective largest available GWAS by filtering to variants that overlapped with a set of 2.3 million 
variants genome-wide derived by linkage disequilibrium thinning (r2 < 0.9) the high-confidence 
(imputation INFO score > 0.4), common (MAF > 1%), unambiguous SNPs (A/T and G/C SNPs 
excluded) in the UK Biobank version 3 genotype data59,60 (imputed to the 1000 Genomes, UK10K, 
and haplotype reference consortium (HRC)61 panels). GWAS summary statistics used for CKD, 
T2D, atrial fibrillation, and stroke were those published by Wuttke et al. in 201962, Mahajan et al. in 
201863, Nielsen et al. in 201864, and Malik et al. in 201865, respectively. For stroke, we used the 
GWAS summary statistics for any type of stroke rather than those for specific subtypes. In all cases, 
we used the GWAS summary statistics for the samples of recent European ancestry rather than the 
GWAS summary statistics from trans-ancestry meta-analyses. The resulting PRSs each comprised 
1.96–2.21 million SNPs with weights corresponding to their log odds ratio for the trait in the 
GWAS summary statistics (Table S2). The variants and weights composing each PRS are available 
to download through Figshare at https://dx.doi.org/10.6084/m9.figshare.11369103. This PRS 
derivation pipeline was designed to ensure consistency across PRSs in terms of genome-wide 
polygenic architecture and derivation from the most powerful to date GWAS for each disease. The 
resulting PRSs were strongly correlated with published PRSs shown to predict the corresponding 
disease: Pearson correlation r = 0.23 with the 1,168 variant atrial fibrillation PRS developed by 
Weng et al. 201866 (PGS000035), r = −0.21 with the 149 variant estimated glomerular filtration rate 
(eGFR) PRS developed by and shown to predict CKD by Wuttke et al. 201962 (CKD is diagnosed 
by low eGFR), r = 0.80 with the 171,129 variant T2D PRS developed by Mahajan et al. 201863 and 
validated by Udler et al. 201967 (PGS000036), r = 0.61 with the 3.2 million variant meta PRS for 
stroke (meta-analysis of stroke subtype and risk factor PRSs) developed by Abraham et al. 201968. 

Levels of each PRSs in each INTERVAL participant were calculated using the linear scoring 
function in plink version 2.0069 which summed, for each variant in each PRS, the number of copies 
of its effect allele multiplied by the weight (i.e. log odds of disease) in the PRS. In the case of 
missing genotypes, the frequency of the effect allele in INTERVAL was used in its place. For each 
PRS, these total sums were subsequently standardised to have mean of 0 and standard deviation 1 
across all INTERVAL participants. Variants with complementary alleles (A/T and G/C variants) 
were excluded to avoid incorrect effect allele matching due to strand ambiguity. Variants with 
INFO < 0.3 were removed. Where there were duplicate variants the one with the highest INFO 
score was kept. In total, 54,069,889 variants passed QC for PRS level calculation. Nearly all 
variants (>99%) in each PRS passed QC in INTERVAL (Table S2).  

Polygenic association scan 
The levels of each PRS were subsequently tested for association with the normalised levels of each 
of the 3,793 SomaLogic aptamers (targeting 3,442 plasma proteins) in the 3,175 INTERVAL 
participants with matched genotype and proteomic data (Table 1, Figure 2, Table S3, Table S4, 
Table S5). Linear regression models were fit between each protein aptamer and each PRS, with the 
protein levels as the response and PRS as the variable, adjusting for sample measurement batch and 
the first 10 genotype PCs as covariates. As detailed above, prior to model fitting, aptamer levels 
were log transformed and adjusted for age, sex, time between sample processing, and the first three 
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genotype PCs then inverse rank normalised. To obtain associations between each PRS and protein, 
linear regression beta coefficients, 95% confidence intervals, and P-values were averaged where 
there were multiple aptamers targeting a single protein. For each PRS, multiple testing correction of 
P-values across the 3,442 proteins was performed using the Benjamini-Hochberg false discovery 
rate (FDR) method70, and we considered any association between a PRS and protein to be 
significant where FDR < 0.05. 

Multivariable models were fit to estimate the independent associations of the CAD PRS and T2D 
PRS on the aptamers for GGT2, P5I11, and SHBG (Figure S1) that were associated with both 
PRSs in the univariate analysis at either FDR < 0.05 (Table S4) or FDR < 0.1 (Table S5). Models 
were adjusted as described above for the univariate associations. 

