Insight into a Physiological Role for the EC Night-Time Repressor in the Arabidopsis Circadian Clock

Plant Cell Physiol. 2015 Sep;56(9):1738-47. doi: 10.1093/pcp/pcv094. Epub 2015 Jun 24.

Abstract

Life cycle adaptation to seasonal variation in photoperiod and temperature is a major determinant of ecological success of widespread domestication of Arabidopsis thaliana. The circadian clock plays a role in the underlying mechanism for adaptation. Nevertheless, the mechanism by which the circadian clock tracks seasonal changes in photoperiod and temperature is a longstanding subject of research in the field. We previously showed that a set of the target genes (i.e. GI, LNK1. PRR9 and PRR7) of the Evening Complex (EC) consisting of LUX-ELF3-ELF4 is synergistically induced in response to both warm-night and night-light signals. Here, we further show that the responses occur within a wide range of growth-compatible temperatures (16-28°C) in response to a small change in temperature (Δ4°C). A dim light pulse (<1 µmol m(-2) s(-1)) causes the enhanced effect on the transcription of EC targets. The night-light pulse antagonizes against a positive effect of the cool-night signal on the EC activity. The mechanism of double-checking external temperature and light signals through the EC nighttime repressor might enable plants to ignore (or tolerate) daily fluctuation of ambient temperature within a short time interval in their natural habitats. Taken together, the EC night-time repressor might play a physiological role in tracking seasonal variation in photoperiod and temperature by conservatively double-checking both the light and temperature conditions. Another EC target output gene PIF4 regulating plant morphologies is also regulated by both the temperature and light stimuli during the night. Hence, the EC night-time repressor is also implicated in a physiological output of the PIF4-mediated regulation of morphologies in response to seasonal variation in photoperiod and ambient temperature.

Keywords: Arabidopsis thaliana; Circadian clock; Light response; Temperature response; Transcriptional regulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / growth & development
  • Arabidopsis / physiology*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism
  • Basic Helix-Loop-Helix Transcription Factors / genetics
  • Basic Helix-Loop-Helix Transcription Factors / metabolism
  • Circadian Clocks*
  • Darkness*
  • Gene Expression Regulation, Plant
  • Genes, Plant
  • Models, Biological
  • Repressor Proteins / metabolism*
  • Temperature

Substances

  • Arabidopsis Proteins
  • Basic Helix-Loop-Helix Transcription Factors
  • PIF4 protein, Arabidopsis
  • Repressor Proteins