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A Equation systems

A.1 Epidemiology

The epidemiological dynamics are governed by the following set of ODEs:

dS
dt = λ−

(
µ+ βII + βDD + βC

C

N

)
S, (S1a)

dE
dt =

(
βII + βDD + βC

C

N

)
S − ωE, (S1b)

dI
dt = ωE − γI, (S1c)

dD
dt = αθγI − εD, (S1d)

dC
dt = (1− α) γI − σC, (S1e)

dR
dt = σC − µR, (S1f)

where N := S + E + I + C +R is the total living population size, which varies with time. Notice595

that since life expectancy is several orders of magnitudes greater than the latency, the symptomatic

and the convalescent periods, mortality rate µ can be neglected when summed with ω, γ or σ.
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A.2 Price equation

The dynamics of the populations of interest are described by 4n+ 1 ODEs, for all i ∈ {1, . . . , n}:

dS
dt = λ−

n∑
i=1

(βI,iIi + βD,iDi − µ)S, (S2a)

dEi
dt = (βI,iIi + βD,iDi)S − ωiEi, (S2b)

dIi
dt = ωiEi − γiIi, (S2c)

dDi

dt = αiθγiIi − εiDi, (S2d)

dCi
dt = (1− αi) γiIi − σiCi. (S2e)

The total density of each compartment is denoted by a bullet index (•) and its dynamics satisfy

dS
dt = λ−

(
βI

I
I• + βD

D
D• − µ

)
S, (S3a)

dE•
dt =

(
βI

I
I• + βD

D
D•
)
S − ωEE•, (S3b)

dI•
dt = ωEE• − γII•, (S3c)

dD•
dt = θαγII• − εDD•, (S3d)

dC•
dt = γII• − αγII• − σDD•, (S3e)

where the bars indicate average values and the superscripts indicate the compartment in which

the trait is averaged. We can already notice that the CFR and the rate at which the infectious600

period ends are difficult to disentangle in this system because we have second order terms (i.e. an

average of the product αiγi).
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B Stationary dynamics

B.1 Endemic equilibrium

At equilibrium, all time derivatives of system (S1) cancel out. If we denote by H̃ the corresponding605

value of density H at this equilibrium, we get S̃ = S0 = λ
µ
and Ẽ = Ĩ = D̃ = C̃ = R̃ = 0 for the

disease free equilibrium (DFE).

The endemic equilibrium (EE), on the other hand, is found by assuming non zero values for all

H̃. We thus first get that,



dI
dt = 0 ⇐⇒ Ĩ = ω

γ
Ẽ,

dD
dt = 0 ⇐⇒ D̃ = αθγ

ε
Ĩ = αθω

ε
Ẽ,

dC
dt = 0 ⇐⇒ C̃ = (1−α)γ

σ
Ĩ = (1−α)ω

σ
Ẽ,

dR
dt = 0 ⇐⇒ R̃ = σ

µ
C̃ = (1−α)ω

µ
Ẽ.

(S4)

Hence,

dE
dt = 0⇐⇒

(
βI Ĩ + βDD̃ + βC

C̃

Ñ

)
S̃ − ωẼ = 0,

⇐⇒
(
βI
ω

γ
Ẽ + βD

αθω

ε
Ẽ + βC

(1− α)ω
σÑ

Ẽ

)
S̃ − ωẼ = 0,

⇐⇒ S̃ =
(
βI
γ

+ αθβD
ε

+ (1− α) βC
σÑ

)−1

, (S5)
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and

dS
dt = 0⇐⇒ λ−

(
µ+ βI Ĩ + βDD̃ + βC

C̃

Ñ

)
S̃ = 0,

⇐⇒ µ+ βI
ω

γ
Ẽ + βD

αθω

ε
Ẽ + βC

(1− α)ω
σÑ

Ẽ = λ

S̃
,

⇐⇒ ωẼ

S̃
= λ

S̃
− µ,

⇐⇒ Ẽ = λ− µS̃
ω

. (S6)

It follows that

Ñ := S̃ + Ẽ + Ĩ + C̃ + R̃ = S̃ +
(

1 + ω

γ
+ (1− α)ω

σ
+ (1− α)ω

µ

)
Ẽ,

= S̃ +
(

1
ω

+ 1
γ

+
(

1
σ

+ 1
µ

)
(1− α)

)(
λ− µS̃

)
. (S7)

By combining (S5) and (S7), we can find the exact solution for Ñ . This closed form is excessively610

large and therefore not shown here. It is however possible to find a approximation of Ñ as a simple

function of the model’s parameters with some simplifications that are shown hereafter, with a

particular treatment of the α = 1 case.

