Skip to main content

Advertisement

Log in

Volume parcellation for improved dynamic shimming

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Introduction

The need for a homogeneous magnetic field in magnetic resonance imaging is well established, especially at high static magnetic field strengths where susceptibility-induced image distortions and signal losses become excessively large. Dynamic shim updating, where the optimal set of shim currents is applied for each slice during a multi-slice acquisition, has been shown to improve magnetic field homogeneity to a greater extent than conventional global shimming.

Methods

Here, in an initial feasibility study, we show via simulation that improved efficacy of shimming can be achieved by using the novel parcellated dynamic shimming method.

Results

The results of these simulations indicate that parcellated dynamic shimming based on just linear shim terms can perform approximately as well as slice-based dynamic shimming with up to third-order shim terms.

Conclusions

This work shows that the effective magnetic field inhomogeneity can be further reduced if shimming and image data acquisition are sequentially performed over a series of compact, cuboidal sub-volumes rather than planes. Further work is needed to develop an imaging approach that can be used for the optimal implementation of parcellated dynamic shimming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li S, Dardzinski BJ, Collins CM, Yang QX, Smith MB (1996) Three-dimensional mapping of the static magnetic field inside the human head. Magn Reson Med 36(5): 705–714

    Article  CAS  PubMed  Google Scholar 

  2. Sumanaweera TS, Glover GH, Binford TO, Adler JR (1993) MR susceptibility misregistration correction. IEEE Trans Med Imaging 12: 251–259

    Article  CAS  PubMed  Google Scholar 

  3. Deichmann R, Josephs O, Hutton C, Corfield DR, Turner R (2002) Compensation of susceptibility-induced BOLD sensitivity losses in echo-planar fMRI imaging. Neuroimage 15(1): 120–135

    Article  CAS  PubMed  Google Scholar 

  4. Farahani K, Sinha U, Sinha S, Chiu LC-L, Lufkin RB (1990) Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Comput Med Imaging Graph 14(6): 409–413

    Article  CAS  PubMed  Google Scholar 

  5. Roméo F, Hoult DI (1984) Magnet field profiling: analysis and correcting coil design. Magn Reson Med 1(1): 44–65

    Article  PubMed  Google Scholar 

  6. Conover W (1984) Practical guide to shimming superconducting NMR magnets, Chap 2. Wiley, New York, pp 37–41

  7. Chmurny GN, Hoult DI (1990) The ancient and honourable art of shimming. Concepts Magn Reson 2(3): 131–149

    Article  Google Scholar 

  8. Tochtrop M, Vollmann W, Holz D, Leussler C (1987) Automatic shimming of selected volumes in patients. Proc Soc Magn Reson Med 6: 816

    Google Scholar 

  9. Holz D, Jensen D, Proksa R, Tochtrop M, Vollmann W (1988) Automatic shimming for localized spectroscopy. Med Phys 15(6): 898–903

    Article  CAS  PubMed  Google Scholar 

  10. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  11. Prammer MG, Haselgrove JC, Shinnar M, Leigh JS (1988) A new approach to automatic shimming. J Magn Reson 77: 40–52

    Google Scholar 

  12. Gruetter R, Boesch C (1992) Fast, noniterative shimming of spatially localized signals. In vivo analysis of the magnetic field along axes. J Magn Reson 96: 323–334

    CAS  Google Scholar 

  13. Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29(6): 804–811

    Article  CAS  PubMed  Google Scholar 

  14. Klassen LM, Menon RS (2004) Robust automated shimming technique using arbitrary mapping acquisition parameters (RASTAMAP). Magn Reson Med 51(5): 881–887

    Article  PubMed  Google Scholar 

  15. Frahm J, Merboldt KD, Hänicke W (1988) Direct FLASH MR imaging of magnetic field inhomogeneities by gradient compensation. Magn Reson Med 6(4): 474–480

    Article  CAS  PubMed  Google Scholar 

  16. Yang QW, Dardzinski BJ, Li S, Eslinger PJ, Smith MB (1997) Multi-gradient echo with susceptibility inhomogeneity compensation (MGESIC): demonstration of fMRI in the olfactory cortex at 3.0T. Magn Reson Med 37(3): 331–335

    Article  CAS  PubMed  Google Scholar 

  17. Cho ZH, Ro YM (1992) Reduction of susceptibility artefact in gradient-echo imaging. Magn Reson Med 23(1): 193–200

    Article  CAS  PubMed  Google Scholar 

  18. Chen N-K, Wyrwicz AM (1999) Removal of intravoxel dephasing artifact in gradient echo images using a field-map based RF refocussing technique. Magn Reson Med 42(2): 807–812

    Article  CAS  PubMed  Google Scholar 

  19. Stenger VA, Boada FE, Noll DC (2000) Three dimensional tailored rf pulses for the reduction of susceptibility atrifacts in T2*-weighted functional MRI. Magn Reson Med 44(4): 525–531

    Article  CAS  PubMed  Google Scholar 

  20. Schneider E, Glover G (1991) Rapid in vivo proton shimming. Magn Reson Med 18: 335–347

    Article  CAS  PubMed  Google Scholar 

  21. Wilson JL, Jenkinson M, Araujo I, Kringelbach ML, Rolls ET, Jezzard P (2002) Fast, fully automated global and local magnetic field optimization for fMRI of the human brain. Neuroimage 17: 967–976

    Article  PubMed  Google Scholar 

  22. Blamire AM, Rothman DL, Nixon T (1996) Dynamic shim updating: a new approach towards optimized whole brain shimming. Magn Reson Med 36(1): 159–165

    Article  CAS  PubMed  Google Scholar 

  23. Morrell G, Spielman D (1997) Dynamic shimming for multi-slice magnetic resonance imaging. Magn Reson Med 38(3): 477–483

    Article  CAS  PubMed  Google Scholar 

  24. Graaf RA, Brown PB, McIntyre S, Rothman DL, Nixon TW (2003) Dynamic shim updating (DSU) for multislice signal acquisition. Magn Reson Med 49(3): 409–416

    Article  PubMed  Google Scholar 

  25. Poole M, Bowtell R (2007) Evaluation of parcellated dynamic shimming. ISMRM workshop on advances in high field MR, 5

  26. Saad N, Peled S (2005) Easy 3D phase unwrapping. Proc Int Soc Magn Reson Med 13: 2251

    Google Scholar 

  27. Smith SM (2002) Fast, robust automated brain extraction. Human Brain Map 17: 143–155

    Article  Google Scholar 

  28. Koch KM, McIntyre S, Nixon TW, Rothman DL, Graaf RA (2006) Dynamic shim updating on the human brain. J Magn Reson 180(2): 286–296

    Article  CAS  PubMed  Google Scholar 

  29. Wen H, Jaffer FA (1995) An in vivo automated shimming method taking into account shim current constraints. Magn Reson Med 34(6): 898–904

    Article  CAS  PubMed  Google Scholar 

  30. Coleman TF, Li YY (1996) An interior trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 6(2): 418–445

    Article  Google Scholar 

  31. Poole M, Bowtell R (2007) Novel gradient coils designed with a boundary element method. Concepts Magn Reson B Magn Reson Eng 31(3): 162–175

    Article  Google Scholar 

  32. Pissanetzky S (1992) Minimum energy MRI gradient coils of general geometry. Meas Sci Technol 3(7): 667–673

    Article  Google Scholar 

  33. Lemdiasov RA, Ludwig R (2005) A stream function method for gradient coil design. Concepts Magn Reson B Magn Reson Eng 26(1): 67–80

    Article  Google Scholar 

  34. Mansfield P, Howseman AM, Ordidge RJ (1989) Volumar imaging using NMR spin echoes: echo-volumar imaging (EVI) at 0.1 t. J Phys E 22(5): 324–330

    Article  Google Scholar 

  35. Singh S, Rutt BK, Henkelman RM (1990) Projection presaturation: a fast and accurate technique for multidimensional spatial localization. J Magn Reson 87(3): 567–583

    CAS  Google Scholar 

  36. Zwaag W, Francis S, Bowtell RW (2006) Improved echo volumar imaging (EVI) for functional MRI. Magn Reson Med 56(6): 1320–1327

    Article  PubMed  Google Scholar 

  37. Pauly JM, Hu BS, Wang SJ, Nishimura DG, Macovski A (1993) A three-dimensional spin-echo or inversion pulse. Magn Reson Med 29(1): 2–6

    Article  CAS  PubMed  Google Scholar 

  38. Stenger VA, Boada FE, Noll DC (2000) Three-dimensional tailored RF pulses for the reduction of susceptibility artifacts in t2-weighted functional MRI. Magn Reson Med 44(4): 525–531

    Article  CAS  PubMed  Google Scholar 

  39. Stenger VA, Boada FE, Noll DC (2003) Variable-density spiral 3D tailored RF pulses. Magn Reson Med 50(5): 1100–1106

    Article  PubMed  Google Scholar 

  40. Bottomley PA, Hardy CJ (1987) Two-dimensional spatially selective spin inversion and spin-echo refocusing with a single nuclear magnetic resonance pulse. J Appl Phys 62(10): 4284–4290

    Article  Google Scholar 

  41. Katscher U, Bornert P, Leussler C, Brink JS (2003) Transmit SENSE. Magn Reson Med 49(1): 144–150

    Article  PubMed  Google Scholar 

  42. Preussmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42: 952–962

    Article  Google Scholar 

  43. Berger MJ, Colella P (1989) Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 82(1): 64–84

    Article  Google Scholar 

  44. Xu W, Cumming I (1999) A region-growing algorithm for InSAR phase unwrapping. IEEE Trans Geosci Remote Sens 37: 124–134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bowtell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poole, M., Bowtell, R. Volume parcellation for improved dynamic shimming. Magn Reson Mater Phy 21, 31 (2008). https://doi.org/10.1007/s10334-007-0102-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10334-007-0102-2

Keywords

Navigation