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Abstract

Genome-wide measurements of transcriptional activity in bacteria indicate that the tran-
scription of successive genes is strongly correlated beyond the scale of operons. However, the
underlying mechanisms are poorly characterized and a systematic method for identifying local
groups of co-transcribed genes is lacking. Here, we identify supra-operonic segments of consec-
utive genes by comparing gene proximity in thousands of bacterial genomes. Structurally, the
segments are contained within micro-domains delineated by known nucleoid-associated pro-
teins, and they contain operons with specific relative orientations. Functionally, the operons
within a same segment are highly co-transcribed, even in the absence of regulatory factors at
their promoter regions. Hence, operons with no common regulatory factor can be co-regulated
if they share a regulatory factor at the level of segments. To rationalize these findings, we
put forward the hypothesis supported by RNA-seq data that facilitated co-transcription, the
feedback of transcription into itself involving only DNA and RNA-polymerases, may represent
both an evolutionary primitive and a functionally primary mode of gene regulation.
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Introduction

Differential gene expression underlies much of the dynamics of living cells. Describing globally gene co-
expression, understanding its relation to genome organization, and explaining the mechanisms behind it are
fundamental challenges in biology (Browning and Busby, 2004). These challenges have been met to a signifi-
cant extent. Genome-wide measurements of transcriptional activity are available for different cells in different
conditions, and many mechanisms are known which, in principle, can account for the observations (Browning
and Busby, 2004). Yet, as reviewed below, the decomposition of bacterial genomes into operons and their
regulation by sigma factors (SFs) and transcription factors (TFs), often presented as a first-order description
of gene regulation in bacteria, fail to account for prominent features of gene expression. The presence of
other regulatory factors is indeed well-recognized. These include small metabolites (Browning and Busby,
2004), small RNAs (Waters and Storz, 2009), transcriptional attenuators (Henkin and Yanofsky, 2002),
global physiological effects (Klumpp et al , 2009; Berthoumieux et al , 2013) and topological properties of
chromosomes (Travers and Muskhelishvili, 2005). Nevertheless, current knowledge does not allow to infer
from these mechanisms a systematic decomposition of genomes into units of regulation.

Besides the conceptual problem of defining units, or modules, in a context where most entities are coupled
at some level, an essential difficulty is to turn the informal notion of “functional significance" into operational
methods and definitions. This notion ultimately refers to a measure of “fitness", which is hardly accessible
experimentally, given our poor knowledge of the environmental conditions under which this fitness should be
evaluated. A systematic, albeit indirect approach is nevertheless possible, which uses evolutionary conserva-
tion across species as a yardstick. This approach relies on the principle that features that are shared between
phylogenetically distant species reflect strong selective pressures and, therefore, functional significance. Ex-
tended to an analysis of co-evolution, this principle can reveal functionally important relationships, as now
illustrated in a number of diverse problems (Junier, 2014). But although this approach could, in principle,
be applied to an analysis of gene co-expression, its application is precluded by the very limited number of
species for which extensive gene expression data is available.

Here, following several previous studies (Lathe et al , 2000; Tamames, 2001; Rogozin et al , 2002; Snel
et al , 2002; Rocha, 2005; Wright et al , 2007; Fang et al , 2008), we show that synteny, the conservation
of genomic contexts between phylogenetically distant bacteria, is a powerful tool which not only reveals
new regulatory units but also suggests the mechanisms behind their cohesion. By systematically analyzing
the conservation of proximity between orthologous genes in ⇠ 1000 annotated bacterial genomes, we thus
define “synteny segments" as groups of consecutive genes that are co-localized both in a particular bacterial
genome and in a significant number of other, phylogenetically distant genomes. We show in the context
of E. coli that these segments correspond to supra-operonic units with a number of remarkable structural
and regulatory properties. These findings lead us to hypothesize that the most evolutionarily primitive and
functionally primary modes of gene co-expression may not require any molecular factor besides a DNA and
RNA polymerases: “facilitated co-transcription”, the transcription of a gene induced by the transcription of
the gene located immediately upstream, sharing or not the same orientation, may be at the evolutionary
origin of gene regulation and may still contribute prominently to it in current organisms. This hypothesis
is supported by available RNA-seq data, leads to experimentally testable predictions, and has implications
beyond bacterial genomes.

Results

Multi-scale genomic organization of bacterial gene expression

Microarray data provide a global view of gene expression in a given bacterial strain (Selinger et al , 2000;
Hughes et al , 2000; Kapranov et al , 2007). This data is available for E. coli in the form of a compendium
of 466 microarray expression profiles collected under a variety of conditions but obtained from a common
platform and normalized uniformly (Faith et al , 2007). From this data-set, represented in Figure 1, a degree
C

ij

of co-expression between any two genes i and j can be defined, which quantifies the similarity of their
profiles of activity (Alter et al , 2000): C

ij

is zero in absence of correlation, positive and at most one when the
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two genes are expressed in similar conditions, and negative when they are expressed in different conditions
(Materials and methods). Co-expression values are shown for all pairs of genes in Figure 1B, revealing a
multi-scale organization of gene co-expression (Jeong et al , 2004; Carpentier et al , 2005): at the shortest
genomic scales, of the order of 10 kilo-bases (kb, the scale of a single gene), small clusters of positively
correlated genes are apparent (Figure 1C), while at the largest scales, of the order of 1 Mb (1/4 of the
genome length), a global pattern of anti-correlation identifies two large clusters (Figure 1D). These features
are conveniently recapitulated in a co-expression function �(d) (Jeong et al , 2004; Carpentier et al , 2005),
defined here as the mean co-expression C

ij

between pairs of genes separated by a given genomic distance
d: as shown in Figure 1E (black points), �(d) presents a first decrease up to d ⇠ 10 kb, which reflects the
presence of the small correlated clusters, followed by a long plateau and a second decrease around d ⇠ 1 Mb,
which reflects the globally anti-correlated clusters.

The multi-scale organization of gene co-expression is to be related to two other hierarchical organizations:
the hierarchy of regulatory mechanisms, and the hierarchy of chromosomal structures. At the bottom of these
hierarchies, just above the level of genes, are the operons, which are disjoint sets of consecutive genes tran-
scribed into a single mRNA (hereafter, we also call “operon” a gene that is transcribed in isolation); operons
may also contain alternative transcription start sites (Cho et al , 2009) or transcriptional attenuators (Henkin
and Yanofsky, 2002), implying that operonic genes can be differentially regulated (Guell et al , 2009). Beyond
operons, several types of DNA-binding proteins coordinate gene expression. Sequence specific regulatory
factors, including sigma factors (SFs) and transcription factors (TFs), enhance or repress specifically the
transcription of operons (Browning and Busby, 2004). Nucleoid associated proteins (NAPs) (Thanbichler
et al , 2005), similar to TFs but binding to a large number of non-promoter sites on the DNA, also jointly
contribute to the regulation of gene expression and the structuration of chromosomes (Dillon and Dorman,
2010). At a larger scale, genes within specific genomic domains going from 10 kb to several hundreds kb are
found to remain close in space (Niki et al , 2000; Valens et al , 2004; Le et al , 2013), suggesting the existence
of micro-domains of superhelicity (Postow et al , 2004) that either fold into larger structures (Valens et al ,
2004) or are themselves extended (Le et al , 2013). In all cases, the dynamics of theses structures depends on
the cell cycle and on the growth rate of the bacterium (Kleckner et al , 2014); this is the case, in particular,
for the two globally anti-correlated clusters apparent in Figure 1D (Supp. Figure S1; Supp. Materials and
methods) (Sobetzko et al , 2012; Shoval et al , 2012).