B.2 Stationary total population size approximation for α 6= 1

In this subsection, we assume that α < 1 (the case where α = 1 is treated in the next subsection).615

Given that life expectancy is several orders of magnitude greater than the convalescent period,

i.e. 1
µ
� 1

σ
, we have

1
ω

+ 1
γ

+
(

1
σ

+ 1
µ

)
(1− α) ≈

(
1
ω

+ 1
γ

+ 1
µ

)
− α

µ
,
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Furthermore, since life expectancy is also several orders of magnitude greater than the latency

and symptomatic period, i.e. 1
µ
� 1

ω
+ 1

γ
, and since α 6= 1, we finally have

Ñ ≈ S̃ + (1− α)
(
S0 − S̃

)
,

Ñ ≈ (1− α)S0 + αS̃. (S8)

The virulence of EBOV is usually high and its sexual transmission low compared to the two

other transmission route (Abbate et al., 2016), which is why we can approximate S̃ by its value

by neglecting the third term in equation (S5), which leads to620

S̃ ≈ γε

εβI + αγθβD
. (S9)

This then results in

Ñ ≈ (1− α)S0 + αγε

εβI + αγθβD
. (S10)

Numerical comparisons performed on positive and stable equilibria for realistic parameter sets

show that this approximation differs from the exact value by less than 10,000 individuals, which

corresponds to a relative error of less than 1%, thus validating the accuracy of this approximation.

B.3 Stationary total population size approximation for α = 1625

Here we assume that α = 1 (notice that in this case the trade-off exponent p vanishes).

We then get back to equation (S5) that becomes such that

S̃ =
(
βI
γ

+ θβD
ε

)−1

= γε

εβI + γθβD
,
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which shows that the exact value of S̃ coincides with its equation (S9) approximation for α = 1.

As for equation (S7), we get

Ñ =
(

1− (γ + ω)µ
γω

)
S̃ + (γ + ω)λ

γω
,

it is straightforward to show numerically (using parameters from Table 1) that, since S̃ and λ
µ

= S0

are of the same order of magnitude and that, as already mentioned, life expectancy is several orders630

of magnitude greater than the latency and symptomatic period, i.e. 1
µ
� 1

ω
+ 1

γ
, which is equivalent

to (γ+ω)µ
γω

� 1, we have

Ñ ≈ S̃ = γε

εβI + γθβD
, (S11)

which shows the consistency of equation (S10) even for α = 1.

This approximation shows a relative error of about 10−3 with Table 1 parameters values.
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C Reproduction number derivation635

The basic reproduction number, R0, and the relative reproduction number, Rm, are two epidemi-

ological quantifications of the invasion potential of an infectious agent in a fully susceptible pop-

ulation and in an population already infected by an alternative strain, respectively. They emerge

from the stability analysis of the disease free equilibrium (DFE) and the endemic equilibrium (EE)

respectively. Their threshold value is 1.640

The next-generation method (Diekmann et al., 1990; Hurford et al., 2010) is the most efficient

derivation of these reproduction numbers and proceeds as follows.

C.1 General reproduction number

First, we isolate the ODEs of the infected compartments from the rest of the system (here system

(S1)) to obtain645 

dE
dt =

(
βII + βDD + βC

C
N

)
S − ωE,

dI
dt = ωE − γI,

dD
dt = αθγI − εD,

dC
dt = (1− α) γI − σC.

(S12)

Second, we write the Jacobian matrix J that corresponds to this sub-system (S27), by de-

riving each time-derivative (dE
dt ,

dI
dt ,

dD
dt ,

dC
dt ) with respect to each infected compartment density
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(E, I,D,C):

J =



−βC CSN2 − ω
(
βI + βC

C
N2

)
S βDS

(
1− C

N

)
βC

S
N

ω −γ 0 0

0 αγθ −ε 0

0 (1− α) γ 0 −σ


,

reminding that N := S + E + I +R + C.

Third, we arbitrarily decompose J as a sum of an ‘inflow’ matrix F and an ‘outflow’ matrix −V650

provided that V is non-singular (that is V−1 exists), F and V−1 are non-negative elementwise and

the real parts of all eigenvalues of −V are negative. Here, we conveniently choose two matrices

that fulfil these requirements:

F =



0
(
βI + βC

C
N2

)
S βDS βC

S
N

0 0 0 0

0 0 0 0

0 0 0 0


and V =



−βC CSN2 − ω 0 0 −βC CSN2

ω −γ 0 0

0 αγθ −ε 0

0 (1− α) γ 0 −σ


.

