Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New roles for synaptic inhibition in sound localization

Key Points

  • Interaural time differences (ITDs) are the main cue for localizing low-frequency sounds. As they are only in the range of microseconds, ITD detection requires the most elaborate mechanism for temporal processing in the mammalian or avian brain.

  • The textbook view of how ITD processing is achieved has been dominated by the seminal model put forward by Jeffress in 1948. This model incorporates excitatory projections from both ears that faithfully time-lock to the temporal structure of sounds and converge onto binaural coincidence detector neurons. These fire maximally when the two inputs arrive simultaneously. The model also assumes that a systematic arrangement of the length of the input fibres (delay lines), can produce different conductance delays that tune different coincidence detector neurons to different favoured ITDs. Such a system could then create a map of best ITDs, and hence of azimuthal space.

  • ITD-sensitive coincidence detector neurons have been found in the mammalian medial superior olive (MSO) and in its avian analogue, the nucleus laminaris. In the bird ITD-processing circuits, delay lines have been described structurally and functionally, and there is good evidence for a topographic representation of ITDs (and, hence, of azimuthal space) at least in the barn owl auditory system. By contrast, the existence of delay lines in mammals has been controversial, and convincing evidence for topographic maps of ITDs is lacking. Recent evidence indicates that, in mammals, the representation of azimuthal space calculated from ITDs might be organized in a fundamentally different way than proposed by Jeffress.

  • Our view of the representation of ITDs in mammals, and also of the mechanism of ITD processing itself, is undergoing marked changes. In birds and mammals, profound inhibitory inputs have to be added to our picture of ITD processing. These inhibitory inputs have entirely different functions in birds and mammals. Whereas in birds tonic depolarizing GABA (γ-aminobutyric acid)-mediated inhibition accounts for differential gain control and a general improvement of the coincidence detection mechanism, temporally precise inhibition onto ITD-sensitive neurons in the mammalian MSO actively contributes to the ITD tuning itself.

  • The ITD-processing circuits in birds and mammals are an excellent example of how evolution of the vertebrate nervous system can produce very different functional solutions for the same computational problem.

Abstract

The arrival times of a sound at the two ears are only microseconds apart, but both birds and mammals can use these interaural time differences to localize low-frequency sounds. Traditionally, it was thought that the underlying mechanism involved only coincidence detection of excitatory inputs from the two ears. However, recent findings have uncovered profound roles for synaptic inhibition in the processing of interaural time differences. In mammals, exquisitely timed hyperpolarizing inhibition adjusts the temporal sensitivity of coincidence detector neurons to the physiologically relevant range of interaural time differences. Inhibition onto bird coincidence detectors, by contrast, is depolarizing and devoid of temporal information, providing a mechanism for gain control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The evolution of tympanic ears.
Figure 2: The interaural time difference (ITD).
Figure 3: Different strategies for encoding interaural time differences (ITDs).
Figure 4: The interaural time difference (ITD)-encoding systems in mammals and birds.
Figure 5: The role of inhibition in the medial superior olive (MSO).
Figure 6: Inhibitory inputs to medial superior olive (MSO) cells become refined to cell somata.

Similar content being viewed by others

References

  1. Clack, J. A. The evolution of tetrapod ears and the fossil record. Brain Behav. Evol. 50, 198–212 (1997). An excellent review of our current knowledge of the independent evolution of the tetrapod middle ears. It revises the old but still often stated view that the mammalian three-ossicle middle ear derived from a reptilian-like one-ossicle middle ear.

    Article  CAS  PubMed  Google Scholar 

  2. Clack, J. A. Patterns and processes in the early evolution of the tetrapod ear. J. Neurobiol. 53, 251–264 (2002).

    Article  PubMed  Google Scholar 

  3. Jeffress, L. A. A place theory of sound localization. J. Comp. Physiol. Psychol. 41, 35–39 (1948). One of the most elegant and influential models in computational neuroscience. It provided the conceptual framework for several anatomical, physiological, psychophysical and theoretical studies related to sound localization in mammals and birds.