To what extent can we explain the patterns of gene co-expressions seen in Figure 1 by these structures
and mechanisms? First, the presence of operons is not sufficient to account for the short-scale patterns
of co-expression whose characteristic length scale is ⇠ 10 kb: considering only pairs of genes in different
operons in the computation of �(d) does reduce the degree of co-expression at very short scale, but does
not suppress their excess up to 10 kb (Figure 1G, blue dots). The characteristic length scale of 10 kb is,
conversely, consistent with the association of these pairs of genes with supercoiled micro-domains (Postow
et al , 2004). But even though supercoiling is known to directly affect gene expression (Peter et al , 2004),
supercoiled micro-domains are too poorly characterized to be precisely associated with the patterns of gene
expression seen in Figure 1C.

On the other hand, we observe that the main SF in E. coli, �70, is associated with the global pattern
of anti-correlation (Supp. Figure S1E), consistently with the known fact that most housekeeping genes ex-
pressed during exponential growth are transcribed by RNA polymerase with �

70 as subunit (Gruber and
Gross, 2003). Yet, retaining only the operons known to be transcribed with �

70, and with �

70 only, does not
suppress the anti-correlations (Supp. Figure S2A). A similar conclusion is reached when considering Fis, a
NAP whose activity is also associated with different phases of the cell growth (Travers and Muskhelishvili,
2005) (Supp. Figure S1E). More strikingly, ignoring all genes known to be regulated by a SF or a TF leaves
intact the two patterns of short and long-scale correlations (Figure 1E, red dots). In fact, the majority of
correlated pairs of genes do not share a common TF or common SF (Supp. Figure S2B). The regulation of
operons by SFs or TFs do not, therefore, explain the basic patterns observed in Figure 1.

Several factors beyond DNA binding proteins and local chromosomal conformations are known to affect
transcription, including among several others small RNAs (Waters and Storz, 2009) and global physiological
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factors, which may for instance affect the concentration of available RNA-polymerases (Klumpp et al , 2009;
Berthoumieux et al , 2013). None of these factors is, however, known to be associated with a characteristic
length scale, and there is currently no evidence of their involvement in the chromosomal structuring of gene
expression.

Evolutionarily conserved units of synteny

Irrespectively of the nature of the underlying mechanisms, the presence of gene expression patterns that are
not associated with currently known decomposition of bacterial genomes raises a simple question: How to
define regulatory units beyond operons? An indirect approach to this problem is to perform an in-depth
analysis of the expression data represented in Figure 1A (Ma et al , 2013). However, high correlations may not
always reflect high contribution to the fitness of the bacterium and, conversely, moderate or low correlation
may underly functionally significant relationships. Another approach consists in analyzing more directly
the functional relationships by performing single or double gene knock-outs (Nichols et al , 2011). These
perturbations are, however, too severe to identify novel regulatory units. Milder perturbations have been
applied which, for instance, probe the incidence of the relative positions of genes (Block et al , 2012; Kuhlman
and Cox, 2012; Bryant et al , 2015), but these experiments have not yet been performed at a scale that would
permit a genome-wide analysis of regulatory properties.

Definition of synteny segments

A generic approach to circumvent these difficulties is to rely on the principle of evolutionary conservation, i.e.,
to perform a comparison across multiple species with the premise that features conserved in phylogenetically
distant species are under selective pressure. In absence of transcriptional data comparable to that of E. coli
for most other bacterial strains, we apply here this approach to a systematic analysis of the conservation of
relative distances between orthologous genes in different species, known as synteny properties (Lathe et al ,
2000; Tamames, 2001; Rogozin et al , 2002; Snel et al , 2002; Rocha, 2005; Wright et al , 2007; Fang et al , 2008).

The recourse to synteny is motivated by the observation that short relative distances are under selection
for co-expression (Rocha, 2005), and that gene pairs under selection extend beyond operons. Pairs of proxi-
mal genes (d < 10 kb) whose expression is strongly correlated in E. coli, including pairs of genes in distinct
operons, are indeed more likely to be proximal in other phylogenetically distant bacterial strains (Supp.
Figure S3). In other words, synteny can serve as a reporter of co-transcription and, hence, as a tool to infer
local regulatory units beyond the operon scale. We thus analyzed, at a genome-wide level, the conservation
of gene proximity by comparing the organizations of ⇠ 1000 complete bacterial genomes (Materials and
methods).

The first step in this analysis consists in identifying pairs of orthologous genes proximal in a significant
number of bacterial genomes. Graphically, these pairs form a network, where the nodes are genes and the
links represent conserved proximity between two genes (Supp. Figure S4). To analyze this network in the
context of a given genome, here E. coli, we focus on the links that represent proximal genes in the particular
genome. The resulting sub-network thus reports the pairs of genes that are both proximal in the particular
genome and in a significant number of other bacterial genomes. The second step consists in defining the
largest groups of genes that are both proximal in E. coli and in a significant number of other bacterial
genomes, which correspond to the maximal sets of fully inter-connected nodes in the sub-network (Fig-
ure 2A). The genes in these groups are not necessarily consecutive in the genome of interest. We therefore
finally define “synteny segments" as the segments of consecutive genes that are contained in these groups.
Note that this definition does not use any information relative to the order or the orientation of the genes
along the chromosome.

Our definition of synteny segments is grounded in simple statistical principles applied to the comparison
of chromosomal organizations between diverse bacterial strains. The biological relevance of these segments
can be judged independently of these principles, by comparing them to structural and regulatory properties
not involved in their definition.
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Synteny segments and the hierarchical structuring of chromosomes

First, we note that the 782 synteny segments found in E. coli (File1.txt) are distributed nearly uniformly
along its genome (Supp. Figure S5), with a size distribution that follows that of its multi-gene operons (Supp.
Figure S6). The same distribution is observed in vastly different genomes, suggesting that a common mech-
anism may be responsible for their formation (Junier and Rivoire, 2013). Next, the segments fit remarkably
well within the hierarchy of known chromosome architectures. At the lowest level, their boundaries coincide
in most cases with the boundaries of operons (Figure 2B). Reciprocally, operons are rarely found in two
different synteny segments (Figure 2C). At a higher level, the NAPs Fis and H-NS bind preferentially at the
borders of the segments (Figure 2D-E): 359 out of 444 H-NS binding regions, and 866 out of 1246 Fis bind-
ing regions, are found within 3 kb of a border (p-values 7.10�5 and 5.10�6, respectively, by comparing with
translations of the operon map, see Materials and methods). In particular, we observe a clear enrichment of
H-NS immediately outside synteny segments, and a depletion inside them (red profile in Figure 2D), with
a staircase-like binding profile markably different from the binding profile around the promoters of operons
not at a border (black profile). The same profile is obtained for the transcriptionally silenced extended
protein occupancy domains (tsEPODs, of extension > 2 kb) identified in (Vora et al , 2009), in agreement
with the fact that most of these domains overlap with H-NS binding regions and with the proposition that
tsEPODs isolate supercoiled domains from each other (Vora et al , 2009) (Supp. Figure S7). Fis also displays
a tendency for binding immediately outside of the segments with a binding profile which, however, does
not significantly differ from that of operons (Figure 2E). In contrast, the highly expressed extended protein
occupancy domains (heEPODs, of extension > 2 kb) also identified in (Vora et al , 2009) are not enriched at
the border of segments; instead, they tend to be located within the segments: 102 out of the 121 heEPODs
overlap with the segments (p-value 4.10�9).

These results show that synteny segments correspond to a level of genomic organization lying between the
operons that they contain and the H-NS/Fis delimited microdomains that contain them. They are consistent
with the previously proposed concepts of uber-operons (Lathe et al , 2000), superoperons (Rogozin et al ,
2002), persistent genes (Fang et al , 2008), clusters of pathway-related operons (Yin et al , 2010) and cluster
of statistically correlated genes (Junier et al , 2012).

Internal organization of synteny segments

The relative orientation of operons contained in the synteny segments is another of their remarkable structural
properties. Specifically, within synteny segments of E. coli made of two operons, divergent orientations are
significantly over-represented while convergent orientations are under-represented (Figure 3A). Similarly, in
synteny segments made of three operons, patterns of divergence and co-directionality are over-represented,
whereas patterns of convergence are under-represented. These features are shared across other bacterial
strains. A decomposition into operons is not available in most cases, but we can circumvent this limitation
by comparing the relative number of co-directional, divergent and convergent successive genes, inside versus
outside synteny segments (Figure 3B). We thus observe that the ratio of divergent over convergent orien-
tations of genes, which must be 1 over an entire circular chromosome, is larger inside than outside synteny
segments for virtually all bacterial genomes; genomes that do not share this property consist, without excep-
tion, of > 90% co-directional gene pairs. Similarly, the ratio of co-directional over divergent or convergent
orientations is systematically larger for successive genes inside synteny segments (Figure 3B).

Synteny segments and co-transcription

Beside these remarkable structural properties, gene expression data provides direct support in favor of the
hypothesis that synteny segments are the evolutionary imprint of fundamental genomic units of co-regulated
genes, which may consist of several operons and whose co-regulation may not require that they all share the
same SF or TF.
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Co-transcription within and between synteny segments

Intra-segment co-expression indeed occurs at high levels, as shown in Figure 4A using the same co-expression
function �(d) as in Figure 1E (the black dots are identical in the two figures). Specifically, pairs of genes in a
same segment (in green) display, at short distances (d < 5 kb), a level of co-expression that is comparable to
pairs in a same operon (in red) and, at higher distances (5 kb < d < 10 kb), an even higher level. Excluding
intra-operon pairs (and segments < 10 kb, which contribute only at short distances) clearly indicates that
intra-segment correlations are not just due to intra-operon correlations (blue dots in Figure 4B). TFs and
SFs are also seemingly irrelevant: the pairs of genes from different operons with no TF and with different
SFs display the same level of co-expression (yellow dots).

Together with the particular orientations of operons within segments, these observations suggest that
synteny segments represent supra-operonic transcriptional units controlled by a subset of “entry points",
with co-transcription of divergent operons and of successive co-directional operons. As a result, a same TF
may regulate several operons within a same unit. This proposition implies that larger segments may require
less TF per operon than smaller segments, which is indeed supported by the data (Figure 4C). It is also
consistent with the known associations between the patterns of orientation and the regulation of operons by
TFs (Korbel et al , 2004; Warren and ten Wolde, 2004; Hershberg et al , 2005).

The proposition that promoter-specific regulators such as TFs and SFs do not act exclusively on operons,
but more broadly on segments, leads us to introduce the notion of “seg-TF": a TF is a seg-TF for a gene if it
is a TF for an operon in the same segment (a “seg-SF” is defined similarly). A gene may thus have a seg-TF
but no TF of its own. The relevance of this notion is demonstrated in Figure 4D: pairs of genes regulated by
the SF �

70 but in different segments and with no TF of their owns are significantly more co-transcribed when
they have exactly the same seg-TFs (red distribution, to be compared with the cyan distribution, where the
genes have different seg-TFs). Interestingly, pairs of such genes are also significantly more co-transcribed
when they both have a seg-TF (irrespectively of its identity, cyan histogram) than when they both have no
seg-TF (green histogram), suggesting an indirect contribution from the regulation of TFs by other TFs (Ma
et al , 2004).

Common seg-TF regulation thus implies long-range co-expression. Yet, segments with exactly the same
set of seg-TFs are few, which suggests that this phenomenon plays, overall, a secondary role (Supp. Materials
and methods; Supp. Figure S9). As our analysis relies exclusively on the evolutionary conservation of gene
proximity, it does not directly address the problem of long-range co-regulation. Remarkably, however, it
points towards an evolutionary link between short and long-range co-transcription. Indeed, pairs of genes
that are distant in a genome, but in synteny in other genomes, are in average more co-expressed than those
not in synteny (Supp. Figure S10). This phenomenon appears to be specific, in the sense that it does not
apply to immediately neighboring genes (Supp. Figure S10). It suggests that operons that were previously
proximal but later set apart evolve, or have evolved, similar cis-regulation (Wang et al , 2011).

Mechanisms of co-transcription (or lack thereof)

What are the molecular mechanisms behind the co-transcription of distinct operons within a same segment?
We propose here a parsimonious explanation that we call “facilitated co-transcription”: in absence of addi-
tional molecular factors or specific inter-gene sequence motifs, the transcription of an operon is facilitated
by the transcription of the operon located immediately upstream. In other words, the mere interaction of
RNA polymerases with DNA may constitute the basic mechanism by which operons within a same segment
are co-transcribed.

Facilitated co-transcription may have different origins, depending on the relative orientation of the genes.
For co-directional genes, it may be caused by “transcriptional read-through”, the transcription of consecutive
operons by RNA polymerases overriding the signals of termination (Henkin and Yanofsky, 2002), which is
indeed known to be a major source of transcripts in bacteria (Wade and Grainger, 2014). For divergent
genes, evidence from eukaryotic genomes indicates the presence of a polymerase at a promoter is associated
with high likelihood with the presence of another polymerase engaged upstream and in the opposite orienta-
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tion (Core et al , 2008). The pervasive antisense transcription thus induced at bidirectional promoters, first
reported in eukaryotes (Xu et al , 2009), is also found in bacteria (Dornenburg et al , 2010; Lasa et al , 2011).
In this case, the underlying physical mechanism may involve supercoiling: the torsional stress induced by
transcribing RNA polymerases is indeed known to enhance or repress the transcription of nearby genes (Liu
and Wang, 1987; Hatfield and Benham, 2002; Meyer and Beslon, 2014). Increases in the local concentration
of RNA polymerases may also play a role (Junier, 2014). The co-transcription of operons within a segment
may thus not require any specific mechanism.

