Skip to main content
Log in

Dynamic Dissolution Testing To Establish In Vitro/In Vivo Correlations for Montelukast Sodium, a Poorly Soluble Drug

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The objectives of the study was to develop a dissolution test method that can be used to predict the oral absorption of montelukast sodium, and to establish an in vitro/in vivo correlation (IVIVC) using computer simulations.

Methods

Drug solubility was measured in different media. The dissolution behaviour of montelukast sodium 10 mg film coated tablets was studied using the flow-through cell dissolution method following a dynamic pH change protocol, as well as in the USP Apparatus 2. Computer simulations were performed using GastroPlus™. Biorelevant dissolution media (BDM) prepared using bile salts and lecithin in buffers was used as the dissolution media, as well as the USP simulated intestinal fluid (SIF) pH 6.8 and blank FaSSIF pH 6.5. Dissolution tests in the USP Apparatus 2 were performed under a constant pH condition, while the pH range used in the flow through cells was pH 2.0 to 7.5. The in vitro data were used as input functions into GastroPlus™ to simulate the in vivo profiles of the drug.

Results

The solubility of montelukast sodium was low at low pH, but increased as the pH was increased. There was no significant difference in solubility in the pH range of 5.0 to 7.5 in blank buffers, but the drug solubility was higher in biorelevant media compared with the corresponding blank buffers at the same pH. Using the flow through cells, the dissolution rate was fast in simulated gastric fluid containing 0.1% SLS. The dissolution rate slowed down when the medium was changed to FaSSIF pH 6.5 and increased when the medium was changed to FaSSIF medium at pH 7.5. In the USP Apparatus 2, better dissolution was observed in FaSSIF compared with the USP buffers and blank FaSSIF with similar pH values. Dissolution was incomplete with less than 10% of the drug dissolved in the USP-SIF, and was practically non existent in blank FaSSIF pH 6.5. The in vitro results of the dynamic dissolution test were able to predict the clinical data from a bioavailability study best.

Conclusions

Dynamic dissolution testing using the flow through cell seems to be a powerful tool to establish in vitro/in vivo correlations for poorly soluble drugs as input function into GastroPlus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4
Fig. 5.

Similar content being viewed by others

References

  1. T. R. Jones, M. Labelle, M. Belley, E. Champion, L. Charette, J. Evans, A. W. Ford-Hutchinson, J. Y. Gauthier, A. Lord, P. Masson et al. Pharmacology of montelukast sodium (Singulair), a potent and selective leukotriene D4 receptor antagonist. Can. J. Physiol. Pharmacol. 73:191–201 (1995).

    PubMed  CAS  Google Scholar 

  2. R. M. H. Thibert, S. D. Clas, D. R. Meisner, and E. B. Vadas. Characterization of the self-association properties of a leukotrieneD 4 receptor antagonist, MK-0476. Int. J. Pharm. 134:59–70 (1996), DOI 10.1016/0378-5173(96)04435-3.

    Article  CAS  Google Scholar 

  3. J. B. Dressman, G. L. Amidon, C. Reppas, and V. P. Shah. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm. Res. 15:11–22 (1998) DOI 10.1023/A:1011984216775.

    Article  PubMed  CAS  Google Scholar 

  4. FDA-CDER. Guidance for Industry, Dissolution Testing of Immediate release Solid Oral Dosage Forms, U.S. Department of Health and Human Services, Food and Drug Administration, 1997.

  5. J. Emami. In vitroin vivo correlation: from theory to applications. J. Pharm. Pharm. Sci. 9:169–189 (2006).

    PubMed  CAS  Google Scholar 

  6. V. P. Shah, and L. J. Lesko. Current challenges and future regulatory directions in in vitro dissolution. Drug Inform. J. 29:885–891 (1995).

    Google Scholar 

  7. J. B. Dressman, G. L. Amidon, and D. Fleisher. Absorption potential: estimating the fraction absorbed for orally administered compounds. J. Pharm. Sci. 74:588–589 (1985) DOI 10.1002/jps.2600740523.

    Article  PubMed  CAS  Google Scholar 

  8. W. N. Charman, C. J. Porter, S. Mithani, and J. B. Dressman. Physiochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J. Pharm. Sci. 86:269–282 (1997) DOI 10.1021/js960085v.

    Article  PubMed  CAS  Google Scholar 

  9. D. Horter, and J. B. Dressman. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv. Drug Deliv. Rev. 46:75–87 (2001) DOI 10.1016/S0169-409X(00)00130-7.

    Article  PubMed  CAS  Google Scholar 

  10. L. X. Yu, E. Lipka, J. R. Crison, and G. L. Amidon. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv. Drug Deliv. Rev. 19:359–376 (1996) DOI 10.1016/0169-409X(96)00009-9.

    Article  PubMed  CAS  Google Scholar 

  11. S. Willmann, W. Schmitt, J. Keldenich, J. Lippert, and J. B. Dressman. A physiological model for the estimation of the fraction dose absorbed in humans. J. Med. Chem. 47:4022–4031 (2004) DOI 10.1021/jm030999b.

    Article  PubMed  CAS  Google Scholar 

  12. H. Cai, C. Stoner, A. Reddy, S. Freiwald, D. Smith, R. Winters, C. Stankovic, and N. Surendran. Evaluation of an integrated in vitro-in silico PBPK (physiologically based pharmacokinetic) model to provide estimates of human bioavailability. Int. J. Pharm. 308:133–139 (2006) DOI 10.1016/j.ijpharm.2005.11.002.

    Article  PubMed  CAS  Google Scholar 

  13. H. Wei, and R. Lobenberg. Biorelevant dissolution media as a predictive tool for glyburide a class II drug. Eur. J. Pharm. Sci. 29:45–52 (2006) DOI 10.1016/j.ejps.2006.05.004.

    Article  PubMed  CAS  Google Scholar 

  14. B. Agoram, W. S. Woltosz, and M. B. Bolger. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv. Drug Deliv. Rev. 50(Suppl 1):S41–67 (2001) DOI 10.1016/S0169-409X(01)00179-X.

    Article  PubMed  CAS  Google Scholar 

  15. SimulationsPlus. GastroPlus Manual. Lancaster, USA, 2006.

    Google Scholar 

  16. USP. United States Pharmacopeia 29/National Formulary 24. The USP, Rockville, MD, 2006.

    Google Scholar 

  17. S. A. Qureshi, G. Caillé, R. Brien, R. Piccirilli, V. Yu, and I. J. McGilveray. Application of flow-through dissolution method for the evaluation of oral formulations of nifedipine. Drug Dev. Ind. Pharm. 20:1869–1882 (1994), DOI 10.3109/03639049409050214.

    Article  CAS  Google Scholar 

  18. K. Thoma, and I. Ziegler. Development of an automated flow-through dissolution system for poorly soluble drugs with poor chemical stability in dissolution media. Pharmazie. 53:784–790 (1998).

    CAS  Google Scholar 

  19. M. Marques. Dissolution Media Simulating fasted and Fed States, Dissolution Technologies Vol. 16, 2004.

  20. E. Galia, E. Nicolaides, D. Horter, R. Lobenberg, C. Reppas, and J. B. Dressman. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm. Res. 15:698–705 (1998) DOI 10.1023/A:1011910801212.

    Article  PubMed  CAS  Google Scholar 

  21. L. V. Allen, N. G. Popovich, and H. C. Ansel. Ansel’s Pharmaceutical Dosage Forms and Drug Delivery systems. Lippincott Williams and Wilkins, Philadelphia, 2005.

    Google Scholar 

  22. R. Lobenberg, and G. L. Amidon. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur. J. Pharm. Biopharm. 50:3–12 (2000) DOI 10.1016/S0939-6411(00)00091-6.

    Article  PubMed  CAS  Google Scholar 

  23. S. S. Davis, J. G. Hardy, and J. W. Fara. Transit of pharmaceutical dosage forms through the small intestine. Gut. 27:886–892 (1986) DOI 10.1136/gut.27.8.886.

    Article  PubMed  CAS  Google Scholar 

  24. J. Fallingborg, P. Pedersen, and B. A. Jacobsen. Small intestinal transit time and intraluminal pH in ileocecal resected patients with Crohn’s disease. Dig. Dis. Sci. 43:702–705 (1998) DOI 10.1023/A:1018893409596.

    Article  PubMed  CAS  Google Scholar 

  25. P. Mojaverian, K. Chan, A. Desai, and V. John. Gastrointestinal transit of a solid indigestible capsule as measured by radiotelemetry and dual gamma scintigraphy. Pharm. Res. 6:719–724 (1989) DOI 10.1023/A:1015998708560.

    Article  PubMed  CAS  Google Scholar 

  26. J. Fallingborg. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull. 46:183–196 (1999).

    PubMed  CAS  Google Scholar 

  27. H. Cheng, J. A. Leff, R. Amin, B. J. Gertz, M. De Smet, N. Noonan, J. D. Rogers, W. Malbecq, D. Meisner, and G. Somers. Pharmacokinetics, bioavailability, and safety of montelukast sodium (MK-0476) in healthy males and females. Pharm. Res. 13:445–448 (1996) DOI 10.1023/A:1016056912698.

    Article  PubMed  CAS  Google Scholar 

  28. L. Shargel, and A. B. C. Yu. Applied Biopharmaceutics and Pharmacokinetics. McGraw-Hill, New York, 1999.

    Google Scholar 

  29. J. W. Moore, H. H, Flanner. Mathematical Comparison of Dissolution Profiles, Pharmaceutical Technology, Vol. 6, 1996, pp. 64–74.

  30. FDA-CDER. Guidance for Industry Extended Release Oral Dosage Forms: Development, Evaluation, and Application of In Vitro/In Vivo Correlations. In U.S. Department of Health and Human Services Food and Drug Administration (ed.), 1997.

  31. J. Jinno, D. Oh, J. R. Crison, and G. L. Amidon. Dissolution of ionizable water-insoluble drugs: the combined effect of pH and surfactant. J. Pharm. Sci. 89:268–274 (2000) DOI 10.1002/(SICI)1520-6017(200002)89:2<268::AID-JPS14>3.0.CO;2-F.

    Article  PubMed  CAS  Google Scholar 

  32. S. D. Mithani, V. Bakatselou, C. N. TenHoor, and J. B. Dressman. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm. Res. 13:163–167 (1996) DOI 10.1023/A:1016062224568.

    Article  PubMed  CAS  Google Scholar 

  33. J. R. Crison, N. D. Weiner, and G. L. Amidon. Dissolution media for in vitro testing of water-insoluble drugs: effect of surfactant purity and electrolyte on in vitro dissolution of carbamazepine in aqueous solutions of sodium lauryl sulfate. J. Pharm. Sci. 86:384–388 (1997) DOI 10.1021/js960105t.

    Article  PubMed  CAS  Google Scholar 

  34. M. A. Hammad, and B. W. Muller. Increasing drug solubility by means of bile salt-phosphatidylcholine-based mixed micelles. Eur. J. Pharm. Biopharm. 46:361–367 (1998) DOI 10.1016/S0939-6411(98)00037-X.

    Article  PubMed  CAS  Google Scholar 

  35. Y. Wu, D. O. Kildsig, and E. S. Ghaly. Effect of hydrodynamic environment on tablets dissolution rate. Pharm. Dev. Technol. 9:25–37 (2004) DOI 10.1081/PDT-120027415.

    Article  PubMed  CAS  Google Scholar 

  36. C. Y. Perng, A. S. Kearney, N. R. Palepu, B. R. Smith, and L. M. Azzarano. Assessment of oral bioavailability enhancing approaches for SB-247083 using flow-through cell dissolution testing as one of the screens. Int. J. Pharm. 250:147–156 (2003) DOI 10.1016/S0378-5173(02)00521-5.

    Article  PubMed  CAS  Google Scholar 

  37. V. H. Sunesen, B. L. Pedersen, H. G. Kristensen, and A. Mullertz. In vivo in vitro correlations for a poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media. Eur. J. Pharm. Sci. 24:305–313 (2005) DOI 10.1016/j.ejps.2004.11.007.

    Article  PubMed  CAS  Google Scholar 

  38. J. J. Zhao, J. D. Rogers, S. D. Holland, P. Larson, R. D. Amin, R. Haesen, A. Freeman, M. Seiberling, M. Merz, and H. Cheng. Pharmacokinetics and bioavailability of montelukast sodium (MK-0476) in healthy young and elderly volunteers. Biopharm. Drug Dispos. 18:769–777 (1997) DOI 10.1002/(SICI)1099-081X(199712)18:9<769::AID-BDD60>3.0.CO;2-K.

    Article  PubMed  CAS  Google Scholar 

  39. S. K. Balani, X. Xu, V. Pratha, M. A. Koss, R. D. Amin, C. Dufresne, R. R. Miller, B. H. Arison, G. A. Doss, M. Chiba, A. Freeman, S. D. Holland, J. I. Schwartz, K. C. Lasseter, B. J. Gertz, J. I. Isenberg, J. D. Rogers, J. H. Lin, and T. A. Baillie. Metabolic profiles of montelukast sodium (Singulair), a potent cysteinyl leukotriene1 receptor antagonist, in human plasma and bile. Drug Metab. Dispos. 25:1282–1287 (1997).

    PubMed  CAS  Google Scholar 

  40. M. Chiba, X. Xu, J. A. Nishime, S. K. Balani, and J. H. Lin. Hepatic microsomal metabolism of montelukast, a potent leukotriene D4 receptor antagonist, in humans. Drug Metab. Dispos. 25:1022–1031 (1997).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a collaborative research grant from NSERC and Merck Frosst Canada Inc. We would like to thank Simulations Plus for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimar Löbenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okumu, A., DiMaso, M. & Löbenberg, R. Dynamic Dissolution Testing To Establish In Vitro/In Vivo Correlations for Montelukast Sodium, a Poorly Soluble Drug. Pharm Res 25, 2778–2785 (2008). https://doi.org/10.1007/s11095-008-9642-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9642-z

KEY WORDS

Navigation