Finally, the general reproductive number R is given by the largest modulus of all eigenvalues

of the F.V−1 matrix. Elementary calculations result in the following general result655

R = ((1− α) γεβC + (εβI + αγθβD)N)ωSN
(γσβCCS + ((1− α) γβCCS (βCCS +N2γ)σ)ω) ε. (S13)
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C.2 Basic reproduction number

The basic reproduction number R0 is obtained from R by setting the densities to their values at

the disease free equilibrium (DFE), namely S = N = λ
µ
and C = 0, hence

R0 =
(
βI
γ

+ αθβD
ε

)
S0 + (1− α) βC

σ
, (S14)

Any strain introduced in a fully susceptible host population spreads if and only if R0 > 1.

C.3 Relative reproduction number660

As for the relative reproduction number Rm, it is obtained from R by setting the densities to

their values at an alternative strain endemic equilibrium (EE), namely S = S̃, N = Ñ and C = 0

(notice that in such setting N = S + R + Er + Ir + Cr + E + I + C where the r index denotes

compartments of individuals infected by the previously established (‘resident’), which may not be

empty at EE, making S̃ < Ñ), hence665

Rm =
(
βI
γ

+ αθβD
ε

+ (1− α) βC
σÑ

)
S̃.

It follows that a rare mutant strain of CFR x that appears in a host population endemically

infected by a resident strain of CFR y spreads and persists if and only if

R (x, y) :=
(
βI (x)
γ

+ xθβD (x)
ε

+ (1− x) βC (x)
σÑ (y)

)
S̃ (y) > 1. (S15)
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Moreover, it is possible to eliminate S̃ (y) using equation (S5), leading to

R (x, y) =
βI(x)
γ

+ xθβD(x)
ε

+ (1−x)βC(x)
σÑ(y)

βI(y)
γ

+ yθβD(y)
ε

+ (1−y)βC(y)
σÑ(y)

. (S16)

This formula shows in particular that, because of the two occurrences of Ñ (y), the relative

reproduction number is not the ratio between the two basic reproduction numbers, as it is in670

simpler models (Dieckmann, 2002).

We can finally apply approximation (S10) Ñ (y) ≈ (1− y)S0 + γεy
εβI(y)+γθyβD(y) to obtain a

closed-form expression for R (x, y) (not shown here).
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D Evolutionary analysis of virulence

Investigating the evolutionary trends require to consider trade-offs. From now on, we will then675

always apply the transmission-virulence trade-off assumed in equation (2) and keep in mind that

the βH constant case can be retrieved if p = 0.

D.1 Virulence effect on basic reproduction number

It is worth noticing that unless p = 0, we haveR0 = 0 when α = 0. Therefore not all CFR/virulence

levels are able to give rise to an epidemic and persist in the population. Indeed, R0 (α) may not

be greater than 1 for all α ∈ [0; 1]. First, let us then study how R0 is affected by α, by calculating

its derivative

dR0

dα (α) = d
dα

(((
bI
γ

+ αθbD
ε

)
S0 + (1− α) bC

σ

)
αp
)
,

=
((

θbDS0

ε
− bC

σ

)
α + p

((
bI
γ

+ αθbD
ε

)
S0 + (1− α) bC

σ

))
αp−1,

which cancels only if α = 0 or

α =
bC
σ

+ bIS0
γ

bC
σ
− θbDS0

ε

× p

1 + p
=: α◦,

which lies in ]0, 1[ if and only if θ < εbC
σbDS0

≈ 2.3% and p <
bC
σS0
− θbD

ε
bI
γ

+ θbD
ε

≈
θ=0

5.6 · 10−3 (numerical values680

are given according to Table 1 calibration). If these conditions are not fulfilled, then dR0/dα is

positive for all CFR.
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Given these conditions, the value of α◦ can be approximated by

α° ≈
θ→0

σbIS0

γbC
p.

The basic reproduction number at this value is

R0 (α°) =
((

bI
γ

+ αθbD
ε

)
S0 + (1− α) bC

σ

)(
σbIS0

γbC
p

)p
≈
θ→0

bIS0

γ
,

which is a maximum on ]0, 1[ (inequality d2R0
dα2 (α◦) < 0 has been checked after calculations not685

shown).

Besides, evaluating R0 for α = 1 leads to

R0 (1) =
(
bI
γ

+ θbD
ε

)
S0 ≥

bIS0

γ
,

the lower bound being greater than one according to Table 1 estimates, and this holds even with

almost half of the bI value and smaller values of γ.

To conclude, for any given values of p and θ, there is always a CFR interval [αmin, 1] in which690

any strain can spread.