Sensitivity analysis were performed by additionally adjusting the linear regression models to BMI, 
circadian effects, and seasonal effects separately (Figure S3, Table S6). To capture the potentially 
non-linear effects of circadian rhythm and season on protein levels, both were treated as a 
categorical variables by grouping samples into 10 equal duration bins, with the largest sample size 
bin acting as the reference group in the model. To model circadian effects, the time of day of 
sample draw was split into 10 bins, each 73.5 minutes in length, with sample sizes ranging from 63 
to 417 (median: 274, interquartile range: 245–328) samples. Bin six, covering 2:10pm–3:25pm with 
417 samples, was used as the reference group. Samples with no time of blood draw recorded 
(n=480; 15%) were excluded when adjusting for circadian effects. To model seasonal effects, the 
date of blood draw was split into 10 bins, each 50 days in length, with sample sizes ranging from 
136 to 484 (median: 291, interquartile range: 283-381) samples. Bin three, covering the 23rd 
September 2012 – 13th November 2012 with 484 samples, was used as the reference group. 

Multivariable models were fit to estimate the independent associations of BMI on the T2D PRS and 
protein levels (Table S6) for each protein whose PRS to protein association was attenuated by BMI 
adjustment (nominal P-value > 0.05 after BMI adjustment; proteins INHBC, WFIKKN2, APOF, 
QPCTL, GHR, CCDC126, CFB, LCN1, and CYB5R3) to test whether BMI mediated the 
association between the T2D PRS and each protein. Models were adjusted for the same covariates 
as described above for the univariate PRS to protein associations. 

Associations with matched protein levels found on the Olink panels (Figure S2) were similarly 
performed by univariate regression of each protein on the PRS levels, adjusting for the first 10 
genotype PCs as covariates. As detailed above, protein levels were adjusted for additional 
covariates prior to normalisation. Proteins quantified on the Olink neurology panel (CPM, VCW2, 
GFRA1) were adjusted for age, sex, 11 genotype PCs, and season prior to inverse rank 
normalisation. Proteins quantified on the Olink cardiovascular III panel were adjusted for age, sex, 
season, sample measurement plate, and time from blood draw to sample processing prior to inverse 
rank normalisation. 

Genetic architecture of polygenic protein levels 
To investigate the contribution of single variant effects to polygenic protein level associations two 
parallel analyses were performed for each significant PRS to protein association.  

First, multivariable linear regression models were fit to estimate the independent contributions to 
the protein’s levels of the PRS levels and dosages of any pQTLs previously identified in 
INTERVAL by Sun B et al.15 (Figure S4A, Table S7). In total 28 of the 48 PRS associated 
proteins at FDR < 0.05, and 40 of the 72 PRS associated proteins at FDR < 0.1, included proteins 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2019. ; https://doi.org/10.1101/2019.12.14.876474doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.14.876474
http://creativecommons.org/licenses/by/4.0/


 12

with any pQTLs. Probabilistic dosages for each conditionally independent pQTL were extracted 
directly from the BGEN files using plink version 269.  

Second, for each PRS-protein association we refit the univariate linear regression models after re-
calculating PRS levels excluding any variants with potential pQTL effects (Figure S4B). Variants 
were excluded from the PRS if they were in cis with the protein (within 1MB of the corresponding 
gene’s transcription start site) or were within 1MB of any previously identified15 pQTLs. Variants 
within high complexity genomic regions (coordinates on GRCh37: chromosome 5 44,000,000–
51,500,000; chromosome 6 25,000,000–33,500,000; chromosome 8 8,000,000–12,000,000; and 
chromosome 11 45,000,000–57,000,000) were also excluded if they overlapped with the 1MB 
windows above. 

Mendelian randomisation analyses 
For each PRS to protein association with FDR < 0.05 in the PRS to proteome scan (Table 1), the 
protein was tested for a causal effect on the respective disease using two-sample Mendelian 
Randomisation provided (1) at least three independent genetic instruments could be identified for 
the test, (2) at least one instrument was a cis-pQTL, (3) the aptamer designed to target the protein 
did not have significant cross-reactivity with a different protein or isoform (PDE4D and APOE 
excluded; see Table S4 for details). In total 15 tests satisfied these criteria (Figure 3, Figure S5, 
Table S10, Table S9).  

Genetic instruments for each test were identified through a multi-step procedure designed to 
maximise the number of instruments. In summary, for each test we used (1) the conditionally 
independent cis- and trans-pQTLs previously identified in INTERVAL by Sun et al. 201815 for the 
protein, as well as (2) independent-by-linkage cis-pQTLs that did not meet genome-wide 
significance in that study. Genetic instruments were determine for each test separately to 
accommodate differences in overlap between the variants present in the pQTL and GWAS 
summary statistics. A detailed description of this procedure for each test follows. 

First, the candidate variant set was restricted to those present in both the pQTL and GWAS 
summary statistics. Variants with complementary alleles (A/T or G/C SNPs) whose effect allele 
could not be matched between studies due to strand ambiguity were excluded. Effect sizes and 
standard errors for each variant on each protein’s levels were obtained from the summary statistics 
published by Sun et al. 201815. Log odds and standard errors for each variant for CAD, CKD, and 
T2D were obtained from summary statistics published by Nelson et al. 201771, by Wuttke et al. 
201962, and by Mahajan et al. 201863. In all cases, we used the GWAS summary statistics for the 
samples of recent European ancestry rather than the GWAS summary statistics from trans-ancestry 
meta-analyses. For T2D, we used the BMI-adjusted GWAS summary statistics in order to avoid 
reduce horizontal pleiotropy in the causal estimates. 

Second, any conditionally independent pQTLs previously identified in INTERVAL for the protein 
by Sun et al. 201815 were then carried forward as candidate genetic instruments if present in the 
candidate variant set. If a pQTL could not be mapped to the GWAS summary statistics then the 
proxy variant in highest linkage disequilibrium was taken forward as a genetic instrument provided 
its r2 with the pQTL was greater than 0.8 and its distance to the pQTL was less than 250KB. Where 
there were multiple aptamers targeting the same protein the pQTL effects of the instrument were 
averaged across the aptamers. 
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Third, cis-pQTLs in linkage equilibrium that did not meet the trans-pQTL significance threshold in 
Sun et al. were identified in a step-forward procedure. To identify additional cis-pQTLs we applied 
a hierarchical multiple testing correction procedure that has been shown to control the false 
discovery rate at 5% in expression quantitative trait loci (eQTL) studies72,73 to the pQTL summary 
statistics from Sun et al. 201815. For each aptamer, P-values within each 1MB of any gene encoding 
the targeted protein or protein complex were first Bonferroni corrected for the number of tests 
within that cis window(s) to obtain locally corrected P-values. The smallest P-value was then taken 
for each of the 3,793 aptamers and FDR correction was applied to obtain a single globally corrected 
P-value for each aptamer. Globally corrected P-values were filtered at FDR < 0.05, then the 
maximum corresponding locally corrected P-value of these lead SNPs (Bonferroni < 0.0124) was 
used as a significance threshold to identify cis-pQTLs from all cis variants. Where there were 
multiple aptamers targeting the same protein we required the cis variant to be significant for both 
aptamers to be carried forward as a candidate genetic instrument. A step-forward procedure was 
then applied to identify a subset of independent by linkage cis-pQTLs to add to the candidate 
instrument set for each causal test. First, the set of additional cis-pQTLs were filtered to include 
only variants with unambiguous alleles that mapped to the GWAS summary statistics. Next, these 
were filtered to exclude any variants in linkage disequilibrium (r2 > 0.05) with any of the protein’s 
cis-pQTLs identified by Sun et al. already in the candidate instrument set. If any cis-pQTLs 
remained, the one with the smallest P-value was added to the candidate instrument set. The LD-
filtering and addition to the candidate instrument set of the remaining variant with the smallest P-
value was reapplied until no variants remained. Linkage disequilibrium between variants was 
calculated directly from the probabilistic genotype data in the BGEN files using QCTOOL version 
274 and LDstore75. 

After additional cis-pQTL mapping, 36 of the 48 PRS-associated proteins had any pQTLs and 24 of 
48 had at least one cis-pQTL. After excluding APOE and PDE4D and applying the step-forward 
linkage disequilibrium pruning approach to select independent instruments, there were 15 protein to 
disease pairs with at least one cis-pQTL and at least three pQTLs total, which met the criteria for 
downstream Mendelian Randomisation analysis. Table S9 details the genetic instruments for these 
15 tests (14 proteins; SHBG was tested for a causal effect on both CAD and T2D). 

Estimates of the causal effects of protein levels on log odds of disease for the 15 protein to disease 
pairs were calculated by five Mendelian randomisation methods using the MendelianRandomization 
R package27 (Table S10). (1) The inverse-variance weighted (IVW) estimator, which takes the 
average causal estimate across all instruments: the average of their ratios of disease log odds over 
effect on protein levels multiplied by their standard errors76. It assumes all instruments are valid: the 
variant is associated with both the protein and disease, and that the variant has only a direct effect 
on that protein’s levels; it can only effect the disease by modifying the protein’s levels76. (2) The 
simple median estimator takes the median causal effect across instruments and is robust to outliers 
and up to 50% invalid instruments77. (3) The weighted median estimator, which weights each 
instrument by its inverse variance when calculating the median77. (4) The weighted mode estimator, 
which estimates the average causal effect from the largest set of instruments with consistent causal 
estimates78. (5) The MR-Egger estimator which detects and corrects for bias arising from horizontal 
pleiotropy; where instruments are affecting other risk factors that may explain their observed 
association with the disease79. To evaluate and summarise evidence for causal effects we took the 
median causal effect and P-value across all five estimators. We considered there to be significant 
evidence of a causal effect (Figure 3) if the median P-value across all the methods was < 0.05 and 
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there was no significant evidence of horizontal pleiotropy (P > 0.05 for the MR-Egger intercept 
term). 