    Article  CAS  PubMed  Google Scholar 

  4. Carr, C. E. & Konishi, M. A circuit for detection of interaural time differences in the brain stem of the barn owl. J. Neurosci. 10, 3227–3246 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Overholt, E., Rubel, E. W. & Hyson, R. L. A circuit for coding interaural time differences in the chick brainstem. J. Neurosci. 12, 1698–1708 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Joseph, A. W. & Hyson, R. L. Coincidence detection by binaural neurons in the chick brain stem. J. Neurophysiol. 69, 1197–1211 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Reyes, A. D., Rubel, E. W. & Spain, W. J. In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons. J. Neurosci. 16, 993–1007 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuba, H., Koyano, K. & Ohmori, H. Development of membrane conductance improves coincidence detection in the nucleus laminaris of the chicken. J. Physiol. (Lond.) 540, 529–542 (2002).

    Article  CAS  Google Scholar 

  9. Parks, T. N. & Rubel, E. W. Organization and development of brain stem auditory nuclei of the chicken: organization of projections from n. magnocellularis to n. laminaris. J. Comp. Neurol. 164, 435–448 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. Rubel, E. W. & Parks, T. N. Organization and development of brain stem auditory nuclei of the chicken: tonotopic organization of n. magnocellularis and n. laminaris. J. Comp. Neurol. 164, 411–433 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Young, E. D. & Rubel, E. W. Frequency-specific projections of individual neurons in chick brainstem auditory nuclei. J. Neurosci. 3, 1373–1378 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Young, E. D. & Rubel, E. W. Embryogenesis of arborization pattern and topography of individual axons in N. laminaris of the chicken brain stem. J. Comp. Neurol. 245, 425–459 (1986).

    Article  Google Scholar 

  13. Wagner, H., Mazer, J. A. & von Campenhausen, M. Response properties of neurons in the core of the central nucleus of the inferior colliculus of the barn owl. Eur. J. Neurosci. 15, 1343–1352 (2002).

    Article  PubMed  Google Scholar 

  14. Knudsen, E. I. & Konishi, M. Center-surround organization of auditory receptive fields in the owl. Science 202, 778–780 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. Brainard, M. S. & Knudsen, E. I. Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl. J. Neurosci. 13, 4589–4608 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gold, J. I. & Knudsen, E. I. A site of auditory experience-dependent plasticity in the neural representation of auditory space in the barn owl's inferior colliculus. J. Neurosci. 20, 3469–3486 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yin, T. C. & Chan, J. C. Interaural time sensitivity in medial superior olive of cat. J. Neurophysiol. 64, 465–488 (1990). A careful description of a significant number of MSO cells in vivo . It provided the strongest physiological evidence so far in favour of a Jeffress-type ITD-detection mechanism in the MSO.

    Article  CAS  PubMed  Google Scholar 

  18. Joris, P. X., Smith, P. H. & Yin, T. C. Coincidence detection in the auditory system: 50 years after Jeffress. Neuron 21, 1235–1238 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Moushegian, G., Rupert, A. L. & Gidda, J. S. Functional characteristics of superior olivary neurons to binaural stimuli. J. Neurophysiol. 38, 1037–1048 (1975).

    Article  CAS  PubMed  Google Scholar 

  20. Goldberg, J. M. & Brown, P. B. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophysiol. 32, 613–636 (1969).

    Article  CAS  PubMed  Google Scholar 

  21. Crow, G., Rupert, A. L. & Moushegian, G. Phase locking in monaural and binaural medullary neurons: implications for binaural phenomena. J. Acoust. Soc. Am. 64, 493–501 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. Spitzer, M. W. & Semple, M. N. Neurons sensitive to interaural phase disparity in gerbil superior olive: diverse monaural and temporal response properties. J. Neurophysiol. 73, 1668–1690 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Stern, R. M. & Trahiotis, C. in Hearing (ed. Moore, B. C. J.) 347–386 (Academic, New York, 1995).

    Book  Google Scholar 

  24. Palmer, A. R. & Shackleton, T. M. The physiological basis for the binaural masking level difference. Acta Acust. Unit. Acust. 88, 312–319 (2002).

    Google Scholar 

  25. Smith, P. H., Joris, P. X. & Yin, T. C. Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. J. Comp. Neurol. 331, 245–260 (1993). A thorough anatomical study addressing the question of the existence of delay-lines in mammals (although B.G. does not agree with their conclusion).

    Article  CAS  PubMed  Google Scholar 

  26. Beckius, G. E., Batra, R. & Oliver, D. L. Axons from anteroventral cochlear nucleus that terminate in medial superior olive of cat: observations related to delay lines. J. Neurosci. 19, 3146–3161 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Middlebrooks, J. C., Xu, L., Furukawa, S. & Macpherson, E. A. Cortical neurons that localize sounds. Neuroscientist 8, 73–83 (2002).

    Article  PubMed  Google Scholar 

  28. Batra, R., Kuwada, S. & Fitzpatrick, D. C. Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. I. Heterogeneity of responses. J. Neurophysiol. 78, 1222–1236 (1997). A detailed description of different types of ITD sensitivity in the superior olivary complex. This paper is particularly important because it comes from the first (and so far only) recordings from SONs in awake animals. Additionally, it provides the first indirect in vivo evidence for inhibitory effects on ITD functions in a mammal that uses ITDs to localize low-frequency sounds.

    Article  CAS  PubMed  Google Scholar 

  29. Fitzpatrick, D. C., Kuwada, S. & Batra, R. Neural sensitivity to interaural time differences: beyond the Jeffress model. J. Neurosci. 20, 1605–1615 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McAlpine, D., Jiang, D. & Palmer, A. R. A neural code for low-frequency sound localization in mammals. Nature Neurosci. 4, 396–401 (2001). A new way of analysing data from ITD-sensitive neurons in the guinea-pig auditory midbrain provided the basis for a new concept concerning the representation of ITDs in the mammalian auditory system.

    Article  CAS  PubMed  Google Scholar 

  31. Brand, A., Behrend, O., Marquardt, T., McAlpine, D. & Grothe, B. Precise inhibition is essential for microsecond interaural time difference coding. Nature 417, 543–547 (2002). The first direct evidence for the involvement of glycinergic inhibition in ITD processing in the MSO in vivo . Pharmacological blockade of glycinergic inhibition caused a significant shift in the ITD sensitivity of single MSO cells.

    Article  CAS  PubMed  Google Scholar 

  32. Grothe, B. & Neuweiler, G. The function of the medial superior olive in small mammals: temporal receptive fields in auditory analysis. J. Comp. Physiol. A 186, 413–423 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. McAlpine, D. & Grothe, B. Sound localisation and delay lines — do mammals fit the model? Trends Neurosci. (in the press).

  34. Warr, W. B. Fiber degeneration following lesions in the anterior ventral cochlear nucleus of the cat. Exp. Neurol. 14, 453–474 (1966).

    Article  CAS  PubMed  Google Scholar 

  35. Osen, K. K. Cytoarchitecture of the cochlear nuclei in the cat. J. Comp. Neurol. 136, 453–484 (1969).

    Article  CAS  PubMed  Google Scholar 

  36. Stotler, W. A. An experimental study of the cells and connections of the superior olivary complex of the cat. J. Comp. Neurol. 98, 401–432 (1953).

    Article  CAS  PubMed  Google Scholar 

  37. Lindsey, B. G. Fine structure and distribution of axon terminals from the cochlear nucleus on neurons in the medial superior olivary nucleus of the cat. J. Comp. Neurol. 160, 81–103 (1975).

    Article  CAS  PubMed  Google Scholar 

  38. Kitzes, L. M., Kageyama G. H., Semple, M. N. & Kil, J. Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea. J. Comp. Neurol. 353, 341–363 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Agmon-Snir, H., Carr, C. E. & Rinzel, J. The role of dendrites in auditory coincidence detection. Nature 393, 268–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Cant, N. B. in Neurobiology of Hearing: The Central Auditory System (eds Altschuler, R. A., Bobbin, R. P., Clopton, B. M. & Hoffman, D. W.) 99–119 (Raven, New York, 1991).

    Google Scholar 

  41. Covey, E., Vater, M. & Casseday, J. H. Binaural properties of single units in the superior olivary complex of the mustached bat. J. Neurophysiol. 66, 1080–1094 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Kuwabara, N. & Zook, J. M. Projections to the medial superior olive from the medial and lateral nuclei of the trapezoid body in rodents and bats. J. Comp. Neurol. 324, 522–538 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Cant, N. B. & Hyson, R. L. Projections from the lateral nucleus of the trapezoid body to the medial superior olivary nucleus in the gerbil. Hear. Res. 58, 26–34 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Smith, P. H., Joris, P. X. & Yin, T. C. Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J. Neurophysiol. 79, 3127–3142 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Grothe, B. & Sanes, D. H. Bilateral inhibition by glycinergic afferents in the medial superior olive. J. Neurophysiol. 69, 1192–1196 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Grothe, B. & Sanes, D. H. Synaptic inhibition influences the temporal coding properties of medial superior olivary neurons: an in vitro study. J. Neurosci. 14, 1701–1709 (1994). The first in vitro evidence for well-timed glycinergic inhibition that could influence the ITD tuning of MSO cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Smith, P. H. Structural and functional differences distinguish principal from nonprincipal cells in the guinea pig MSO slice. J. Neurophysiol. 73, 1653–1667 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Grothe, B. The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Prog. Neurobiol. 61, 581–610 (2000). This review addresses the question of the evolution of ITD processing in the mammalian auditory system. It provides an overview of the role of the MSO and its inhibitory inputs in mammals that do not use ITDs for sound localization.

    Article  CAS  PubMed  Google Scholar 

  49. Smith, P. H., Joris, P. X., Carney, L. H. & Yin, T. C. Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J. Comp. Neurol. 304, 387–407 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Harrison, J. M. & Warr, W. B. A study of the cochlear nuclei and ascending auditory pathways of the medulla. J. Comp. Neurol. 119, 341–380 (1962).

    Article  CAS  PubMed  Google Scholar 

  51. Morest, D. K. The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivo-cochlear bundle. Brain Res. 9, 288–311 (1968).

    Article  CAS  PubMed  Google Scholar 

  52. von Gersdorff, H. & Borst, J. G. Short-term plasticity at the calyx of Held. Nature Rev. Neurosci. 3, 53–64 (2002).

    Article  CAS  Google Scholar 

  53. Grothe, B. & Park, T. J. Sensitivity to interaural time differences in the medial superior olive of a small mammal, the Mexican free-tailed bat. J. Neurosci. 18, 6608–6622 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boudreau, J. C. & Tsuchitani, C. Binaural interaction in the cat superior olive S segment. J. Neurophysiol. 31, 442–454 (1968).

    Article  CAS  PubMed  Google Scholar 

  55. Moore, M. J. & Caspary, D. M. Strychnine blocks binaural inhibition in lateral superior olivary neurons. J. Neurosci. 3, 237–242 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yin, T. C., Hirsch, J. A. & Chan, J. C. Responses of neurons in the cat's superior colliculus to acoustic stimuli. II. A model of interaural intensity sensitivity. J. Neurophysiol. 53, 746–758 (1985).

    Article  CAS  PubMed  Google Scholar 

  57. Pollak, G. D. Time is traded for intensity in the bat's auditory system. Hear. Res. 36, 107–124 (1988).

    Article  CAS  PubMed  Google Scholar 

  58. Park, T. J., Grothe, B., Pollak, G. D., Schuller, G. & Koch, U. Neural delays shape selectivity to interaural intensity differences in the lateral superior olive. J. Neurosci. 16, 6554–6566 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Irvine, D. R., Park, V. N. & McCormick, L. Mechanisms underlying the sensitivity of neurons in the lateral superior olive to interaural intensity differences. J. Neurophysiol. 86, 2647–2666 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Joris, P. X. & Yin, T. C. Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. J. Neurophysiol. 73, 1043–1062 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Batra, R., Kuwada, S. & Fitzpatrick, D. C. Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. II. Coincidence detection. J. Neurophysiol. 78, 1237–1247 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Glendenning, K. K., Brunso-Bechtold, J. K., Thompson, G. C. & Masterton, R. B. Ascending auditory afferents to the nuclei of the lateral lemniscus. J. Comp. Neurol. 197, 673–703 (1981).

    Article  CAS  PubMed  Google Scholar 

  63. Covey, E. & Casseday, J. H. Connectional basis for frequency representation in the nuclei of the lateral lemniscus of the bat Eptesicus fuscus. J. Neurosci. 6, 2926–2940 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grothe, B. Interaction of excitation and inhibition in processing of pure tone and amplitude-modulated stimuli in the medial superior olive of the mustached bat. J. Neurophysiol. 71, 706–721 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Covey, E. & Casseday, J. H. The monaural nuclei of the lateral lemniscus in an echolocating bat: parallel pathways for analyzing temporal features of sound. J. Neurosci. 11, 3456–3470 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Spirou, G. A. & Berrebi, A. S. Glycine immunoreactivity in the lateral nucleus of the trapezoid body of the cat. J. Comp. Neurol. 383, 473–488 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Spirou, G. A. & Berrebi, A. S. Organization of ventrolateral periolivary cells of the cat superior olive as revealed by pep-19 immunocytochemistry and nissl stain. J. Comp. Neurol. 368, 100–120 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Heffner, R. S. & Heffner, H. E. Sound localization and use of binaural cues by the gerbil (Meriones unguiculatus). Behav. Neurosci. 102, 422–428 (1988).

    Article  CAS  PubMed  Google Scholar 

  69. Kapfer, C., Seidl, A. H., Schweizer, H. & Grothe, B. Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nature Neurosci. 5, 247–253 (2002). The study presents evidence for a structural change in the inhibitory MSO inputs after hearing onset. It shows that this change depends on auditory experience during a critical period during ontogeny.

    Article  CAS  PubMed  Google Scholar 

  70. Skottun, B. C., Shackleton, T. M., Arnott, R. H. & Palmer, A. R. The ability of inferior colliculus neurons to signal differences in interaural delay. Proc. Natl Acad. Sci. USA 98, 14050–14054 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Brand, A. Precise Temporal Processing in the Gerbil Auditory Brainstem. Thesis, Munich Univ. (2003).

    Google Scholar 

  72. Carney, L. H. A model for the responses of low-frequency auditory-nerve fibers in cat. J. Acoust. Soc. Am. 93, 401–417 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Brughera, A. R., Stutman, E. R., Carney, L. H. & Colburn, H. S. A model with exitation and inhibition for cells in the medial superior olive. Aud. Neurosci. 2, 219–233 (1996).

    Google Scholar 

  74. Smith, A. J., Owens, S. & Forsythe, I. D. Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. J. Physiol. (Lond.) 529, 681–698 (2000).

    Article  CAS  Google Scholar 

  75. Sanes, D. H. The development of synaptic function and integration in the central auditory system. J. Neurosci. 13, 2627–2637 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Inbody, S. B. & Feng, A. S. Binaural response characteristics of single neurons in the medial superior olivary nucleus of the albino rat. Brain Res. 210, 361–366 (1981).

    Article  CAS  PubMed  Google Scholar 

  77. Ramón y Cajal, S. Histologie du Systeme Nerveux de l'Homme et des Vertebrates (Malonie, Paris, 1907).

    Google Scholar 

  78. Clark, G. M. The ultrastructure of nerve endings in the medial superior olive of the cat. Brain Res. 14, 293–305 (1969).

    Article  CAS  PubMed  Google Scholar 

  79. Perkins, R. E. An electron microscopic study of synaptic organization in the medial superior olive of normal and experi- mental chinchillas. J. Comp. Neurol. 148, 387–415 (1973).

    Article  CAS  PubMed  Google Scholar 

  80. Russell, F. A. & Moore, D. R. Ultrastructural transynaptic effects of unilateral cochlear ablation in the gerbil medial superior olive. Hear. Res. 173, 43–61 (2002).

    Article  PubMed  Google Scholar 

  81. Sanes, D. H. & Friauf, E. Development and influence of inhibition in the lateral superior olivary nucleus. Hear. Res. 147, 46–58 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Kim, G. & Kandler, K. Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation. Nature Neurosci. 6, 282–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Carr, C. E. & Soares, D. Evolutionary convergence and shared computational principles in the auditory system. Brain Behav. Evol. 59, 294–311 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Levin, M. D., Kubke, M. F., Schneider, M., Wenthold, R. & Carr, C. E. Localization of AMPA-selective glutamate receptors in the auditory brainstem of the barn owl. J. Comp. Neurol. 378, 239–253 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Kubke, M. F. & Carr, C. E. Development of AMPA-selective glutamate receptors in the auditory brainstem of the barn owl. Microsc. Res. Tech. 41, 176–186 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Ravindranathan, A. et al. Contrasting molecular composition and channel properties of AMPA receptors on chick auditory and brainstem motor neurons. J. Physiol. (Lond.) 523, 667–684 (2000).

    Article  CAS  Google Scholar 

  87. Hyson, R. L., Reyes, A. D. & Rubel, E. W. A depolarizing inhibitory response to GABA in brainstem auditory neurons of the chick. Brain Res. 677, 117–126 (1995). The first description of the depolarizing nature of the GABA-mediated inhibition in the bird nucleus laminaris.

    Article  CAS  PubMed  Google Scholar 

  88. Funabiki, K., Koyano, K. & Ohmori, H. The role of GABAergic inputs for coincidence detection in the neurones of nucleus laminaris of the chick. J. Physiol. (Lond.) 508, 851–869 (1998). In vitro recordings indicate that the GABA-mediated inhibition in the bird ITD detector increases the membrane conductance and thereby improves the coincidence detection of the excitatory inputs.

    Article  CAS  Google Scholar 

  89. Yang, L. C., Monsivais, P. & Rubel, E. W. The superior olivary nucleus and its influence on nucleus laminaris: a source of inhibitory feedback for coincidence detection in the avian auditory brainstem. J. Neurosci. 19, 2313–2325 (1999). Anatomical and physiological characterization of the SON — the source of GABA-mediated inputs to the bird ITD detector neurons in the nucleus laminaris. The data indicate that the SON provides feedback inhibition that does not follow the temporal structure of a sound, and is suited to function as a gain control and to improve the resolution of coincidence detection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Takahashi, Y. & Konishi, M. Manipulation of inhibition in the owl's nucleus laminaris and its effects on optic tectum neurons. Neuroscience 111, 373–378 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Takahashi, T. T. & Konishi, M. Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl. J. Comp. Neurol. 274, 212–238 (1988).

    Article  CAS  PubMed  Google Scholar 

  92. Carr, C. E., Fujita, I. & Konishi, M. Distribution of GABAergic neurons and terminals in the auditory system of the barn owl. J. Comp. Neurol. 286, 190–207 (1989).

    Article  CAS  PubMed  Google Scholar 

  93. Lachica, E. A., Rubsamen, R. & Rubel, E. W. GABAergic terminals in nucleus magnocellularis and laminaris originate from the superior olivary nucleus. J. Comp. Neurol. 348, 403–418 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Monsivais, P., Yang, L. & Rubel, E. W. GABAergic inhibition in nucleus magnocellularis: implications for phase locking in the avian auditory brainstem. J. Neurosci. 20, 2954–2963 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Westerberg, B. D. & Schwarz, D. W. Connections of the superior olive in the chicken. J. Otolaryngol. 24, 20–30 (1995).

    CAS  PubMed  Google Scholar 

  96. Lu, T. & Trussell, L. O. Inhibitory transmission mediated by asynchronous transmitter release. Neuron 26, 683–694 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Monsivais, P. & Rubel, E. W. Accommodation enhances depolarizing inhibition in central neurons. J. Neurosci. 21, 7823–7830 (2001). Functional analysis of the depolarizing GABA-mediated inhibition in the chick auditory brainstem indicates that this mechanism has an advantage over hyperpolarizing inhibition, at least in neurons with large excitatory conductances.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Reed, M. C. & Durbeck, L. Delay lines and auditory processing. Comments Theor. Biol. 3, 441–461 (1995).

    Google Scholar 

  99. Pena, J. l., Viete, S., Albeck, Y. & Konishi, M. Tolerance to sound intensity of binaural coincidence detection in the nucleus laminaris of the owl. J. Neurosci. 16, 7046–7054 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Viete, S., Pena, J. L. & Konishi, M. Effects of interaural intensity difference on the processing of interaural time difference in the owl's nucleus laminaris. J. Neurosci. 17, 1815–1824 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brenowitz, S., David, J. & Trussell, L. Enhancement of synaptic efficacy by presynaptic GABAB receptors. Neuron 20, 135–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Morest, D. K. The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Z. Anat. Entwicklungsgesch. 127, 201–220 (1968).

    Article  CAS  PubMed  Google Scholar 

  103. Taschenberger, H. & von Gersdorff, H. Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J. Neurosci. 20, 9162–9173 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Guinan, J. J. Jr & Li, R. Y. Signal processing in brainstem auditory neurons which receive giant endings (calyces of Held) in the medial nucleus of the trapezoid body of the cat. Hear. Res. 49, 321–334 (1990).

    Article  PubMed  Google Scholar 

  105. Walker, W. F. & Liem, K. F. Functional Anatomy of Vertebrates: An Evolutionary Perspective (Saunders College Publishing, Orlando, 1994).

    Google Scholar 

  106. Sanes, D. H. Right place at the right time. Nature Neurosci. 5, 187–188 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Encyclopedia of Life Sciences

prey detection by bats and owls

Benedikt Grothe's Lab

Glossary

INTERAURAL TIME DIFFERENCE

(ITD). The difference in the arrival time of a sound at the two ears. Depending on the position of the sound source and the individual inter-ear distance, ITDs can be up to about 120 μs in the Mongolian gerbil, and up to about 650 μs in humans.

TIME-LOCKED

Action potentials of many auditory neurons are locked to specific events of acoustic stimuli, such as onsets, offsets, prominent fluctuations in frequency or amplitude, or even a specific phase-angle of sinusoidal low-frequency sounds.

PHASE-LOCKED

The most extreme case of time-locking in auditory neurons. Many low-frequency neurons (in mammals up to a few kHz, in barn owls up to 8 kHz) synchronize their discharge to a specific phase-angle of tones.

COINCIDENCE DETECTION

The activation of neurons not by single inputs, but only by the simultaneous activity of several inputs. Coincidence detector neurons can be found throughout the nervous system. The most extreme case of coincidence detection is found in the binaural auditory system where the time windows for coincidence detection are in the range of microseconds.

AZIMUTHAL SPACE

The definition of auditory space independent of the elevation of a sound source. The task of localizing a sound in azimuthal space is often referred to as 'lateralization'.

MEDIAL NUCLEUS OF THE TRAPEZOID BODY

(MNTB). Its neurons receive their inputs through the largest and temporally most secure synapse, the calyx of Held. MNTB neurons contain the highest concentration of the inhibitory transmitter glycine in the mammalian brain and project to several brainstem structures, among them the medial superior olive. No structural or functional analogue of MNTB is known in birds.

DEPOLARIZING INHIBITION

Inhibition is thought to function by hyperpolarization of the membrane potential of the target cell owing to the opening of Cl channels. However, in some neurons, release of inhibitory transmitters can cause depolarization, which in turn activates other channels that prevent the cell from reaching spike threshold. Whether the opening of Cl channels hyperpolarizes or depolarizes a cell depends on its Cl reversal potential.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grothe, B. New roles for synaptic inhibition in sound localization. Nat Rev Neurosci 4, 540–550 (2003). https://doi.org/10.1038/nrn1136

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing