Induction of the multixenobiotic defense mechanism (MXR), P-glycoprotein, in the mussel Mytilus californianus as a general cellular response to environmental stresses

Aquat Toxicol. 2000 May 1;49(1-2):89-100. doi: 10.1016/s0166-445x(99)00068-5.

Abstract

A multixenobiotic resistance mechanism (MXR) related to the P-glycoprotein multidrug transporter protein (p-gp) has been identified and characterized in several marine invertebrates. p-gp activity and protein titer is induced by exposure to toxins, supporting the suggestion that the role for this transporter is protection from xenobiotics by reducing accumulation of toxins in cells. In this study, we report on the specificity of the induction of the transporter by various chemical and physical stressors. p-gp substrates (including the pesticides pentachlorophenol and chlorthal) as well as non-substrates (including DDE and sodium arsenite) induced p-gp activity and protein titer in the gill tissues of the mussel Mytilus californianus. Similarly, mussels exposed to heat shock of 20 degrees C or 25 degrees C exhibited increased p-gp titer and activity compared to mussels held at ambient (12 degrees C) temperature seawater. Some of the same treatments that induced an increase in p-gp caused a concomitant increase in hsp70, but hsp induction was not always associated with induction of the p-gp protein. These findings suggest that p-gp induction in mussels may be part of a general cellular stress response. This response, however, does not appear to be always coupled with the hsp70 response in mussels.