Skip to main content
Log in

CPMG relaxation dispersion NMR experiments measuring glycine 1Hα and 13Cα chemical shifts in the ‘invisible’ excited states of proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiments are extremely powerful for characterizing millisecond time-scale conformational exchange processes in biomolecules. A large number of such CPMG experiments have now emerged for measuring protein backbone chemical shifts of sparsely populated (>0.5%), excited state conformers that cannot be directly detected in NMR spectra and that are invisible to most other biophysical methods as well. A notable deficiency is, however, the absence of CPMG experiments for measurement of 1Hα and 13Cα chemical shifts of glycine residues in the excited state that reflects the fact that in this case the 1Hα, 13Cα spins form a three-spin system that is more complex than the AX 1Hα13Cα spin systems in the other amino acids. Here pulse sequences for recording 1Hα and 13Cα CPMG relaxation dispersion profiles derived from glycine residues are presented that provide information from which 1Hα, 13Cα chemical shifts can be obtained. The utility of these experiments is demonstrated by an application to a mutant of T4 lysozyme that undergoes a millisecond time-scale exchange process facilitating the binding of hydrophobic ligands to an internal cavity in the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Austin RH, Beeson KW, Eisenstein L, Frauenfelder H, Gunsalus IC (1975) Dynamics of ligand binding to myoglobin. Biochemistry 14:5355–5373

    Article  Google Scholar 

  • Bax A, Ikura M, Kay LE, Torchia DA, Tschudin R (1990) Comparison of different modes of 2-dimensional reverse-correlation NMR for the study of proteins. J Magn Reson 86:304–318

    Google Scholar 

  • Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313:1638–1642

    Article  ADS  Google Scholar 

  • Burum DP, Ernst RR (1980) Net polarization transfer via a J-ordered state for signal enhancement of low-sensitivity nuclei. J Magn Reson 39:163–168

    Google Scholar 

  • Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638

    Article  ADS  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Eriksson AE, Baase WA, Wozniak JA, Matthews BW (1992) A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene. Nature 355:371–373

    Article  ADS  Google Scholar 

  • Feher VA, Baldwin EP, Dahlquist FW (1996) Access of ligands to cavities within the core of a protein is rapid. Nat Struct Biol 3:516–521

    Article  Google Scholar 

  • Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141

    Google Scholar 

  • Goddard TD, Kneller DG. SPARKY 3. University of California, San Francisco

  • Grey MJ, Wang C, Palmer AG III (2003) Disulfide bond isomerization in basic pancreatic trypsin inhibitor: multisite chemical exchange quantified by CPMG relaxation dispersion and chemical shift modeling. J Am Chem Soc 125:14324–14335

    Article  Google Scholar 

  • Grey MJ, Tang Y, Alexov E, McKnight CJ, Raleigh DP, Palmer AG III (2006) Characterizing a partially folded intermediate of the villin headpiece domain under non-denaturing conditions: contribution of His41 to the pH-dependent stability of the N-terminal subdomain. J Mol Biol 355:1078–1094

    Article  Google Scholar 

  • Griffey RH, Redfield AG (1987) Proton-detected heteronuclear edited and correlated nuclear magnetic resonance and nuclear overhauser effect in solution. Q Rev Biophys 19:51–82

    Article  Google Scholar 

  • Grzesiek S, Bax A (1995) Spin-locked multiple quantum coherence for signal enhancement in heteronuclear multidimensional NMR experiments. J Biomol NMR 6:335–339

    Article  Google Scholar 

  • Hansen PE (2000) Isotope effects on chemical shifts of proteins and peptides. Magn Reson Chem 38:1–10

    Article  Google Scholar 

  • Hansen DF, Vallurupalli P, Kay LE (2008a) An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J Phys Chem B 112:5898–5904

    Article  Google Scholar 

  • Hansen DF, Vallurupalli P, Kay LE (2008b) Quantifying two-bond 1HN-13CO and one-bond 1H(alpha)-13C(alpha) dipolar couplings of invisible protein states by spin-state selective relaxation dispersion NMR spectroscopy. J Am Chem Soc 130:8397–8405

    Article  Google Scholar 

  • Hansen DF, Vallurupalli P, Kay LE (2008c) Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states. J Biomol NMR 41:113–120

    Article  Google Scholar 

  • Hansen DF, Vallurupalli P, Lundstrom P, Neudecker P, Kay LE (2008d) Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: How well can we do? J Am Chem Soc 130:2667–2675

    Article  Google Scholar 

  • Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M, Hubner CG, Kern D (2007) Intrinsic motions along an enzymatic reaction trajectory. Nature 450:838–844

    Article  ADS  Google Scholar 

  • Igumenova TI, Brath U, Akke M, Palmer AG III (2007) Characterization of chemical exchange using residual dipolar coupling. J Am Chem Soc 129:13396–13397

    Article  Google Scholar 

  • Ishima R, Torchia DA (2003) Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach. J Biomol NMR 25:243–248

    Article  Google Scholar 

  • Ishima R, Wingfield PT, Stahl SJ, Kaufman JD, Torchia DA (1998) Using amide H-1 and N-15 transverse relaxation to detect millisecond time-scale motions in perdeuterated proteins: application to HIV-1 protease. J Am Chem Soc 120:10534–10542

    Article  Google Scholar 

  • Karplus M (2000) Aspects of protein reaction dynamics: deviations from simple behavior. J Phys Chem B 104:11–27

    Article  Google Scholar 

  • Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci USA 102:6679–6685

    Article  ADS  Google Scholar 

  • Korzhnev DM, Kay LE (2008) Probing invisible, low-populated states of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding. Acc Chem Res 41:442–451

    Article  Google Scholar 

  • Korzhnev DM, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR, Dobson CM, Kay LE (2004) Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430:586–590

    Article  ADS  Google Scholar 

  • Kupce E, Freeman R (1996) Optimized adiabatic pulses for wideband spin inversion. J Magn Reson A 118:299–303

    Article  Google Scholar 

  • Kushlan DM, Lemaster DM (1993) Resolution and sensitivity enhancement of heteronuclear correlation for methylene resonances via H-2-enrichment and decoupling. J Biomol NMR 3:701–708

    Article  Google Scholar 

  • Loria JP, Rance M, Palmer AG (1999) A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc 121:2331–2332

    Article  Google Scholar 

  • Lundstrom P, Hansen DF, Kay LE (2008) Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively (13)C labeled samples. J Biomol NMR 42:35–47

    Article  Google Scholar 

  • Lundstrom P, Hansen DF, Vallurupalli P, Kay LE (2009) Accurate measurement of alpha proton chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy. J Am Chem Soc 131:1915–1926

    Article  Google Scholar 

  • Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins. J Magn Reson 85:393–399

    Google Scholar 

  • Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691

    Article  ADS  Google Scholar 

  • Miclet E, Williams DC, Clore GM, Bryce DL, Boisbouvier J, Bax A (2004) Relaxation-optimized NMR spectroscopy of methylene groups in proteins and nucleic acids. J Am Chem Soc 126:10560–10570

    Article  Google Scholar 

  • Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312:224–228

    Article  ADS  Google Scholar 

  • Mulder FA, Hon B, Muhandiram DR, Dahlquist FW, Kay LE (2000) Flexibility and ligand exchange in a buried cavity mutant of T4 lysozyme studied by multinuclear NMR. Biochemistry 39:12614–12622

    Article  Google Scholar 

  • Mulder FA, Mittermaier A, Hon B, Dahlquist FW, Kay LE (2001a) Studying excited states of proteins by NMR spectroscopy. Nat Struct Biol 8:932–935

    Article  Google Scholar 

  • Mulder FA, Skrynnikov NR, Hon B, Dahlquist FW, Kay LE (2001b) Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J Am Chem Soc 123:967–975

    Article  Google Scholar 

  • Palmer AG (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640

    Article  Google Scholar 

  • Palmer AG, Cavanagh J, Wright PE, Rance M (1991) Sensitivity improvement in proton-detected 2-dimensional heteronuclear correlation Nmr-spectroscopy. J Magn Reson 93:151–170

    Google Scholar 

  • Palmer AG III, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238

    Article  Google Scholar 

  • Ramakrishnan C, Ramachandran GN (1965) Stereochemical criteria for polypeptide and protein chain conformations.2. Allowed conformations for a pair of peptide units. Biophys J 5:909–933

    Article  Google Scholar 

  • Roy S, Papastavros MZ, Sanchez V, Redfield AG (1984) Nitrogen-15-labeled yeast tRNAPhe: double and two-dimensional heteronuclear NMR of guanosine and uracil ring NH groups. Biochemistry 23:4395–4400

    Article  Google Scholar 

  • Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broad-band decoupling-Waltz-16. J Magn Reson 52:335–338

    Google Scholar 

  • Skrynnikov NR, Dahlquist FW, Kay LE (2002) Reconstructing NMR spectra of “invisible” excited protein states using HSQC and HMQC experiments. J Am Chem Soc 124:12352–12360

    Article  Google Scholar 

  • States DJ, Haberkorn RA, Ruben DJ (1982) A two-dimensional nuclear overhauser experiment with pure absorption phase in 4 quadrants. J Magn Reson 48:286–292

    Google Scholar 

  • Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–1025

    Article  ADS  Google Scholar 

  • Vallurupalli P, Kay LE (2006) Complementarity of ensemble and single-molecule measures of protein motion: a relaxation dispersion NMR study of an enzyme complex. Proc Natl Acad Sci USA 103:11910–11915

    Article  ADS  Google Scholar 

  • Vallurupalli P, Hansen DF, Stollar E, Meirovitch E, Kay LE (2007a) Measurement of bond vector orientations in invisible excited states of proteins. Proc Natl Acad Sci USA 104:18473–18477

    Article  ADS  Google Scholar 

  • Vallurupalli P, Scott L, Williamson JR, Kay LE (2007b) Strong coupling effects during X-pulse CPMG experiments recorded on heteronuclear ABX spin systems: artifacts and a simple solution. J Biomol NMR 38:41–46

    Article  Google Scholar 

  • Vallurupalli P, Hansen DF, Kay LE (2008a) Probing structure in invisible protein states with anisotropic NMR chemical shifts. J Am Chem Soc 130:2734–2735

    Article  Google Scholar 

  • Vallurupalli P, Hansen DF, Kay LE (2008b) Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy. Proc Natl Acad Sci USA 105:11766–11771

    Article  ADS  Google Scholar 

  • Watt ED, Shimada H, Kovrigin EL, Loria JP (2007) The mechanism of rate-limiting motions in enzyme function. Proc Natl Acad Sci USA 104:11981–11986

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the Canadian Institutes of Health Research (CIHR) in the form of a research grant to LEK and postdoctoral fellowships to DFH and PL (Protein Folding Training Grant). LEK holds a Canada Research Chair in Biochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis E. Kay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 279 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallurupalli, P., Hansen, D.F., Lundström, P. et al. CPMG relaxation dispersion NMR experiments measuring glycine 1Hα and 13Cα chemical shifts in the ‘invisible’ excited states of proteins. J Biomol NMR 45, 45–55 (2009). https://doi.org/10.1007/s10858-009-9310-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-009-9310-6

Keywords

Navigation