To support the hypothesis of facilitated co-transcription and shed light on the underlying mechanisms,
we consider strand-specific RNA expression profiles obtained by RNA-seq (Core et al , 2008). A first obser-
vation, consistent with previous reports of wide-spread pervasive transcription (Wade and Grainger, 2014),
is that transcription of a gene is associated with a proportional transcription of its anti-sense sequence, in-
dependently of whether the gene belong to a segment and, independently of the orientation of the upstream
gene (Supp. Figure S11). To assess the role of transcriptional read-through, we consider pairs of consecutive
and co-directional operons and examine the correlation between the transcription of the first gene in the
second operon and the transcription of the upstream, non-coding inter-operonic sequence (see small drawing
on top of Figure 5A). The two are indeed strongly correlated, in agreement with wide-spread transcriptional
read-through; remarkably, the correlation is larger when the two operons are in a same segment (Figure 5A).
Given the general correlation between sense and anti-sense transcription (Supp. Figure S11), anti-sense tran-
scription can be expected to play a major role in the co-transcription of consecutive divergent operons. This
is indeed corroborated by the observation of a systematic enrichment, when the gene is in a segment, of the
correlations between the transcription of a gene and the anti-sense transcription of the upstream non-coding
inter-operonic sequence (Figure 5B).

From these observations, we conclude that facilitated co-transcription, in the form of transcriptional
read-through and anti-sense co-transcription, is a wide-spread phenomenon, particularly occurring inside
segments. This provides a rationale for the high level of co-transcription within segments, including in
the absence of TF (Figure 4). Further insights could be gained from new experiments, using for instance
synthetic constructs comprising two operons with varying inter-operonic sequences and inserted at different
locations in a bacterial genome.

Discussion

By systematically comparing the relative positions of orthologous genes in multiple bacterial genomes, we
identified “synteny segments", corresponding to groups of consecutive genes in one genome that are also
proximal in a significant number of other genomes. Consistently with previous studies (Lathe et al , 2000;
Rogozin et al , 2002; Fang et al , 2008; Yin et al , 2010; Junier et al , 2012), these synteny segments fall
within the known hierarchy of genomic structures: they contain and extend the operons, and are contained
within the micro-domains defined by H-NS and Fis binding sites. Inside a segment, operons are most often
co-directional or divergent, and genes are co-expressed at a comparable level, whether in a same operon or
not. In particular, two genes can be co-expressed in the absence of a direct regulation by a SF or a TF,
just by being proximal and aligned either co-directionally or divergently. This very mechanism also allows
for a long-range co-regulation of genes belonging to distinct segments, when the segments share common
TFs – what we termed “seg-regulation”. Taken together, these findings identify the synteny segments as
evolutionary signatures of supra-operonic units of co-transcribed genes.

Facilitated co-transcription as a primitive mode of regulation?

We proposed that facilitated co-transcription, the facilitated transcription of a gene by the transcription of
the gene immediately upstream, in absence of additional molecular factor or specific inter-genic sequence
motif, constitutes a primary form of regulation in current bacteria (Figure 6A). We extend here this hypoth-
esis by proposing that facilitated co-transcription also represents its most primitive form, when considering
the problem from an evolutionary standpoint.
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In this scenario, gene clustering would have came first and TF-specific regulation would represent a rel-
atively recent and secondary addition, tailored to the need of each specific lineage. In support to this view,
we note, first, that TFs and their network have indeed been shown to evolve quickly compared to other
genetic networks (Babu et al , 2006; Shou et al , 2011), and, second, that the clustering of genes encoding
different major fundamental processes, such as replication and translation, is highly conserved throughout
evolution (Junier, 2014). Besides, the rewiring of gene regulatory networks shows only a marginal impact
on both the genome-wide transcription and the fitness of E. coli (Isalan et al , 2008). Next, and consistently
with an evolution of TF-regulation on top of a pre-existing regulation by transcriptional read-through, we
observe that among operons of E. coli preceded by a co-directional operon, only 307 are regulated by a TF
while 992 are not, a difference that is highly significant (p-value 10�7). We also note that only 10% of the
operons are annotated with terminators (25% when including more complex transcription attenuation) (Sal-
gado et al , 2012). Another line of evidence comes from analyzing the conserved features of genes that are
strongly co-expressed in phylogenetically distant bacteria. A comparison between E. coli and B. subtilis,
two strains for which extensive transcriptional data is available (Faith et al , 2007; Nicolas et al , 2012), re-
veals that the pairs of genes with conserved co-expression typically correspond to genes that are proximal
in the two genomes, rather than to genes that are controlled by a common TF (including non-orthologous
ones; Figure 6B). Along the same line, while transcription is known to be regulated at a global level by
supercoiling (Blot et al , 2006), with a demonstrated influence on fitness (Crozat et al , 2005, 2010), deleting
Fis, one of the NAPs which with H-NS controls supercoiling, has only marginal effects, depending on the
conditions under which the bacterium grows( Crozat et al , 2010) As TFs acting at promoter sites, but at a
more global level, NAPs may thus only modulate the more fundamental patterns of co-expression imposed
by the relationships of proximities between genes (Cameron et al , 2011).

The hypothesis that facilitated co-transcription of co-directional and divergent genes is at the evolutionary
origin of gene clustering also disposes of the paradoxes usually associated with the evolution of operons. The
selfish operon scenario has indeed challenged the commonly-hold assumption that selection for co-regulation
drove the evolution of operons (Lawrence and Roth, 2002). In particular, it has questioned the selective
advantage of evolutionary intermediates when forming a new operon by bringing together several genes and
an operator. Under our hypothesis, the clustering of transcriptionally independent genes may enhance their
co-expression, independently of the presence of operators. This may confer an adaptive benefit to the bacte-
ria before an operon is formed. In agreement with this scenario, gene clustering is found to be under positive
selection (Junier and Rivoire, 2013). The selfish operon scenario, which proposes horizontal gene transfer as
driving the formation of operons, is not, on the other hand, supported by evidence (Pál and Hurst, 2004;
Price et al , 2005).

Finally, let us point out that the conservation of gene proximity extends beyond bacteria, to the eu-
karyotic organism S. cerevisiae: orthologs of genes in synteny in bacteria that are proximal in S. cerevisiae
display, indeed, a high level of co-transcription (Figure S12). From the point of view of regulation, micro-
array data associates virtually every gene of S. cerevisiaeto at least one TF but ChIP-seq data suggests
that only a small fraction of these associations stem from direct physical interactions (Geistlinger et al ,
2013). Higher than expected levels of co-expression between proximal genes have then been attributed to
chromatin remodeling (Batada et al , 2007). Facilitated co-transcription offers an alternative explanation,
without, however, excluding additional factors. More generally, clusters of co-expressed genes are a com-
mon feature of eukaryotic genomes (Michalak, 2008). As these genomes do not contain operons and have
regulatory mechanisms significantly different from those of bacteria, the presence and conservation of gene
clustering further support the hypothesis of a generic mechanism causing the co-transcription of proximal
genes. Transcription read-through and divergent promoters have, in fact, also been proposed to account for
the conservation of gene cluster in mammals (Semon and Duret, 2006) and supercoiling is recognized as a
crucial factor for the local properties of gene regulation (Kouzine and Levens, 2007).

The hypothesis that facilitated co-transcription is both primitive and primary still leaves open two basic
evolutionary questions. First, it shifts the challenge from explaining how gene expression became coupled
to the challenge of explaining how it became uncoupled (Singh et al , 2014). While this problem is beyond
the scope of the present work, we note that transcriptional termination is as regulated as initiation (Henkin
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and Yanofsky, 2002), and can be strongly conserved (Merino and Yanofsky, 2005), although the extent to
which inter-operon transcriptional termination is regulated remains to be characterized. We also note that
eukaryotic chromosomes have evolved elaborated mechanisms to keep genes in a repressed state. Second, the
selective force behind the formation of operons remains unclear, if, as suggested by the data, proximal genes
can be co-expressed at comparable level whether they are in a same operon or not. Among non-exclusive
possibilities, one may invoke the control of the production of unnecessary proteins (Kovács et al , 2009) or
the maintenance of a precise stoichiometric ratio between the different operonic proteins (Junier, 2014).

Towards a systematic identification of regulatory units

Given the difficulty to clarify the nature and relative contribution of different regulatory mechanisms, iden-
tifying regulatory units by making minimal assumptions on the possible mechanisms is critical (Michalak,
2008). Our analysis of synteny rests essentially on a single assumption: conservation across multiple species
reflects strong selective pressures, and, therefore, important functional constraints (Mering, 2003). This prin-
ciple is general and applies beyond synteny, to the analysis of the co-occurrence of genes or to the evolution
of their amino acid sequences. In these different contexts, it has also shown its value by revealing functional
features that studies focusing on a single system or species had overlooked (Junier, 2014).

Approaches based on evolutionary conservation, being statistical in nature have, however, their own
limitations. The synteny segments that we identify are, therefore, not expected to always coincide with
“true" regulatory units. Several factors are preventing an exact correspondence: (i) some properties of co-
regulation may be strain-specific and therefore not evolutionarily conserved; (ii) the comparison of genome
architecture between strains relies on the identification of orthologous genes, which is imperfect and leaves
out many orphan genes (Yamada et al , 2012); (iii) the number of synteny relationships that we can detect is
a function of the number of available genomes, and given the total number of gene pairs (⇠ 107), disposing
of only ⇠ 103 genomes sets a strong statistical constraint; (iv) the genomes are phylogenetically related
and a conservation of relative distance between genes of closely related strains may reflect insufficient time
to divergence, rather than common selective pressure. The first three factors can cause us to overlook
many co-regulated genes. The last factor, phylogenetic bias, implies instead that we may overestimate the
number of co-regulated genes. To mitigate this phylogenetic bias, we relied on a simple approach that
proved its value in other contexts (Morcos et al , 2011). The properties of the synteny segments relative to
the location and orientation of operons, to the binding sites of NAPs and to transcriptional data indicate
that, despite these limitations, the approach reveals non-trivial features. In light of our results, we therefore
expect that improved identification of orthology, exploitation of a larger number of genomes and more
sophisticated corrections of the phylogenetic bias should have the potential to refine the identify of supra-
operonic regulatory units as synteny segments, and thus to reveal further information on their nature and
evolution.
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Materials and methods

Co-expression analysis in E. coli – We use the microarray expression profiles from the M3D database
(Faith et al , 2007) to define the activity x

si

of gene i in condition s, by averaging the values associated
with the probes overlapping with gene i, and subtracting the mean expression across conditions, so thatP

s

x

si

= 0 for all i. From these profiles, we define the co-expression of a pair ij of genes as the correlation
matrix C
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). The autocorrelation �(d) is defined as the average value of
C

ij

over the pairs ij of genes at a given distance d±�d, i.e., �(d) = hC
ij

i
ij:dij2[d��d,d+�d]), with �d = 0.5 kb.

Genomes and orthology – Sequenced bacterial genomes were downloaded from NCBI, yielding an ini-
tial data set of M0 = 1432 genomes annotated in terms of N = 4467 clusters of orthologous genes (COGs).
COGs are defined on the principle that any group of at least three genes from distant genomes that are
more similar to each other than to any other genes from the same genomes should belong to the same
COG (Tatusov et al , 2000); as a result, a genome may contain one, several or no gene associated with any
given COG. We further removed genomes with size below 500 kb or with less than 60 % of genes annotated
by COGs to obtain the M = 1108 genomes used in our analysis.

Identification of synteny segments – We first identify all pairs of orthologous genes that tend to
remain proximal in a significant number of genomes, and gather them in a graph (network of synteny rela-
tionships,Supp. Figure S4). To this end, for each pair of COGs ij, we define its relative distance in a genome
as the minimal distance, in base pairs, between its respective genes – distance between two genes is measured
in base pairs, from the mid-point of their nucleotide sequences. The distribution of this distance across all
genomes is then computed by taking into account the phylogenetic biases coming from the uneven sampling
of the space of genomes, which leads to the definition of an effective number of genomes M 0

< M , with here
M

0 ' 470 (Morcos et al , 2011) (Supp. Materials and methods). We then assign a p-value ⇡̂

ij

) to the pair ij
by comparing this distribution with the distribution obtained from a null model where genes are distributed
independently and uniformly across M

0 genomes (Supp. Figure S13).

Given the large number of pairs ij under study (⇠ 107), some of the p-values ⇡̂

ij

are borne out to be
very small, even under the null model. One more step is therefore required to set a threshold of significance
for these p-values. This is achieved by comparing the empirical distribution f(⇡) of ⇡̂

ij

with its distribution
under the null model, f0(⇡). The fraction of false positives when calling significant the pairs ij with ⇡̂

ij

< ⇡

⇤

can be estimated from the ratio of the areas below these curves, as FDR =
R
⇡

⇤

0 f0(⇡) d⇡/
R
⇡

⇤

0 f(⇡) d⇡. A
given false discovery rate FDR (the fraction of false positives given ⇡

⇤), here taken at 5% (more stringent
values lead to similar results; see e.g. (Junier and Rivoire, 2013), thus selects a threshold of significance
⇡

⇤ (Benjamini and Hochberg, 1995).

The synteny segments of a given genome are eventually given by the maximal sets of genes that are fully
interconnected in this network of synteny and that are close-by along the genome (Figure 2A); two genes are
considered to be close-by if they are separated by less than 50 kb, or less than the distance that is associated
to their statistical tendency of proximity (Supp. Materials and methods; taking a smaller value than 50 kb
does not affect the results).
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Operons and protein binding regions – The annotations in terms of operons, TFs and SFs were all
taken from RegulonDB (Salgado et al , 2012). H-NS and Fis DNA-binding data were retrieved from (Kahra-
manoglou et al , 2011) and we consider the binding sites obtained in the early exponential phase – similar
results are found for the other phases for H-NS (binding sites are not detected for Fis in the stationary
phase). Extended protein occupancy domains (EPODs) were retrieved from (Vora et al , 2009).

Statistical significance of the synteny segments with respect to the hierarchical organiza-
tion of chromosomes – To assess the significance of the relations between synteny segments and operons
(Figure 2B-C), we consider randomizations of the data where the synteny map is translated with respect
to the gene map by m genes, for all 4144 possible values of m. To assess the significance of the relations
between synteny segments and binding regions of proteins (Fis, H-NS, tsEPODs, heEPODs), the synteny
map is translated with respect to the operon map.

RNA-seq data – RNA-seq data were retrieved from (McClure et al , 2013) under the form of .sra files.
RNA reads were mapped to the genome of E. coli K12 MG1655 using bowtie2. The number of reads per
bp was then computed as the genomic coverage of the data (using genomeCoverageBed and the flags "-d
-split"), with the final expression levels equal to the log-value of the mean number of reads found in the
regions of interest (I or g in Figure 5). We considered datasets for which more than 90% of the reads were
uniquely mapped. Results in Figure 5) are thus the average of six different conditions corresponding to
the following GEO Accession Number: GSM1104381 (sgrS- with vector), GSM1104384 (sgrS- with sgrS+
plasmid), GSM1104387 (WT in LB +↵MG), GSM1104402 (WT in defined medium with glycerol �↵MG),
GSM1104405 (sgrS- in defined medium with glycerol +↵MG) and GSM1104408 (sgrS- in defined medium
with glycerol �↵MG).

Data access – The list of synteny segments is provided in File1.txt.
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Figure 1: Spatial patterns of gene co-expression in E. coli. A. Micro-array data reporting the expression
levels of 4320 genes (rows) in 466 conditions (columns) with high expression in red and low expression in
green (the data is normalized so that the mean expression of a gene across conditions is zero). B. Matrix
C

ij

of co-expression between every pair ij of genes. C. Zoom in the co-expression of 400 genes, showing
small correlated clusters of genes of size ⇠ 10 kb (⇠ 10 genes). D. Zoom out of the co-expression obtained
by Gaussian filtering with a standard deviation of 10 genes, showing two globally anti-correlated clusters of
size ⇠ 1 Mb (⇠ 1000 genes). E. A mean co-expression function �(d) is defined as the mean value of C

ij

over
pairs of genes at given distance d

ij

= d. �(d) is shown when considering all pairs of genes (black dots, which
are behind the blue dots when not visible), only pairs in distinct operons (blue), or only pairs in distinct
operons with no known regulation by a transcription factor (TF) or a sigma factor (SF) (red).
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Figure 2: Synteny segments and their relations to structural properties of the E. coli genome. A. Top:
Synteny relationships are recapitulated in a graph, with a link between two orthologous genes if they are
proximal in a significant number of bacterial strains. The link is represented as a plain line if the genes
are proximal in the particular strain of interest (here E. coli), and as a dotted line otherwise. The synteny
segments of a particular strain are defined as consecutive genes that are all proximal both in the strain
and in many others: they thus correspond to groups of genes fully connected by plain lines, as shown here
for two groups that have in common the gene in black. Bottom: a synteny segment in E. coli containing
a four-gene operon together with three single-gene operons. B. Distribution of the number of common
boundaries between operons and synteny segments when the synteny map is translated along the genome
by all possible finite numbers of genes, with the orange arrow indicating the observed value (no translation,
Materials and methods). C. Similarly for the fraction of operons containing genes in at least two different
synteny segments. D. The binding regions of H-NS and Fis display a statistically significant tendency of
being located outside of the borders of segments (see text for p-values). E. Similarly, Fis shows a tendency
to bind immediately outside the segments (red plain line). Contrary to H-NS, however, the resulting binding
profile is not significantly different from that at the promoter of operons (black). Data from (Kahramanoglou
et al , 2011) (Materials and methods).
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Figure 3: Gene orientations within synteny segments. A. Statistics in E. coli over all synteny segments
made of 2 and 3 operons exactly, showing that some organizations are over-represented (red squares, with
z > 1.65 (P < 0.05) indicating standard deviation against a randomized set) or under-represented (blue
squares, z < �1.65). Percentages on the first and second line respectively correspond to statistics within the
segments and overall, for the total of 2647 operons. B. For each genome, we compute a divergence index
(DI) defined as the difference between the ratio of divergent over convergent orientations, which must be
1 over the entire chromosome, inside versus outside segments. We also compute a co-directionality index
(CoDI) defined as the difference of the ratio of co-directional over divergent or convergent orientations. The
green histograms show the statistics of these indexes over our dataset of ⇠ 1000 annotated bacterial strains.
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Figure 4: Intra-segment co-expression. A. As in Figure 1E, the black dots represent �(d), the mean value of
C

ij

for pairs of genes at a given distance d along the chromosome of E. coli. The red and green dots represent
the same quantity but restricted, respectively, to pairs of genes in the same operons and in the same synteny
segment. B. Similar to A, but now excluding pairs of genes in a same operon and retaining only segments
larger than 10 kb. In blue, pairs of genes in a same synteny segment but in distinct operons. In yellow,
adding the constraints that the two genes are in operons that are not regulated by any transcription factor
(TF) and not regulated by a common sigma factor (SF). The high level of correlation, independent of the
inter-operon distance, is observed irrespectively of the relative orientation, and holds both for divergent and
for co-directional operons (Supp. Figure S8). It also holds for small segments < 10 kb, even though the
average co-expression level is lower (Supp. Figure S8). C. Fraction of operons controlled by a transcription
factor (TF) as a function of the number of operons in the segment, showing that operons in large segments
tend to be less TF-regulated in average. D. Distribution of the co-expression C

ij

between different classes
of pairs of genes, all taken to be regulated by the SF �

70 but not directly by any TF: in black, pairs with
at least one gene not in a segment; in green, operons in segments but with no seg-TF (i.e., not belonging
to a segment containing a TF-regulated operon); in cyan, operons with seg-TF; in red, operons with same
seg-TF.
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Figure 5: Evidence for facilitated co-transcription. A. For pairs of consecutive co-directional operons, correla-
tion between the transcription of the first gene g in the second operon and the sense or antisense transcription
of the upstream inter-operonic sequence I (small drawing on top). Sense transcription of I (circles) correlates
strongly with the transcription of g, much more than anti-sense transcription (crosses), and this correlation
is stronger for operons inside a same segment (in blue). These observations are consistent with widespread
transcriptional read-through, particularly inside segments. Here, we consider inter-operonic regions longer
than 100 bp, hence excluding the possible presence of mis-annotated operons (McClure et al , 2013) B. For
pairs of consecutive divergent operons, correlation between the transcription of one of the two genes (g)
and the transcription of the upstream sense or anti-sense inter-operonic sequence (I). The transcription
level of I is lower than the anti-sense transcription of g (Supp. Figure S11) and, compared to A, there is no
significant difference between the sense and anti-sense transcription of I. We observe, however, a higher level
of transcription of the inter-operonic region I when genes belong to segments. These plots were made using
the RNA-seq data from (McClure et al , 2013) with transcription start sites retrieved from RegulonDB, by
considering for each gene the furthest upstream start sites identified in the Morett dataset (Salgado et al ,
2012) (Materials and methods).
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Figure 6: Facilitated co-transcription and evolution. A. Facilitated co-transcription, the facilitated transcrip-
tion of a gene by the transcription of the gene immediately upstream, may take two forms: transcriptional
read-through, when two neighboring genes are co-directional, and anti-sense co-transcription, when their
orientations are divergent. B. Fraction of pairs of genes ij in different operons in E. coli that are proximal
(< 20 kb, red dots) or regulated by a common TF or SF (blue dots) both in E. coli and in B. subtilis, as
a function of the minimal value of the co-expression C

ij

between the two strains, min(Ccoli

ij

, C

subtilis

ij

). A
high value of min(Ccoli

ij

, C

subtilis

ij

) indicates a conservation of co-expression. For comparison, the dotted lines
represent the same quantities when considering properties, proximity or shared regulation, in E. coli only.
The conservation of co-expression thus appears to be associated with a conservation of proximity rather than
with a conservation of regulatory factors.
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SUPPLEMENTARY INFORMATION

1 Supplementary Materials and methods

1.1 Relation between gene co-expression and growth conditions

The two globally anti-correlated clusters seen in Figure 1D can be interpreted functionally by relating them
to the conditions under which the genes are expressed. To this end, a statistical method extending principal
component analysis, known as “singular value decomposition", can be applied, which reorders the genes and
the conditions in a consistent way, according to their main axes of variation (Alter et al., 2000). Specifically,
the singular value decomposition of the transcription profile matrix x

si

is of the form x

si

=

P
⇢

k

u

sk

v

ik

,
with ⇢1 � ⇢2 � · · · � 0 the set of singular values. {u

s

}
s=1...#conditions

and {v
i

}
i=1...#genes

are, respectively,
orthonormal basis of the gene space and of the condition space. The top singular vectors U1 and V1 have
components (U1)s = u

s1 and (V1)i = v

i1, and define the main axes of variation in the gene space and condi-
tion space, respectively.

As a result, we obtain an ordered list of genes with the most anti-correlated genes at the two extremes,
and an ordered list of conditions depending on whether they induce one or the other set of genes (Figure S1B-
C). These lists indicate a simple interpretation of the two globally anti-correlated gene clusters in terms of
phase of cell growth. Indeed, one gene cluster is preferentially expressed during exponential growth and
the other during stationary phase (Figure S1D). This association of different growth rates with different
overall patterns of gene expression is well recognized (Shoval et al., 2012). The preferential location of the
anti-correlated genes on different halves of the genome is consistent with previous analyses (Sobetzko et al.,
2012).

1.2 Measure of sequence divergence

For computing genome weights (w
g

, see below) and in Figure 3, the sequence divergence � between any
two genomes is computed as � = 1 � f , where f is the average fraction of common amino acids between a
selection of 10 genes. The 10 selected genes are associated with the COGs 126G, 173J, 202K, 2255L, 481M,
497L, 541U, 544O, 556L, 1158K. These COGs are taken from a list of genes shown to report phylogenetic
distances between bacterial strains (Zeigler, 2003), with the additional constraint that they comprise a single
copy in most of the 1108 genomes of our dataset.

1.3 Determination of the synteny network

The procedure for determining the set of gene pairs that are in a synteny property is explained in (Junier
and Rivoire, 2013). Here we recall the main steps of this procedure.

Inter-gene distances – The distance between two genes is measured in base pairs, from the mid-point of
their nucleotide sequence. To account for the fact that genomes may have several chromosomes, may be
non-circular and have different lengths, we formally circularize linear chromosomes and normalize them to
a common length L by setting all distances exceeding L/2 to L/2: if d is the actual distance in base pairs,
we thus define a normalized distance x by x = min(1, 2d/L). The normalized distance between genes on
distinct chromosomes is also set to x = 1. We take L = 500 kb, but our results are not sensitive to the exact
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value of this cutoff (the typical extension of the synteny segments that we find is far below 500 kb).

Genome weights – The number M

ij

(x) of genomes in which genes i and j are at normalized distance
x

ij

 x is computed as M

ij

(x) =

P
g

!

g

1(x

ij

 x), with genome weights defined by !
g

= 1/|{h : D

gh

< �}|,
where |{h : D

gh

< �}| denotes the number of genomes h at phylogenetic distance at most � from g (Morcos
et al., 2011); this weighting procedure defines an effective number of genomes as M

0
=

P
g

!

g

.

Significance of proximity – Assuming a uniform distribution of genes along a circular genome of length
L, the probability of observing a distance less than xL/2 between 2 given genes is just x. In this null model,
the number M

ij

(x) of genomes with normalized distance x

ij

 x thus follows a binomial law B(M 0
, x),

where M

0 is the effective number of genomes. The probability ⇡
ij

(x) of observing M

ij

(x) events is therefore
⇡

ij

(x) = I

x

(M

ij

(x),M

0 �M

ij

(x)+ 1), where I

x

(m,n) is the regularized incomplete beta function. The least
likely and therefore most significant normalized distance x̂

ij

between a given pair of genes ij, is the one
minimizing ⇡

ij

(x), which defines x̂

ij

and an associated p-value ⇡̂
ij

= ⇡

ij

(x̂

ij

).

Under the null model, the distribution of y
ij

= � ln ⇡̂

ij

is found to have an exponential tail,  0(y) ⇠ e

�ay,
with an exponent a depending on M

0 (Figure 13). Given a threshold of significance ⇡

⇤, we compute
the fraction �s of significant pairs, with ⇡̂

ij

 ⇡

⇤, and estimate the fraction of false positive pairs as
�fp =

R1
� ln⇡

⇤  0(y) ' (⇡

⇤
)

a. Imposing a false discovery rate FDR = �fp/�s thus determines the threshold of
significance ⇡⇤.

To treat pairs of COGs ij with multiple copies (genes), we fix a gene g

i

in i, count the number n of genes
in j at normalized distance less than x and compute the probability of the event as p(x) = 1 � (1 � x)

n.
The analysis is then performed as for n = 1 with ⇡

gij(x) now standing for ⇡
gij(p(x)), thus defining ⇡̂

gij .
We then define ⇡̂

ij

as the most significant observation when considering successively each gene g

i

in i, i.e.,
⇡̂

ij

= min

gi2i

{⇡̂
gij}. Different numbers of genes in i and j may imply ⇡̂

ij

6= ⇡̂

ji

. Pairs of proximal COGs
are identified by requiring that both ⇡̂

ij

 ⇡

⇤ and ⇡̂
ji

 ⇡

⇤.

1.4 Segments and long-range co-regulation

How much of gene co-expression between segments may be explained by “seg-regulation"? First, a significant
fraction (⇠ 25%) of highly correlated pairs of genes have a common seg-TF (Figure 9A), but only a small
percentage have exactly the same set of seg-TFs (inset). Given the hierarchical organization of the regula-
tory network of E. coli (Ma et al., 2004), this is not surprising: having the same set of seg-TFs is a strong
requirement, unlikely to be necessary for a form of seg-regulation to be present. Nevertheless, by retaining
only the segments below a certain size, which ensures that the phenomena are not associated with the length
of the segments, we loose the significant tendency for highly correlated genes to have a seg-TF (blue points
in Figure 9C). Altogether, this shows that seg-regulation can drive co-expression (Figure 4D), but that this
phenomenon play, overall, only a secondary role in regulating gene expression (Figure 9A). Incidentally, it
also shows that the most correlated genes tend to belong to the largest segments, another noticeable feature.

