Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanochemical coupling of two substeps in a single myosin V motor

Abstract

Myosin V is a double-headed processive molecular motor that moves along an actin filament by taking 36-nm steps. Using optical trapping nanometry with high spatiotemporal resolution, we discovered that there are two possible pathways for the 36-nm steps, one with 12- and 24-nm substeps, in this order, and the other without substeps. Based on the analyses of effects of ATP, ADP and 2,3-butanedione 2-monoxime (a reagent shown here to slow ADP release from actomyosin V) on the dwell time and the occurrence frequency of the main and the intermediate states, we propose that the 12-nm substep occurs after ATP binding to the bound trailing head and the 24-nm substep results from a mechanical step following the isomerization of an actomyosin-ADP state on the bound leading head. When the isomerization precedes the 12-nm substep, the 36-nm step occurs without substeps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stepwise movement of single myosin V motor under various external loads.
Figure 2: The time course of myosin V movement at a 10-kHz sampling rate and force dependence of the occurrence of various steps.
Figure 3: Force dependence of the intermediate and the main dwell times at various nucleotide states and of the occurrence frequency of the intermediate state.
Figure 4: Effects of BDM on ATPase cycle kinetics of single-headed myosin V.
Figure 5: Hand-over-hand model coupled with nucleotide states explaining the present results.

Similar content being viewed by others

References

  1. Cheney, R.E. et al. Brain myosin V is a two-headed unconventional myosin with motor activity. Cell 75, 13–23 (1993).

    Article  CAS  Google Scholar 

  2. Miller, K.E. & Sheetz, M.P. Characterization of myosin V binding to brain vesicles. J. Biol. Chem. 275, 2598–2606 (2000).

    Article  CAS  Google Scholar 

  3. Vale, R.D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  Google Scholar 

  4. Reck-Peterson, S., Provance, D.W., Mooseker, M.S. & Mercer, J.A. Review: class V myosins. Biochim. Biophys. Acta 1496, 36–51 (2000).

    Article  CAS  Google Scholar 

  5. Sakamoto, T., Amitani, I., Yokota, E. & Ando, T. Direct observation of processive movement by individual myosin V molecules. Biochem. Biophys. Res. Commun. 272, 586–590 (2000).

    Article  CAS  Google Scholar 

  6. Mehta, A.D. et al. Myosin V is a processive actin-based motor. Nature 400, 590–593 (1999).

    Article  CAS  Google Scholar 

  7. Walker, M. et al. Two-headed bindings of a processive myosin to F-actin. Nature 405, 804–807 (2000).

    Article  CAS  Google Scholar 

  8. Rief, M. et al. Myosin V stepping kinetics: a molecular model for processivity. Proc. Natl. Acad. Sci. USA 97, 9482–9486 (2002).

    Article  Google Scholar 

  9. Ali, M.Y. et al. Myosin V is a left-handed spiral motor on the right-handed actin helix. Nat. Struct. Biol. 9, 464–467 (2002).

    Article  CAS  Google Scholar 

  10. Forkey, J.N., Quinlan, M.E., Shaw, M.A., Corrie, J.E. & Goldman, Y.E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).

    Article  CAS  Google Scholar 

  11. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  12. De La Cruz, E.M., Wells, A.L., Rosenfeld, S.S., Ostap, E.M. & Sweeney, H.L. The kinetic mechanism of myosin V. Proc. Natl. Acad. Sci. USA 96, 13726–13731 (1999).

    Article  CAS  Google Scholar 

  13. Trybus, K.M., Krementsova, E. & Freyzon, Y. Kinetic characterization of a monomeric unconventional myosin V construct. J. Biol. Chem. 274, 27448–27456 (1999).

    Article  CAS  Google Scholar 

  14. Higuchi, H. & Takemori, S. Butanedione monoxime suppresses contraction and ATPase activity of rabbit skeletal muscle. J. Biochem. 105, 638–643 (1989).

    Article  CAS  Google Scholar 

  15. Nishiyama, M., Higuchi, H. & Yanagida, T. Chemomechanical coupling of the forward and backward steps of single kinesin molecules. Nat. Cell Biol. 4, 790–797 (2002).

    Article  CAS  Google Scholar 

  16. Moore, J.R., Krementsova, E.B., Trybus, K.M. & Warshaw, D.M. Myosin V exhibits a high duty cycle and large unitary displacement. J. Cell Biol. 155, 625–635 (2001).

    Article  CAS  Google Scholar 

  17. Kojima, H., Muto, E., Higuchi, H. & Yanagida, T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73, 2012–2022 (1997).

    Article  CAS  Google Scholar 

  18. Svoboda, K., Schmidt, C.F., Schnapp, B.J. & Block, S.M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  CAS  Google Scholar 

  19. Schnitzer, M.J., Visscher, K. & Block, S.M. Force production by single kinesin motors. Nat. Cell Biol. 2, 718–723 (2000).

    Article  CAS  Google Scholar 

  20. Uemura, S. & Ishiwata, S. Loading direction regulates the affinity of ADP for kinesin. Nat. Struct. Biol. 10, 308–311 (2003).

    Article  CAS  Google Scholar 

  21. De La Cruz, E.M., Sweeney, H.L. & Ostap, E.M. ADP inhibition of myosin V ATPase activity. Biophys. J. 79, 1524–1529 (2000).

    Article  CAS  Google Scholar 

  22. De La Cruz, E.M., Wells, A.L., Sweeney, H.L. & Ostap, E.M. Actin and light chain isoform dependence of myosin V kinetics. Biochemistry 39, 14196–14202 (2000).

    Article  CAS  Google Scholar 

  23. Ostap, E.M. 2,3-Butanedione monoxime (BDM) as a myosin inhibitor. J. Muscle Res. Cell Motil. 23, 305–308 (2002).

    Article  CAS  Google Scholar 

  24. De La Cruz, E.M., Ostap, E.M. & Sweeney, H.L. Kinetic mechanism and regulation of myosin VI. J. Biol. Chem. 276, 32373–32381 (2001).

    Article  CAS  Google Scholar 

  25. Herrmann, C., Wray, J., Travers, F. & Barman, T. Effect of 2,3-butanedione monoxime on myosin and myofibrillar ATPases. An example of an uncompetitive inhibitor. Biochemistry 31, 12227–12232 (1992).

    Article  CAS  Google Scholar 

  26. Spudich, J.A. & Rock, R.S. A crossbridge too far. Nat. Cell Biol. 4, E8–E10 (2002).

    Article  CAS  Google Scholar 

  27. Vale, R.D. Myosin V motor proteins: marching stepwise towards a mechanism. J. Cell Biol. 163, 445–450 (2003).

    Article  CAS  Google Scholar 

  28. Goldman, Y.E. and Brenner, B. Special topic: molecular mechanism of muscle contraction. Annu. Rev. Physiol. 49, 629–636 (1987).

    Article  CAS  Google Scholar 

  29. Dantzig, J.A., Hibberd, M.G., Trentham, D.R. & Goldman, Y.E. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres. J. Physiol. 432, 639–680 (1991).

    Article  CAS  Google Scholar 

  30. Burgess, S. et al. The prepower stroke conformation of myosin V. J. Cell Biol. 159, 983–991 (2002).

    Article  CAS  Google Scholar 

  31. Veigel, C., Wang, F., Bartoo, M.L., Sellers, J.R. & Molloy, J.E. The gated gait of the processive molecular motor myosin V. Nat. Cell Biol. 4, 59–65 (2002).

    Article  CAS  Google Scholar 

  32. Kolomeisky, A.B. & Fisher, M.E. A simple model describes the processivity of Myosin V. Biophys. J. 84, 1642–1650 (2003).

    Article  CAS  Google Scholar 

  33. Rosenfeld, S.S., Fordyce, P.M., Jefferson, G.M., King, P.H. & Block, S.M. Stepping and stretching. How kinesin uses internal strain to walk processively. J. Biol. Chem. 278, 18550–18556 (2003).

    Article  CAS  Google Scholar 

  34. Cheney, R.E. Purification and assay of myosin V. Methods Enzymol. 293, 3–18 (1998).

    Article  Google Scholar 

  35. Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58–60 (1984).

    Article  CAS  Google Scholar 

  36. Brune, M. et al. Mechanism of inorganic phosphate interaction with phosphate binding protein from Escherichia coli. Biochemistry 37, 10370–10380 (1998).

    Article  CAS  Google Scholar 

  37. Hiratsuka, T. New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes. Biochim. Biophys. Acta 742, 496–508 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.R. Webb for the phosphate-binding protein clone and suggestions on purification and labeling, and H.L. Sweeney for providing the myosin V heavy and light chain viruses. We are grateful to N. Sasaki, M.Y. Ali, K. Kinosita, Jr. and E.M. Ostap for encouragement and stimulating discussions. This research was partly supported by Grants-in-Aid for Specially Promoted Research, for the Bio-venture Project and for The 21st Century COE Program (Physics of Self-Organization Systems) at Waseda Univ. from the Ministry of Education, Sports, Culture, Science and Technology of Japan (to S.I.) and supported by a Scientist Development Grant from the American Heart Association and a grant from the US National Science Foundation (to E.M.D.L.C.). S.U. is a postdoctoral fellow of the Japan Society for the Promotion of Science. A.O.O. is supported by a Cellular & Molecular Biology graduate training grant (Yale University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin'ichi Ishiwata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uemura, S., Higuchi, H., Olivares, A. et al. Mechanochemical coupling of two substeps in a single myosin V motor. Nat Struct Mol Biol 11, 877–883 (2004). https://doi.org/10.1038/nsmb806

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing