Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T12:52:18.971Z Has data issue: false hasContentIssue false

Repetitive proteins from the flagellar cytoskeleton of African trypanosomes are diagnostically useful antigens

Published online by Cambridge University Press:  06 April 2009

M. Imboden
Affiliation:
Institute of General Microbiology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
N. Müller
Affiliation:
Institut für Parasitologie, Universität Bern, Länggasstrasse 122, 3012 Bern, Switzerland
A. Hemphill
Affiliation:
Institut für Parasitologie, Universität Bern, Länggasstrasse 122, 3012 Bern, Switzerland
R. Mattioli
Affiliation:
International Trypanotolerance Centre (ITC), PMB 14, Banjul, The Gambia
T. Seebeck
Affiliation:
Institute of General Microbiology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland

Summary

Trypanosome infection of mammalian hosts leads, within days, to a strong early response against a small, distinct number of parasite proteins. One of these proteins is the variable surface glycoprotein (VSG). Most of the others are apparently non-variable, intracellular trypanosome proteins. Two of these antigens I2 and I17 are now characterized at the molecular level. Both exhibit a highly repetitive amino acid sequence organization, but they show no sequence similarity either to each other or to any other proteins known to date. Preliminary serological analyses indicate that both allow the early, sensitive and specific detection of infections with different species of trypanosomatids, making them interesting candidates for the development of diagnostic tools for trypanosomiasis detection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alcina, A., Hargreaves, A. J., Avila, J. & Fresno, M. (1988). The detection of a spectrin-like protein in Trypanosoma cruzi with a polyclonal antibody. Cell Biology International Reports 12, 979–85.CrossRefGoogle ScholarPubMed
Barnes, D. A., Mottram, J., Selkirk, M. & Agabian, N. (1989). Two variant surface glycoprotein genes distinguish between different substrains of Trypanosoma brucei gambiense. Molecular and Biochemical Parasitology 34, 135–46.CrossRefGoogle ScholarPubMed
Brun, R. & Schönenberger, M. (1979). Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in semi-defined medium. Acta Tropica 36, 289–92.Google ScholarPubMed
Burns, J. M., Shreffler, W. G., Benson, D. R., Ghalib, H. W., Badaro, R. & Reed, S. G. (1993). Molecular characterization of a kinesin-related antigen of Leishmania chagasi that detects specific antibodies in African and American visceral leishmaniasis. Proceedings of the National Academy of Sciences, USA 90, 775–9.CrossRefGoogle ScholarPubMed
Cross, G. A. M. (1990). Cellular and genetic aspects of antigenic variation in trypanosomes. Annual Reviews of Immunology 8, 83110.CrossRefGoogle ScholarPubMed
De Gee, A. L., Levine, R. F. & Mansfield, J. M. (1988). Genetics of resistance to the African trypanosomes. VI. Heredity of resistance and variable surface glycoprotein specific immune response. Journal of Immunology 140, 283–8.CrossRefGoogle Scholar
Santos, C. N. D.Dos, Krieger, M. A., Almeida, E., Lafaille, J. J., Goldenberg, S. & Caller, R. (1992). Trypanosoma cruzii flagellar repetitive antigen expression by recombinant Baculovirus – towards an improved diagnostic reagent for Chagas disease. Biotechnologys 10, 1474–7.Google Scholar
Duncan, L. R., Gay, L. S. & Donelson, J. E. (1991). African trypanosomes express an immunogenic protein with a repeating epitope of 24 amino acids. Molecular and Biochemical Parasitology 48, 1116.CrossRefGoogle ScholarPubMed
Hemphill, A., Affolter, M. & Seebeck, T. (1992). A novel microtubule-binding motif identified in a high molecular weight microtubule-associated protein from Trypanosoma brucei. Journal of Cell Biology 117, 95103.CrossRefGoogle Scholar
Hemphill, A., Seebeck, T. & Lawson, D. (1991). The Trypanosoma brucei cytoskeleton: ultrastructure and localization of microtubule-associated and spectrin–like proteins using quick-freeze, deep-etch, immunogold electron microscopy. Journal of Structural Biology 107, 222–20.CrossRefGoogle ScholarPubMed
Hoft, D. F., Kim, K. S., Otsu, K., Moser, D. R., Yost, W. J. Blumin, J. H., Donelson, J. E. & Kirchhoff, L. V. (1989). Trypanosoma cruzi expresses diverse repetitive protein antigens. Infection and Immunity 57, 1959–67.CrossRefGoogle ScholarPubMed
Hyunh, T. V., Young, R. A. & Davis, R. W. (1985). Construction and screening cDNA libraries λgt10 and λgt11. In DNA Cloning 1 (ed. Glover, D. M.), pp. 4978. Oxford: IRL Press.Google Scholar
Ibanez, C. F., Affranchino, J. L., Macina, R. A., Reyes, M. B., Leguizamon, S., Camargo, M. E., Aslund, L., Petterson, U. & Frasch, A. C. C. (1988). Multiple Trypanosoma cruzi antigens containing tandemly repeated amino acid sequence motifs. Molecular and Biochemical Parasitology 30, 2734.CrossRefGoogle ScholarPubMed
Lafaille, J. J., Linss, J., Krieger, M. A., Souto-Padron, T., De Souza, W. & Goldberg, S. (1989). Structure and expression of two T. cruzi genes encoding antigenic proteins bearing repetitive epitopes. Molecular and Biochemical Parasitology 35, 127–36.CrossRefGoogle Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Lawson, D. (1983). Epinemin: a new protein associated with vimentin filaments in non-neural cells. Journal of Cell Biology 97, 1891–905.CrossRefGoogle ScholarPubMed
Lewis, S. A., Wang, D. & Cowan, N. J. (1988). Microtubule-associated protein MAP2 shares a microtubule-binding motif with tau protein. Science, 242, 936–9.CrossRefGoogle ScholarPubMed
Müller, N., Hemphill, A., Imboden, M., Duvallet, G., Dwinger, R. H. & Seebeck, T. (1992). Identification and characterization of two repetitive non-variable antigens from African trypanosomes which are recognized early during infection. Parasitology 104, 111–20.CrossRefGoogle ScholarPubMed
Müller, N., Imboden, M., Detmer, E., Mansfield, J. M. & Seebeck, T. (1993). Cytoskeleton-associated antigens from African trypanosomes are recognized by self-reactive antibodies of uninfected mice. Parasitology 107, 411–17.CrossRefGoogle ScholarPubMed
Pollevick, G. D., Affranchino, J. L., Frasch, A. C. C. & Sanches, D. O. (1991). The complete sequence of a shed acute-phase antigen of Trypanosoma cruzi. Molecular and Biochemical Parasitology 47, 247–50.CrossRefGoogle ScholarPubMed
Rindisbacher, L., Hemphill, A. & Seebeck, T. (1993). A repetitive protein from Trypanosoma brucei which caps the microtubules at the posterior end of the cytoskeleton. Molecular and Biochemical Parasitology 58, 8396.CrossRefGoogle ScholarPubMed
Ruiz, A. M., Esteva, M., Subias, E., Moreno, M., Decampanini, E., Velazquez, E. Seguera, E. L. (1990). Monoclonal antibodies against the flagellar fraction of epimastigotes of T. cruzi – immunoprotection against metacyclic trypomastigotes obtained by immunization of mice with affinity-purified antigen. Molecular and Biochemical Parasitology 39, 117–26.CrossRefGoogle ScholarPubMed
Schlaeppi, K., Deflorin, J. & Seebeck, T. (1989). The major component of the paraflagellar rod of Trypanosoma brucei is a helical protein that is encoded by two identical, tandemly linked genes. Journal of Cell Biology 109, 1695–709.CrossRefGoogle ScholarPubMed
Schneider, A., Hemphill, A. & Seebeck, T. (1988). Large microtubule-associated protein of T. brucei has tandemly repeated, near-identical sequences. Science 241, 459–62.CrossRefGoogle ScholarPubMed
Seed, J. R. & Sechelski, J. (1987). The role of antibody in African trypanosomiasis. Journal of Parasitology 73, 840–2.CrossRefGoogle ScholarPubMed
Vogel, M., Gottstein, B., Müller, N. & Seebeck, T. (1988). Production of recombinant antigen of Echinococcus multilocularis with high immunodiagnostic sensitivity and specificity. Molecular and Biochemical Parasitology 31, 117–26.CrossRefGoogle ScholarPubMed
Wessel, D. & Flügge, U. I. (1984). A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Analytical Biochemistry 138, 141–3.CrossRefGoogle ScholarPubMed