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Analysis of ancient DNA can reveal historical events that are difficult to discern through 

study of present-day individuals. To investigate European population history around the 

time of the agricultural transition, we sequenced complete genomes from a ~7,500 year old 

early farmer from the Linearbandkeramik (LBK) culture from Stuttgart in Germany and 

an ~8,000 year old hunter-gatherer from the Loschbour rock shelter in Luxembourg. We 

also generated data from seven ~8,000 year old hunter-gatherers from Motala in Sweden. 

We compared these genomes and published ancient DNA to new data from 2,196 samples 

from 185 diverse populations to show that at least three ancestral groups contributed to 

present-day Europeans. The first are Ancient North Eurasians (ANE), who are more 

closely related to Upper Paleolithic Siberians than to any present-day population. The 

second are West European Hunter-Gatherers (WHG), related to the Loschbour individual, 

who contributed to all Europeans but not to Near Easterners. The third are Early 

European Farmers (EEF), related to the Stuttgart individual, who were mainly of Near 

Eastern origin but also harbored WHG-related ancestry. We model the deep relationships 

of these populations and show that about ~44% of the ancestry of EEF derived from a 

basal Eurasian lineage that split prior to the separation of other non-Africans. 

 

Ancient DNA studies have demonstrated that migration played a major role in the introduction of 

agriculture to Europe, as early European farmers were genetically distinct from ancient European 

hunter-gatherers
1, 2

 and closer to present-day Near Easterners
2, 3

. Europeans today, however, are 

genetically intermediate, which has led to attempts to model them as a mixture of those two 

ancestral populations
2
. A two-way mixture model is difficult to reconcile, however, with the fact 

that nearly all present-day Europeans also have ancestry from a third source: an Ancient North 

Eurasian (ANE) population
4, 5

 that also contributed ancestry to Native Americans
6
.  

 

To clarify the population transformations that accompanied the agricultural transition in Europe, 

we sequenced the genomes of nine ancient European individuals (Fig. 1A; Extended Data Fig. 

1). We sequenced to 19-fold coverage the genome of “Stuttgart”, a ~7,500 year old individual 

found in Stuttgart in southern Germany who was buried in the context of artifacts from the first 

widespread Neolithic farming culture of central and northern Europe, the Linearbandkeramik 

(LBK). We sequenced to 22-fold the genome of “Loschbour”, an ~8,000 year old individual 
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found in the Loschbour rock shelter in Heffingen Luxembourg, from a skeleton that was 

discovered in the context of Mesolithic hunter-gatherer artifacts (SI1; SI2). We also sequenced 

DNA from seven ~8,000 year old remains from Mesolithic hunter-gatherers from the Motala site 

in southern Sweden, with the highest coverage individual (Motala12) at 2.4-fold. We mapped the 

sequences to the human reference genome (hg19), and for the two high coverage individuals 

(Stuttgart and Loschbour) inferred genotypes
7
 (SI2). 

 

A central challenge in ancient DNA research is to distinguish authentic sequences from 

contamination. In initial sequencing libraries prepared from all nine individuals, the rate of CT 

and GA mismatches to the human genome at the ends of the DNA molecules was >20% 

compared with <1% for other nucleotides, suggesting authentic ancient DNA
8, 9

 (SI3). We 

inferred a mitochondrial DNA (mtDNA) consensus for each sample, and based on the number of 

reads that differed from the consensus, estimated contamination levels of 0.3% for Loschbour, 

0.4% for Stuttgart, and 0.01% - 5% for the Motala individuals (SI3). Stuttgart belonged to 

mtDNA haplogroup T2, typical of Neolithic Europeans
10

, while Loschbour and all Motala 

individuals belonged to haplogroups U5 and U2, typical of pre-agricultural Europeans
1, 8

 (SI4). 

Based on the ratio of sequences aligning to chromosomes X and Y, we infer that Stuttgart was 

female while Loschbour and five Motala individuals were male
11

 (SI5). Loschbour and four 

Motala males belonged to Y-chromosome haplogroup I, showing that this was a predominant 

haplogroup in pre-agricultural northern Europeans
12, 13

 (SI5). 

 

To generate large amounts of data, we built sequencing libraries using the enzyme uracil DNA 

glycosylase, which decreases the rate of CT and GA errors due to ancient DNA damage 

(SI3). After correcting for genotyping error, we estimate that heterozygosity (the number of 

differences per nucleotide between an individual’s two chromosomes) is 0.00074 for Stuttgart, at 

the high end of present-day European (SI2). Heterozygosity is 0.00048 for Loschbour, lower 

than in all other present-day humans we analyzed. Combined with the higher proportion of 

deleterious heterozygous observed in Loschbour compared with Stuttgart or present-day humans 

(SI6), this finding is consistent with the ancestors of Loschbour having experienced small 

population sizes since separation from the ancestors of the other samples. By analyzing sites 

known to affect phenotype, we inferred that neither Stuttgart nor Loschbour could digest milk 
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into adulthood, that both had a >99% probability of dark hair, that Loschbour probably had 

darker skin than Stuttgart, and that Loschbour had a >50% probability of blue eyes while 

Stuttgart had a >99% probability of brown eyes (SI7). The AMY1 gene coding for salivary 

amylase had 6, 13, and 16 copies in Motala12, Loschbour and Stuttgart respectively, in the range 

of present-day populations (Extended Data Fig. 2) (SI 8), suggesting that high copy counts of 

AMY1 in humans are not entirely due to selection since the switch to agriculture
14

.  

 

To determine how the ancient genomes relate to each other and to present-day humans, we 

analyzed 2,196 individuals from 185 populations genotyped at 594,924 autosomal single 

nucleotide polymorphisms (SNPs) using the Affymetrix Human Origins array
5
 (SI9) (Extended 

Data Table 1). We identified a set of “West Eurasian” populations as those that cluster with 

Europe and the Near East in an ADMIXTURE
15

 analysis (SI9 and Extended Data Figure 3). 

Principal Component Analysis (PCA)
16

 of the West Eurasian individuals separates Near Eastern 

and European populations along parallel south-north gradients, with a handful of mostly 

Mediterranean populations in between (Fig. 1B). The gradient in the Near East stretches from the 

Levant to the North Caucasus, and in Europe from Sardinia to the Baltic. This plot is 

qualitatively different from previous PCAs of Europeans in which the first and second PCs have 

correlated well to geography
17, 18

; we ascribe this to our heavy sampling of Near Eastern 

populations, which causes the first PC to be more dominated by European-Near Eastern 

differences. We projected onto the PCs genetic data from ancient individuals
2, 19, 20

, which 

reveals that European hunter-gatherers like Loschbour and Motala fall outside the variation of 

West Eurasians in the direction of European differentiation from the Near East. This pattern is 

suggestive of present-day Europeans being admixed between ancient European hunter-gatherers 

and ancient Near Easterners, an inference that we confirm below. Loschbour clusters with 

~7,000 year old hunter-gatherers from Spain
20

, allowing us to propose a “West European Hunter-

Gatherer” (WHG) meta-population. The Motala individuals cluster with ~5,000 year old 

Neolithic hunter-gatherers
2
 from the Pitted Ware Culture (PWC) in Sweden, suggesting a 

“Scandinavian Hunter-Gatherer” (SHG) meta-population that maintained biological continuity 

across the Neolithic transition. Stuttgart clusters with two early farmers—the ~5,300 year old 

Tyrolean Iceman
19

 and a ~5,000 year old southern Swedish farmer
2
 from the Funnel Beaker 

Culture—suggesting an “Early European Farmer” (EEF) meta-population similar to present-day 
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Sardinians
19

. Two Upper Paleolithic Siberian samples project beyond the variation of Europeans 

on the second PC (Fig. 2A), suggesting that they may be derive from the Ancient North Eurasian 

(ANE) population previously shown to have contributed to Europeans
4, 5

. 

  

PCA is a powerful technique for measuring genetic similarity, but its interpretation in terms of 

history is difficult, as gradients of variation due to admixture may arise under a variety of 

different histories
21

. To test if present-day Europeans were formed by admixture of populations 

related to Loschbour, Stuttgart and MA1, we analyzed f3(X; Ref1, Ref2) statistics which measure 

the correlation in nucleotide frequency differences between a test sample and two populations: 

(X-Ref1) and (X-Ref2). If the three populations are related by a simple tree, the statistic is 

expected to be positive
5
. However, if X is admixed between populations related to Ref1 and Ref2, 

the statistic can be negative and provides evidence of admixture in population X
5
. For each 

present-day West Eurasian population, we tested all possible modern reference populations with 

at least 4 individuals, along with Loschbour, Stuttgart, Motala12 and MA1 (Table 1). For the 

majority of European populations (n=18) the lowest f3-statistic is observed with Loschbour and a 

Near Eastern population as references, suggesting that many Europeans derive from a mixture 

between WHG and populations related to present-day Near Easterners. Only Sardinians form 

their lowest f3-statistic with Loschbour-Stuttgart so the mixture process is unlikely to have been a 

simple WHG-EEF one (Table 1). Other European populations form their lowest f3-statistics with 

MA1-Stuttgart, which we hypothesize reflects the cline of increasing relatedness to MA1 in Fig. 

1B. In the Near East, no population has its lowest f3-statistic with Loschbour or Motala12, but all 

have their lowest f3-statistic with Stuttgart (Table 1), suggesting that most of the ancestry of this 

sample may be directly inherited from populations of the ancient Near East, while modern Near 

Easterners have additional influences related to Africa, North Eurasia, or South Asia (Table 1). 

 

To determine whether a mixture of just two ancestral populations can explain the negative f3-

statistics we observe or whether more populations are required, we analyzed f4-statistics
5, 22

. We 

began by analyzing f4(X, Stuttgart; Loschbour, Chimpanzee), which measures whether 

Loschbour shares more alleles with West Eurasian population X or with Stuttgart (Extended Data 

Fig. 4). This statistic is positive for nearly all Europeans showing that Stuttgart has less WHG 

ancestry than present-day Europeans. However, it is negative for all Near Easterners, suggesting 
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that the ancestors of Stuttgart were not unmixed migrants from the Near East
1, 2, 10 

(Extended 

Data Table 1), consistent with the clustering of Stuttgart with Europeans in the PCA of Fig. 1B. 

We replicated this signal in subsets of SNPs that are uniformly ascertained (Extended Data Table 

2). In SI10, we estimate that the proportion of Near Eastern ancestry in Stuttgart is definitely less 

than 100% and possibly as little as 61%. Further analyses of f4-statistics, however, show patterns 

that cannot all be explained by a history of Loschbour-related mixture. For example, the statistic 

f4(X, Stuttgart; MA1, Chimpanzee) has a qualitatively different geographic distribution than the 

same statistic replacing MA1 with Loschbour, in that it is positive in both Europeans and Near 

Easterners whereas the latter is positive only in Europeans (Extended Data Tables 1 and 2). This 

and related statistics are correlated to a statistic previously shown to document a signal of ANE-

related admixture into Europe
4,5

 (Extended Data Fig. 5), indicating that these f4-statistics are 

reflecting ANE admixture rather than WHG admixture. Extended Data Fig. 6 visually illustrates 

the different admixture patterns by plotting onto a map of West Eurasia f4-statistics that reflect 

the degree of allele sharing of each West Eurasian population with different pairs of ancient 

populations. We formally tested whether the f4-statistic patterns are reflecting a history of more 

than one historical admixture event by using a method that tests the consistency of a matrix of f4-

statistics with descent from a specified number of ancestral populations
23

. We reject the scenario 

of most European population descending from a mixture of just two populations (P<10
-12

), but 

find that a scenario in which most European present-day populations descend from as few as 

three ancestral population is consistent with the data to the limits of our resolution (SI11). 

 

Motivated by these observations, we modeled Europeans as a three-way mixture of ANE (of 

which MA1 is a member), WHG (Loschbour), and EEF (Stuttgart). To test the consistency of 

this model with our data, we used the ADMIXTUREGRAPH software
22

, which fits a tree with 

discrete admixture events and reports f-statistics that differ by more than three standard errors 

between the estimated and fitted values (SI12). Our model-building was motivated by three 

observations (SI12): (1) Eastern non-Africans (Oceanians, East Asians, Native Americans, and 

Onge, indigenous Andaman islanders
24

) are genetically closer to ancient Eurasian hunter-

gatherers (Loschbour, Motala12 and MA1) than to Stuttgart; (2) Every eastern non-African 

population except Native Americans is genetically equally close to Loschbour, Motala12, and 

MA1, but Native Americans are genetically closer to MA1 than to European hunter-gatherers
6
; 
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and (3) All three hunter-gatherers and Stuttgart are genetically closer to Native Americans than 

to other eastern non-Africans. We jointly fit models to data from Loschbour, Stuttgart, MA1, 

Karitiana and Onge (SI12), and found that there was a unique model with two admixture events 

that fit the data; models with one or zero admixture events could all be rejected (SI12). One of 

the inferred admixture events is the ANE gene flow into both Europe
6
 and the Americas

6
 that has 

previously been documented. The successful model (Fig. 2A) also suggests 44 ± 10% “Basal 

Eurasian” admixture into the ancestors of Stuttgart: gene flow into their Near Eastern ancestors 

from a lineage that diverged prior to the separation of the ancestors of Loschbour and Onge. 

Such a scenario, while never suggested previously, is plausible given the early presence of 

modern humans in the Levant
25

, African-related tools made by modern humans in Arabia
26, 27

, 

and the geographic opportunity for continuous gene flow between the Near East and Africa
28

.  

 

Our fitted model (Fig. 2A) allows us to estimate fractions of ANE/WHG/EEF ancestry for each 

European population (SI12). To explore the robustness of these estimates, we developed an 

independent method for estimating mixture that only assumes that MA1 is a representative of 

ANE, Loschbour of WHG, and Stuttgart of EEF. Specifically, we studied f4-statistics of the form 

f4(X, Stuttgart; Outgroup1, Outgroup2), measuring the correlation in allele frequency difference 

between X and Stuttgart, and a pair of outgroups with no recent shared history with Europeans. 

We chose divergent outgroups (SI13) that are differentially related to ANE, WHG and EEF, and 

then expressed the f4-statistics for each European population as a linear combination of 

f4(Loschbour, Stuttgart; Outgroup1, Outgroup2) and f4(MA1, Stuttgart; Outgroup1, Outgroup2), 

fitting the mixture coefficients that minimize the difference between expected and observed f4-

statistics. The mixture coefficients agree between this method and the ADMIXTUREGRAPH 

modeling, increasing our confidence in both analyses (Extended Data Table 3, SI13).  

 

Our estimates of mixture proportions (Fig. 2B and Extended Table 3) indicate that EEF ancestry 

in Europe today ranges from as little as around 30% in the Baltic to as high as around 90% in the 

Mediterranean (a previous study
2
 inferred 11% in Russians to 95% in Sardinians, but fit a two-

population mixture model). The north-south gradient is also consistent with patterns of identity-

by-descent (IBD) sharing
29

, in which Loschbour shares more segments with northern Europeans 

and Stuttgart with southern Europeans (SI14). We infer that southern Europeans received their 
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European hunter-gatherer ancestry mostly via EEF, while Northern Europeans acquired up to 

50% additional WHG-related ancestry. Europeans also have ANE ancestry (up to ~20%), which 

is widespread across Europe, but quantitative less as the WHG/(WHG+ANE) ratio is ~0.6-0.8 

for most Europeans (SI12). The history behind the ANE ancestry in West Eurasia is not simple, 

as the Near East has little or no WHG ancestry but substantial levels of ANE ancestry there 

especially in the North Caucasus (SI12; Fig.1B; Fig. 2). Loschbour and Stuttgart had little or no 

ANE ancestry, indicating that it was not as pervasive in central Europe around the time of the 

agricultural transition as it is today. (By implication ANE ancestry was also not present in the 

ancient Near East; since Stuttgart which has substantial Near Eastern ancestry lacks it.) 

However, ANE ancestry was already present in at least some Europeans (Scandinavian hunter-

gatherers) by ~8,000 years ago, since MA1 shares more alleles with Motala12 than Loschbour: 

f4(Motala12; Loschbour; MA1, Mbuti) = 0.003 (Z=5.2 standard errors from zero) (SI12). While 

SHG may have contributed ANE ancestry to modern Europeans, it cannot have been the only 

population that did so, as no European population has its lower f3-statistic with it in Table 1, and 

few populations fit a model of EEF-SHG admixture (SI12). 

 

While our three-way mixture model fits the data for most European populations, two sets of 

populations are poor fits. First, Sicilians, Maltese, and Ashkenazi Jews have EEF estimates 

beyond the 0-100% interval (SI13) and they cannot be jointly fit with other Europeans in the 

(SI12). These populations may have more Near Eastern ancestry than can be explained via EEF 

admixture (SI13), an inference that is also suggested by the fact that they fall in the gap between 

European and Near Eastern populations in the PCA of Fig. 1B. Second, we observe that Finns, 

Mordovians, Russians, Chuvash, and Saami from northeastern Europe do not fit our model 

(SI12; Extended Data Table 3). To better understand this, for each West Eurasian population in 

turn we plotted f4(X, Bedouin2; Han, Mbuti) against f4(X, Bedouin2; MA1, Mbuti), using 

statistics that measure the degree of a European population’s allele sharing with Han Chinese or 

MA1 (Extended Data Fig. 7). Europeans fall along a line of slope >1 in the plot of these two 

statistics. However, northeastern Europeans fall away from this line in the direction of Han. This 

is consistent with Siberian gene flow into some northeastern Europeans after the initial ANE 

admixture, and may be related to the fact that Y-chromosome haplogroup N
30, 31

 is shared 

between Siberian and northeastern Europeans
32, 33

 but not with western Europeans. There may in 
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fact be multiple layers of Siberian gene flow into northeastern Europe after the initial ANE gene 

flow, as our analyses reported in SI 12 show that some Mordovians, Russians and Chuvash have 

Siberian-related admixture that is significantly more recent than that in Finns (SI12). 

 

This study raises two questions that are important to address in future research. A first is where 

the EEF picked up their WHG ancestry. Southeastern Europe is a candidate as it lies along the 

geographic path from Anatolia into central Europe, and hence it should be a priority to study 

ancient samples from this region. A second question is when and where ANE ancestors admixed 

with the ancestors of most present-day Europeans. Based on discontinuity in mtDNA haplogroup 

frequencies in Central Europe, this may have occurred during the Late Neolithic or early Bronze 

Age ~5,500-4,000 years ago
35

. A central aim for future work should be to collect transects of 

ancient Europeans through time and space to illuminate the history of these transformations.  
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Supplementary Information is linked to the online version of the paper. The fully public 

version of the Human Origins dataset can be found at 

http://genetics.med.harvard.edu/reichlab/Reich_Lab/Datasets.html, whereas a version with 

additional samples that require users to sign a letter indicating that they will abide by specified 

usage conditions is available on request from DR. 
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Table 1: Lowest f3-statistics for each West Eurasian population  

Ref1 Ref2 
Target pop. for which these two reference pops. 

give the most negative f3(X; Ref1, Ref2) 

Loschbour Stuttgart Sardinian 

Loschbour 

 

 

Near East  

(Abkhasian
A
, Armenian

B
, 

Georgian
C
, Iraqi_Jew

D
) 

Estonian
A
, Finnish

A
, Icelandic

A
, Lithuanian

A
, 

Mordovian
A
, Russian

A
, Orcadian

B
, Belorussian

C
, 

Czech
C
, Norwegian

C
, Ukrainian

C
, Basque

D
, English

D
, 

French_South
D
, Spain_North

D
, Scottish

D
, Spanish

D
 

Stuttgart 

 

North Eurasia  

(MA1
E
, Piapoco

F
) 

Albanian
E
, Ashkenazi_Jew

E
, Bergamo

E
, Bulgarian

E
, 

Croatian
E
, French

E
, Greek

E
, Hungarian

E
, Maltese

E
, 

Sicilian
E
, Tuscan

E
, Abkhasian

E
, Chechen

E
, Cypriot

E
, 

Druze
E
, Lezgin, Turkish_Jew

E
; Adygei

F
, Balkar

F
, 

Iranian
F
, Kumyk

F
, North_Ossetian

F
, Turkish

F
 

Stuttgart 

 

African  
(Esan

G
, Gambian

H
, Kgalagadi

I
) 

BedouinA
G
, BedouinB

G
, Jordanian

G
, Lebanese

G
, 

Libyan_Jew
G
, Moroccan_Jew

G
, Palestinian

G
, 

Syrian
G
, Yemenite_Jew

G
; Tunisian_Jew

H
; Saudi

I
 

Stuttgart 

 

South Asian  

(Gujarati3
J
, Vishwabrahmin

K
) 

Armenian
J
, Georgian

J
, Georgian_Jew

J
, Iranian_Jew

J
, 

Iraqi Jew
K
 

 

 

Note: We group populations into five categories of similar Ref1 and Ref2, using a capital letter superscript 

to indicate the Ref2 population in each pair. The Z-scores for populations are < -4 except where marked in 

gray. Extended Table 1 gives the quantitative values of each f3-statistic. 
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Figure Legends 

 

Figure 1: Map of West Eurasian populations and Principal Component Analysis. (a) 

Locations of ancient and present-day samples analyzed, with color coding matching the PCA. 

We show all sampling locations for each population, which results in multiple points for some 

populations (e.g. Spain). (b) PCA on all present-day West Eurasians, with the ancient and 

selected eastern non-Africans projected. European hunter-gatherers fall beyond modern Europe 

in the direction of European differentiation from the Near East. Stuttgart clusters with other 

Neolithic Europeans and present-day Sardinians. MA1 falls outside the variation of modern day 

West Eurasians in the direction of southern-northern differentiation along dimension 2 and 

between the European and Near Eastern clines along dimension 1. 

 

Figure 2: Modeling of West Eurasian population history. (a) A three-way mixture model that 

is a statistical fit to the data for many European populations, ancient DNA samples, and non-

European populations. Present-day samples are colored in blue, ancient samples in red, and 

reconstructed ancestral populations in green. Solid lines represent descent without mixture, and 

dashed lines represent admixture events. For the two mixture events relating the highly divergent 

ancestral populations, we print estimates for the mixture proportions as well as one standard 

error. (b) We plot the proportions of ancestry from each of three inferred ancestral populations 

(EEF, ANE and WHG) as inferred from the model-based analysis. 
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Figure 2 
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