Inter-segment co-expression must then rely on mechanisms that do not involve the action of TFs, at least
not as regulators interacting with the RNA polymerase at the level of promoters (Browning and Busby,
2004). Several possibilities may be contemplated. For instance, we find that co-expressed genes tend to
belong to segments with heEPODs (Vora et al., 2009) (Figure 9C). Yet, as for seg-TFs, the fraction of
gene pairs with this property is low (⇠ 10%); moreover, the tendency disappears when considering smaller
segments. On the other hand, we observe that co-expressed genes are more likely to belong to segments
that contain at least one region that is bound by Fis, a NAP that is involved in the supercoiling-mediated
control of transcription initiation (Travers and Muskhelishvili, 2005) (Figure 9B); in this case, the tendency
is more pronounced for small (< 4 kb) segments (Figure 9B). Altogether, this shows that seg-TF regulation
is sufficient but not necessary for causing high co-expression, whereas “seg-Fis regulation” is necessary but
not sufficient (⇠ 50 % of the uncorrelated pairs of segments contain Fis binding regions).
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2 Supplementary Figures

-0.05 0 0.05

0

0.5

1 σ70

Fis

− 0.05 0.00 0.05 0.10
0

20

40

60 early log
log
late log
stat ionary
biofilm
not  annotated

0 466
0

1000

2000

3000

4000

-1 -0.5 0 0.5 1

0 1000 2000 3000 4000

A B C

D E

-0.5 -0.25 0 0.25 0.5

Figure S1: A. As in Figure 1A, micro-array data reporting the expression levels of 4320 genes (rows) in 466
conditions (columns) with high expression in red and low expression in green. B. Applying a singular value
decomposition to the micro-array data yields two principal components, V1 along the genes and U1 along the
conditions. The co-expression matrix of Figure 1B is shown here with, above the diagonal, the genes sorted
by V1: this component classifies the genes according to their contribution to one of the two anti-correlated
clusters visible in Figure 1D. C. Same expression data as in A, but with the conditions sorted by U1 and the
genes sorted by V1, thus revealing the main pattern of variation. D. Distribution of the conditions along the
principal component U1, with different colors for the different phases of growth at which the measurements
of transcriptional activity were made, showing that U1 correlates with the growth rate. E. Fraction of genes
controlled by �

70 (black) and with a binding site for the NAP Fis (red) as a function of V1, showing that
genes that are transcribed in growing phases (negative values of V1) are more likely to be regulated by �

70

and bound by Fis.
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Inter-operon co-expression BA
gene x gene co-expression

considering σ70-operons only

Figure S2: A. Co-transcription between the 1231 genes having �

70 as unique SF. Genes are reordered along
the first component V1 from SVD decomposition of the data as in Figure S1B. B. Fraction of pairs of genes
belonging to different operons that share a TF, a SF or one of the two, showing that, except at very high
level co-expression (C

ij

> 0.85), the majority (⇠ 75%) of correlated pairs of genes do not share a common
TF or SF.

Including operons

Figure S3: Proximal genes in E. coli tend to be proximal in other bacterial strains if co-expressed. Here, two
genes are considered as proximal when their relative distance is below 10 kb, and strain divergence is defined
as global sequence divergence (see Supp. Materials and methods). The plain lines exclude pairs of genes in a
same operon in E. coli, while the dotted lines include them. This graph shows that the relation between the
co-expression of genes and the evolutionary conservation of their proximity (Rocha, 2005) extends beyond
operons.
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Network of synteny relationships

Figure S4: Network of synteny where a link is present between two orthologous genes if the two genes are
proximal in a significant number of strains. Here, for the sake of clarity, only a subset of the full network,
comprising 1455 orthologous genes (annotated into COGs), is shown. Colors indicate four functional classes
of COGs: red for information storage and processing, green for cellular processes and signaling, blue for
metabolism and purple for poorly characterized.
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Figure S5: Genomic distribution of segments in E. coli: the histogram of the location of the segments along
the chromosome reveals a fairly uniform distribution (bin size of 65 kb). The vertical dashed lines indicate
the origin (oriC) and terminus (ter) of replication.
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Figure S6: Size distributions of synteny segments (solid circles) and multi-gene operons (crosses) in three
phylogenetically distant bacteria, showing a similar exponential decrease up to ⇠ 10 kb. For Mycoplasma

pneumoniae, no operon map is currently available (Guell et al., 2009).
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Figure S7: Binding profile of tsEPODs (Vora et al., 2009) with respect to synteny segments (red plain line)
and operons (black), showing, as in the case of H-NS (Figure 2D in main text), a strikingly high density of
tsEPODs at the external boundaries of segments together with a depletion inside segments. In agreement
with their role in transcription silencing (Dorman, 2007), we also observe an enrichment around the promoter
region, and over the first gene for operons not at the border.
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Figure S8: A. The black points correspond to the yellow points in Figure 4B, and the blue and red points
show that restricting to co-directional or divergent pairs has little incidence. B. Similar to A, but considering
the smallest segments (< 4 kb) instead of the largest ones (> 10 kb): the overall level of the correlation is
lower for shorter segments.
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Inter-segment co-expressions between σ70-operons not regulated directly by a TF

A Genes with seg-TF Genes with Fis binding region(s) in segmentsB Genes with heEPOD(s) in segmentsC

Figure S9: Inter-segment co-expression. A. Cyan: fraction of gene pairs with a seg-TF as a function of
their correlation. Blue: considering only genes that belong to segments below 5 kb. Inset: fraction of gene
pairs with same set of seg-TFs as a function of their correlation. B. Gray: fraction of gene pairs with a Fis
binding region in the segment to which they belong. Black: considering only genes in segments below 5 kb.
C. Fraction of gene pairs with a heEPOD (Vora et al., 2009) in the corresponding segment as a function of
the level of co-expression C

ij

. Black: considering only genes in segments below 5 kb.

m
ea

n 
co

-e
xp

re
ss

io
n

inter-distance (kb)

Inter-operons, no TF, different SFs

Figure S10: Co-expression between E. coli genes in different operons that are not regulated by any TF and
that do not share the same SF (black points). In red, we restrict to pairs that are in synteny, independently
of whether they are proximal in the chromosome of E. coli: these pairs are in average more co-expressed
than those not in synteny. The phenomenon appears to be specific since replacing the first gene in these
pairs by its nearest neighbor not in synteny (while keeping the second gene) significantly decreases the level
of co-expression at all distances.
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sense
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Figure S11: The level of anti-sense transcription is systematically correlated with the level of sense tran-
scription, independently of whether the gene belongs to a segment or not, suggesting pervasive promiscuous
transcription. (RNA-seq data as in Figure 5).

Pairs of genes in synteny in bacteria
are more co-expressed in yeast
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Figure S12: This figure is the counterpart of Figure 5A for S. cerevisiae, using again transcription data
from the M3D database (Faith et al., 2007) and the same definition of synteny, which is based on bacterial
genomes and therefore does not include any yeast genome. The black dots represent the mean co-expression
averaged over all pairs genes, and the red dots over the pairs of genes in synteny in bacterial genomes (pairs
of genes in different chromosomes are not considered).
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Figure S13: Probability density of � log(⇡̂) for the empirical data (orange circles) at three phylogenetic
depths corresponding to three effective number of genomes: M = 10, 130, 469 (we consider the latter case for
the study). Left panels: For small enough values of � log(⇡̂), the density decays exponentially with � log(⇡̂)

(red lines). The deviation from an exponential at large values indicates the conservation of co-localization.
Right panels: For the null model where gene positions are randomized (black squares, right panels), with
as number of genomes the effective number M

0 corresponding to � (M 0
= 10, 130, 469, respectively), the

exponential decay extends to larger values of � log(⇡̂).
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