We excluded a causal effect for GRN on CAD, as the significant causal estimates for the inverse 
variance weighted, weighted median, weighted mode, and MR-Egger methods (Table S10) were 
driven by a single outlier trans-pQTL, rs646776. This is a well-known trans-pQTL for GRN at the 
SORT1 locus which modifies CAD risk through altering plasma low density lipoprotein (LDL) 
cholesterol levels by regulating hepatic SORT1 expression80,81. The lack of support for a causal 
effect from GRN’s cis-pQTL (Table S9, Figure S5) along with the significant MR-Egger intercept 
(Table S10), suggests GRN lies downstream of this process, but not on the causal pathway to CAD. 

Tissue specific gene expression to cardiometabolic trait associations in mouse reference datasets 
Mouse orthologs for the genes encoding the 48 PRS associated proteins were identified using the 
Mouse Genome Informatics (MGI) database30 (http://www.informatics.jax.org/). In total, 45 of the 
48 proteins had mouse orthologs (Table S11). Correlations between the tissue-specific expression 
of these proteins and cardiometabolic traits in mice were explored in two publicly available mouse 
datasets: (1) the hybrid mouse diversity panel (Figure 4A), and (2) an F2 cross of two common 
mouse models of cardiometabolic disease (Figure 4B).  

The hybrid mouse diversity panel (Figure 4A) is a collection of >100 genetically characterised 
inbred mouse strains (median: n=6 per strain) that in this study were fed a standard chow diet and 
sacrificed at 16 weeks of age28. Gene to trait correlations were searched for and downloaded from 
the publicly available systems genetics resource82 (https://systems.genetics.ucla.edu). Gene to trait 
biweight midcorrelation coefficients and P-values were publicly available for gene expression data 
from adipose and liver tissues where the P-value was < 0.05 and the absolute value of the 
correlation coefficient was > 0.1.  

Data from the panel of F2 crosses between C57BL/6J ApoE-/- and C3H/HeJ (Figure 4B) mice was 
acquired from a publicly available dataset spanning 334 individual offspring that were fed a western 
diet from 8 weeks to 16 weeks of age, and sacrificed at 24 weeks of age29. Quality controlled and 
normalised phenotype data83–85 and gene expression data29 from adipose, liver, and muscle tissues 
were obtained from Sage BioNetworks at https://www.synapse.org/#!Synapse:syn4497. We 
calculated biweight midcorrelation coefficients and P-values between gene expression levels and 
selected cardiometabolic traits using the WGCNA R package86, filtering out those with P ≥ 0.05 or 
absolute correlation coefficient ≤ 0.01 for consistency with the data available in HMDP. 

In the heatmap (Figure 4) correlation coefficients and P-values were averaged where there were 
multiple microarray transcripts for a single gene (Table S11), with missing values (correlation 
coefficient ≤ 0.01 or P ≥ 0.05) given a correlation coefficient of 0 and P-value of 0.525. 

Tissue-specific gene expression following dietary intervention in C57BL/6J mice 
Animal studies were approved by the Alfred Research Alliance Animal Ethics Committee. 
C57BL/6J mice (Jackson Laboratories) were bred at the Precinct Animal Centre in Melbourne, 
Australia, and randomly allocated by cage to three groups. Each group was either fed (1) a chow 
diet, (2) a high fat diet (SF04-001, Specialty Feeds, WA, Australia), or (3) a Western diet (SF00-
219, Specialty Feeds, WA, Australia) from approximately 8 weeks of age for 12 weeks (Figure S6). 
Mice had access to food and water ad libitum and were housed at 22°C on a 12 hour light/dark 
cycle. Cages were changed weekly. At study end, mice were fasted for 4-6 hours and blood and 
tissues collected.  
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RNA was isolated from tissue as previously described87. Mouse tissues were homogenised in 
RNAzol, and RNA isolated using chloroform followed by isopropanol precipitation. Pellets were 
washed 2-3 times using 75% ethanol and resuspended in molecular grade water. cDNA was 
generated from RNA using M-MLV reverse transcriptase (Invitrogen) according to the 
manufacturer’s instructions. qPCR was performed as described previously88. Briefly, qPCR was 
carried out on 10ng of cDNA using iTaq Universal SYBR Green Supermix (BioRad) and performed 
on a QuantStudio 7 Flex (ThermoFisher Scientific) real time detection system. mRNA expression is 
reported relative to control (chow diet) and quantified using the ΔΔCt after standardisation to a 
house keeping gene; Rplp0 expression in muscle (tibialis anterior) and liver, and cyclophilin A 
(Ppia) in subcutaneous white adipose tissue. Primer sequences are available upon request. 

One-way analysis of variance (anova) testing was performed to test for difference in mean 
expression between dietary intervention groups for each gene and tissue. Specifically, for the 
expression of each gene in each tissue, the one-way anova tested for a departure from the null 
hypothesis of mean(chow) = mean(high fat diet) = mean(western diet). A log2 transform was 
applied to the expression (ΔΔCt) of each gene when fitting the anova model. 
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Table Captions 

Table 1: Plasma proteins significantly associated with PRSs for cardiometabolic disease. PRS 
to protein associations were considered significant where their false discovery rate (FDR) adjusted 
P-value < 0.05 in linear regression model adjusting for age, sex, 10 genotype principal components 
(PCs), and technical covariates (Methods). Protein: proteins are labelled by their encoding gene. 
The entry for PDE4D/PDE4A indicates the association is with the combined levels of both proteins 
PDE4D and PDE4A as the associated aptamer binds both proteins with similar affinity (see Table 
S4 for details). UniProt: the UniProtKB identifier for the protein. Full Protein Name: the full name 
of the protein as listed on UniProt. Beta: standard deviation change in the protein’s levels associated 
with a one standard deviation increase in the respective PRS levels. 95% CI: 95% confidence 
interval of the beta. Pval: P-value in the linear regression model. FDR: false discovery-rate adjusted 
p-value across all proteins. Beta coefficients, 95% confidence intervals, and P-values were averaged 
where there were multiple aptamers measuring the protein’s levels (GPD1, IGFBP1, IGFBP2, 
SHBG, and WFIKKN2). Literature: summary of any literature we could identify relating to the 
association between the protein and the PRS disease. A “-“ indicates we could not identify any 
relevant prior literature for the association. Further details for these proteins and their respective 
aptamers are provided in Table S4. PRS to protein associations passing suggestive FDR 
significance (FDR < 0.1) are detailed in Table S5. Summary statistics for all PRS to protein and 
PRS to aptamer associations are provided in Table S3.  

Table 2: Drug target information for proteins associated with PRSs for cardiometabolic 
diseases. PRS associated proteins targeted by any drug or compound listed in DrugBank 
(https://www.drugbank.ca/). Protein: protein associated with the PRS in the table subheading. 
Proteins are labelled by their encoding gene. #D: total number of drugs or compounds which bind to 
or otherwise interact with the listed protein. #A: number of those drugs that are or have been 
approved for use in any jurisdiction (in the “approved” but not “withdrawn” group in DrugBank). 
Summary of approved compound usage: summary of diseases the compounds targeting the protein 
have been approved to treat, or any other use they have been approved for. RT: are any drugs 
targeting the protein approved or undergoing clinical trials for the disease associated with the PRS 
(“yes” or “no”). Table S12 provides details for each of the 184 drugs or compounds targeting any 
PRS associated protein.  

Table 3: Drugs whose effects on proteins were consistent with PRS associations. Drugs that 
inhibit the function or levels (inhibitors and antagonists) of proteins whose levels were positively 
associated with PRS levels, and drugs that increase the function or levels (inducers and agonists) of 
proteins whose levels were inversely associated with PRS levels. Drug: the name of the drug. 
Phase: maximum phase the drug has reached in clinical trials or whether the drug is commercially 
available on the market. Indications: conditions the drug is used to treat. Target: the PRS associated 
protein to which the drug binds or interacts with. A “*” next to the protein name indicates the drugs 
pharmacological effect on the indicated disease is partially or wholly due to its effect on the PRS 
associated protein. Effect: the drug’s effect on the PRS associated protein. PRS RT: maximum 
phase the drag has reached in clinical trials or whether the drug is commercially available on the 
market for the disease associated with the PRS. A “-“ indicates no clinical trials could be identified 
for the disease associated with the PRS. NCT ID: identifier of the relevant clinical trial on the 
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National Institute of Health (NIH)’s National Library of Medicine (NLM)’s Clinical Trials database 
(https://clinicaltrials.gov).
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Tables 

Table 1: Plasma proteins significantly associated with PRSs for cardiometabolic disease.  

Chronic Kidney Disease PRS 
Protein UniProt Full protein name Beta 95% CI Pval FDR Literature 
FTMT Q8N4E7 Ferritin, mitochondrial -0.12 [-0.15, -0.078] 4×10-9 1×10-5 - 
VWC2 Q2TAL6 Brorin 0.096 [0.057, 0.13] 1×10-6 0.001 Nearby GWAS signal89 
B2M P61769 Beta-2-microglobulin 0.096 [0.057, 0.13] 1×10-6 0.001 Disease biomarker20 
CST3 P01034 Cystatin-C 0.090 [0.051, 0.13] 5×10-6 0.004 Disease biomarker20,21 
PRSS3 P35030 Trypsin-3 0.083 [0.044, 0.12] 3×10-5 0.019 -  
PDE4D/ 
PDE4A  

Q08499/ 
P27815 

cAMP-specific 3',5'-cyclic phosphodiesterase 
4D / and 4A 

-0.081 [-0.12, -0.042] 4×10-5 0.021 Some association evidence48 / - 

UST Q9Y2C2 Uronyl 2-sulfotransferase -0.080 [-0.12, -0.041] 5×10-5 0.024 - 
Coronary Artery Disease PRS 
CEI Q86SI9 Protein CEI 0.095 [0.059, 0.13] 2×10-7 7×10-4 - 
GRN P28799 Granulins 0.085 [0.049, 0.12] 3×10-6 0.004 Experimental support46 
APOE P02649 Apolipoprotein E 0.084 [0.049, 0.12] 4×10-6 0.004 Well-known association22,23 
CRYZL1 O95825 Quinone oxidoreductase-like protein 1 0.084 [0.048, 0.12] 5×10-6 0.004 - 
TP53I11 O14683 Tumor protein p53-inducible protein 11 0.083 [0.047, 0.12] 6×10-6 0.004 - 
GGT2 P36268 Inactive glutathione hydrolase 2 0.082 [0.046, 0.12] 8×10-6 0.005 Well-known association90,91 
SHBG P04278 Sex hormone-binding globulin -0.079 [-0.11, -0.043] 2×10-5 0.008 Well-known association92–94 
DUSP26 Q9BV47 Dual specificity protein phosphatase 26 0.077 [0.041, 0.11] 3×10-5 0.011 - 
PCDHB10 Q9UN67 Protocadherin beta-10 0.076 [0.040, 0.11] 4×10-5 0.014 - 
HBQ1 P09105 Hemoglobin subunit theta-1 0.072 [0.037, 0.11] 8×10-5 0.027 - 
NPTX2 P47972 Neuronal pentraxin-2 0.070 [0.035, 0.11] 1×10-4 0.046 - 
Type 2 Diabetes PRS 
SHBG P04278 Sex hormone-binding globulin -0.11 [-0.14, -0.073] 1×10-9 4×10-6 Causal role24 
CPM P14384 Carboxypeptidase M 0.095 [0.061, 0.13] 7×10-8 1×10-4 - 
IGFBP2 P18065 Insulin-like growth factor-binding protein 2 -0.097 [-0.13, -0.062] 2×10-7 2×10-4 - 

MUSK O15146 
Muscle, skeletal receptor tyrosine-protein 
kinase 

0.090 [0.055, 0.12] 4×10-7 3×10-4 - 

PRSS1 P07477 Trypsin-1 -0.089 [-0.12, -0.054] 7×10-7 5×10-4 - 
CFH P08603 Complement factor H 0.087 [0.052, 0.12] 1×10-6 6×10-4 Relevant pathway95,96 
CFI P05156 Complement factor I 0.084 [0.049, 0.12] 3×10-6 0.001 Relevant pathway95,96 
PRCP P42785 Lysosomal Pro-X carboxypeptidase 0.079 [0.045, 0.11] 6×10-6 0.003 Some association evidence47 
PTPRU Q92729 Receptor-type tyrosine-protein phosphatase U 0.079 [0.044, 0.11] 9×10-6 0.004 - 
ACY1 Q03154 Aminoacylase-1 0.077 [0.043, 0.11] 1×10-5 0.004 Experimental support49 
ADIPOQ Q15848 Adiponectin -0.077 [-0.11, -0.042] 2×10-5 0.005 Well-known association97 
CHGB P05060 Secretogranin-1 -0.074 [-0.11, -0.040] 3×10-5 0.007 Relevant pathway98 
IGFBP1 P08833 Insulin-like growth factor-binding protein 1 -0.074 [-0.11, -0.039] 4×10-5 0.011 Experimental support50 
GHR P10912 Growth hormone receptor 0.071 [0.036, 0.11] 6×10-5 0.016 Some association evidence38 
FAH P16930 Fumarylacetoacetase 0.070 [0.035, 0.11] 8×10-5 0.019 Nearby GWAS signal99 
GFRA1 P56159 GDNF family receptor alpha-1 0.069 [0.034, 0.10] 1×10-4 0.020 - 

WFIKKN2 Q8TEU8 
WAP, Kazal, immunoglobulin, Kunitz and 
NTR domain-containing protein 2 -0.070 [-0.10, -0.035] 1×10-4 0.020 - 

FBP1 P09467 Fructose-1,6-bisphosphatase 1 0.069 [0.034, 0.10] 1×10-4 0.020 Well-known association100 
TIMP4 Q99727 Metalloproteinase inhibitor 4 -0.069 [-0.10, -0.034] 1×10-4 0.020 Nearby GWAS signal99,101 
ADH4 P08319 Alcohol dehydrogenase 4 0.069 [0.034, 0.10] 1×10-4 0.020 - 
INHBC P55103 Inhibin beta C chain 0.068 [0.033, 0.10] 1×10-4 0.022 - 
FAM20A Q96MK3 Pseudokinase FAM20A 0.067 [0.033, 0.10] 2×10-4 0.024 - 

ST3GAL2 Q16842 CMP-N-acetylneuraminate-beta-
galactosamide-alpha-2,3-sialyltransferase 2 

0.067 [0.032, 0.10] 2×10-4 0.027 Experimental support102 

APOF Q13790 Apolipoprotein F -0.066 [-0.10, -0.031] 2×10-4 0.027 - 

RIDA P52758 
2-iminobutanoate/2-iminopropanoate 
deaminase 0.066 [0.031, 0.10] 2×10-4 0.027 Some association evidence103 

CCDC126 Q96EE4 Coiled-coil domain-containing protein 126 -0.066 [-0.10, -0.031] 2×10-4 0.027 Nearby GWAS signal104 
HS6ST2 Q96MM7 Heparan-sulfate 6-O-sulfotransferase 2 -0.066 [-0.10, -0.031] 2×10-4 0.027 - 

GPD1 P21695 
Glycerol-3-phosphate dehydrogenase 
[NAD(+)], cytoplasmic 

0.067 [0.032, 0.10] 3×10-4 0.033 - 

MSMP Q1L6U9 Prostate-associated microseminoprotein -0.065 [-0.10, -0.030] 3×10-4 0.033 - 

QPCTL Q9NXS2 Glutaminyl-peptide cyclotransferase-like 
protein 

-0.065 [-0.10, -0.030] 3×10-4 0.033 Nearby GWAS signal105,106 

PPP2R3A Q06190 
Serine/threonine-protein phosphatase 2A 
regulatory subunit B'' subunit alpha 

0.064 [0.029, 0.099] 4×10-4 0.040 - 
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Table 2: Drug target information for proteins associated with PRSs for cardiometabolic 
diseases  

Chronic Kidney Disease PRS 
Protein UniProt #D #A Summary of approved compound usage RT 
B2M P61769 3 1 Nutritional deficiencies. No 
PDE4D Q08499 24 6 Respiratory diseases, skin conditions, hypertension. Yes 
PRSS3 P35030 8 0 - No 
Coronary Artery Disease PRS 
APOE P02649 4 4 Nutritional deficiencies. Yes 

SHBG P04278 28 18 
Fertility and reproductive treatments, cancers, mental health, developmental 
disorders, hypertension, high cholesterol.  

Yes 

Type 2 Diabetes PRS 
ACY1 Q03154 3 3 Nutritional deficiencies, adipose atrophy, cancer, overdose. Yes 
ADH4 P08319 1 0 - No 
CFH P08603 4 4 Nutritional deficiencies. Yes 
CFI P05156 4 4 Nutritional deficiencies. Yes 
FAH P16930 3 0 - No 
FBP1 P09467 11 1 Nutritional deficiencies, asthma. Yes 
GHR P10912 3 2 Acromegaly, dwarfism, idiopathic short stature, HIV weight loss. Yes 
GPD1 P21695 2 2 Glycaemic control, type 2 diabetes. Yes 
MUSK O15146 1 1 Chronic immune thrombocytopenia No 
PRSS1 P07477 99 0 - No 
RIDA P52758 1 1 Food preservative. No 

SHBG P04278 28 18 
Fertility and reproductive treatments, cancers, mental health, developmental 
disorders, hypertension, high cholesterol.  

Yes 

 

Table 3: Drugs whose effects on proteins were consistent with PRS associations 

Chronic Kidney Disease PRS 

Drug Phase Indications Target Effect PRS RT NCT ID 

Iloprost Market 
Pulmonary arterial 
hypertension 

PDE4A, 
PDE4D 

Inducer - - 

Type 2 Diabetes PRS 

Metformin Market Type 2 diabetes GPD1 Inhibitor Market - 

Pegvisomant Market Acromegaly GHR* Antagonist II NCT02023918 

MB-07803 II Type 2 diabetes FBP1 Antagonist II NCT00458016 

Managlinat dialanetil II Type 2 diabetes FBP1 Antagonist II NCT00290940 

Adenosine phosphate Market Dietary supplement FBP1 Antagonist - - 

Fostamatinib Market 
Immune thrombocytopenic 
purpura MUSK Inhibitor - - 
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Figure Captions 

Figure 1: Study Overview. A) Study question B) Study design. 

Figure 2: Plasma proteins associated with polygenic risk scores for cardiometabolic diseases. 
A) Quantile-Quantile plots of association P-values across all 3,442 proteins for each PRS 
(Methods). Each panel compares the distribution of observed P-values (y-axes) to the distribution 
of expected P-values under the null-hypothesis for all tests (x-axes) on a –log10 scale. The top five 
proteins for each PRS are labelled. B) Heatmaps showing the 48 proteins whose levels were 
significantly associated (FDR < 0.05) with at least one PRS. Each heatmap cell is coloured by the 
beta-coefficient in a linear regression of the corresponding protein levels on the corresponding PRS 
levels, which indicates the standard deviation change in the protein’s level associated with a 
standard deviation increase in the PRS levels. Proteins are ordered by PRS from left to right by 
decreasing association magnitude, positive and negative PRS to protein associations split into 
separate heatmaps. A and B) Associations were adjusted for age, sex, 10 genotype PCs, sample 
measurement batch, and time between blood draw and sample processing (Methods). Associations 
were averaged where there were multiple aptamers measuring the same protein (GPD1, IGFBP2, 
IGFBP1, WFIKKN2, and SHBG in panel B). Association summary statistics across all proteins and 
aptamers for each PRS are given in Table S3. Details for the significant PRS to protein associations 
are given in Table 1 and Table S4. PRS to protein associations with FDR < 0.1 are detailed in 
Table S5.  

Figure 3: Causal proteins for disease suggested by Mendelian randomisation analysis. Dose 
response curves show the estimated causal effect of changes in protein levels on disease risk for 
each given protein. Proteins shown are those associated with any PRS that also had significant 
evidence of a causal effect in Mendelian randomisation analysis (median p-value < 0.05 across five 
causal estimators, Methods, Table S10). Points on each dose response curve show the standard 
deviation (SD) change in protein levels (x-axes) and odds ratio for T2D (y-axes) associated with 
each copy of the minor allele of each genetic instrument used to estimate the causal effect 
(Methods). Horizontal and vertical bars centred on each point show the respective standard errors. 
Associated changes in protein levels were obtained from the pQTL summary statistics derived in 
INTERVAL and published by Sun et al. 2018. Associated SD changes in protein levels were 
averaged where there were multiple aptamers measuring the same protein (SHBG, WFIKKN2). 
Associated odds ratios for T2D (adjusted for BMI) for each genetic instrument were obtained from 
GWAS summary statistics published by Mahajan et al. 2018. Genetic instruments for each test are 
detailed in Table S9 and their selection is detailed in the Methods. All genetic instruments for these 
proteins were cis-pQTLs. The orange dashed line and yellow ribbon show the dose response curve 
and 95% confidence interval respectively of the median causal estimate across five Mendelian 
randomisation methods, each which each make different assumptions about instrument validity and 
perform well under different conditions (Methods). The slope of the orange dashed line 
corresponds to the estimated causal effect: the odds ratio conferred per standard deviation change in 
the protein levels. This median odds ratio and the median p-value across the five Mendelian 
randomisation methods are annotated on each plot. For SHBG and CFI the odds ratio is given for a 
standard deviation decrease in protein levels, while for WFIKKN2 the odds ratio is given for a 
standard deviation increase. Figure S5 shows the dose-response curves for all 15 tested protein to 
disease pairs with all causal estimates for all five MR methods. 
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Figure 4: Tissue-specific gene expression and cardiometabolic traits in mice. Heatmaps of the 
biweight midcorrelation coefficients between tissue-specific expression of PRS-associated proteins 
with selected cardiometabolic traits in the (A) the hybrid mouse diversity panel: 706 male mice 
from 100 well-characterised inbred mouse strains (median n=6 per strain) fed a standard chow diet 
and (B) a mouse model of cardiometabolic disease; 334 mice from an F2 cross of the inbred ApoE-/- 
C57BL/6J and C3H/HeJ strains, fed a western diet to enrich for differentiation of cardiovascular 
disease traits. In both A and B cells are coloured where the correlation P-value < 0.05 and the 
absolute biweight midcorrelation coefficient > 0.1. Proteins are labelled by their corresponding 
mouse ortholog (detailed in Table S11). Reference heatmaps are given above the x axis labels in 
each panel showing which PRS levels each protein was significantly correlated with in INTERVAL 
as well as the direction of this correlation (Table 1, Figure 2). Proteins are ordered from left to 
right within each PRS group by decreasing order of average correlation magnitude across traits and 
datasets. Protein names are in bold where they have been subject of dietary intervention 
experimental follow-up (Figure S6). 
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Figures 

Figure 1: Study Overview 
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Figure 2: Plasma proteins associated with polygenic risk scores for cardiometabolic diseases.  
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Figure 3: Causal proteins for disease suggested by Mendelian randomisation analysis.  
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Figure 4: Tissue-specific gene expression and cardiometabolic traits in mice  

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2019. ; https://doi.org/10.1101/2019.12.14.876474doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.14.876474
http://creativecommons.org/licenses/by/4.0/