Notice also that for α = 0 and p = 0,

R0 = bIS0

γ
+ bC

σ
≥ bIS0

γ
,

and likewise this is greater than one for estimated parameters. Consequently, all CFR values can

spread in absence of trade-off.695
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D.2 Minimum spreadable CFR approximation

αmin ∈ [0, 1] is the minimum CFR of EBOV required to spread, i.e. R0 (αmin) := 1. However, it is

not possible to find the exact closed form of αmin (as the equation R (x) = 1 involves irreducible

terms of both xp and x). It is nonetheless possible to analytically find a lower bound for αmin,

which we denote by α− (0 ≤ α− ≤ αmin ≤ 1). First, notice that700

R0 (α) :=
(
βI
γ

+ αθβD
ε

)
S0 + (1− α) βC

σ
≤
(
βI
γ

+ θβD
ε

)
S0 + βC

σ
=: R0,+ (α) , (S17)

where R0,+ (α) is an over-estimate of R0 (α). Applying the trade-off from equation (2), we get

R0,+ (α) =
((

bI
γ

+ θbD
ε

)
S0 + bC

σ

)
αp.

Let α− be the CFR such that R0,+ (α−) = 1, that is

α− =
((

bI
γ

+ θbD
ε

)
S0 + bC

σ

)−1
p

. (S18)

From equation (S17) and as R0 and R0,+ are increasing functions of α, it follows that

R0 (α−) ≤ R0,+ (α−) = 1 = R0 (αmin) ≤ R0,+ (αmin) ,

thus α− is an analytical under-estimate of αmin.

Notice that in absence of trade-off, the closed form αmin can be easily found as705

αmin =
1− bIS0

γ
− bC

σ
θbDS0
ε
− bC

σ

. (S19)
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D.3 Virulence effect on stationary densities

From now one, we will assume that α ∈ [αmin, 1].

We apply definition from equation (2) to equation (S9), that is

S̃ ≈ γε

(εbI + γθbDα)αp .

Its derivative with respect to α is

dS̃
dα (α) ≈ − (γθbDα + p (εbI + γθbDα)) γεαp−1

(εbI + γθbDα)2 < 0.

Thus, it comes from equation (S8), that710

dÑ
dα (α) = −S0 + S̃ (α) + α

dS̃
dα (α) .

Since S̃ (α) < S0 for α ≥ αmin (any EBOV strain that spreads decreases the number of suscep-

tible individuals), dÑ
dα (α) < 0, that is Ñ (α) is a decreasing function of α, we have

Ñ (α) ≥ Ñ (1) = γε

εbI + γθbD
.

D.4 Virulence selection gradient

We can finally investigate the virulence selection gradient, ∆, by deriving the relative reproduction

number from equation (S16) with respect to the first argument (i.e. the mutant’s virulence), which715

leads to ∂1R, and equalizing the mutant and resident’s virulence. After some calculations, we find
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that

∆ (y) := ∂1R (y, y) = p

y
+

θbD
ε
Ñ (y)− bC

σ

(1− y) bC
σ

+
(
bI
γ

+ θbD
ε
y
)
Ñ (y)

.

Since the CFR is bounded by 1, it is expected to evolve towards lower values if and only if

∆ (1) < 0, that is

∆ (1) ≈ p+ θbDγ

εbI + γθbD
− bC

σ
< 0.

By investigating burial control under the most favourable trade-off, which is no trade-off (p = 0),720

we find that this condition is equivalent to (for bC � σ):

θ <
bIbCε

γσbD
≈ 4%.

By investigating trade-off shape under the most favourable burial control (θ = 0), we find that

the condition is equivalent to

p <
bC
σ
≈ 10−2.

Moreover, investigating the selection gradient at the lowest spreadable CFR y = αmin, we notice

that the following lower bound725

∆ (αmin) ≥
θbD
ε
Ñ (1)− bC

σ

(1− αmin) bC
σ

+
(
bI
γ

+ θbD
ε
αmin

)
Ñ (1)

is positive if θ > bIbCε
γσbD

. Therefore a necessary condition for having a negative selection gradient on

the lowest spreadable CFRs is θ < bIbCε
γσbD

.
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D.5 Evolutionary attracting virulence estimation

Unless it is equal to the 0 or 1 boundaries (the determination of which only requires the invariant

sign of the selection gradient), the evolutionary attracting virulence α? is an intermediate CFR730

value in ]0, 1[ such that ∆ (α?) = 0 (singularity condition), ∂1,1R (α?, α?) < 0 (evolutionary stability

condition) and d∆
dα (α?) < 0 (convergent stability condition), according to the adaptive dynamics

framework (Geritz et al., 1998). We therefore investigate the singularity condition that provides

an equation α? has to satisfy.

By writing the selection gradient under a condensed form and defining η := bI
γ
, φ := bD

ε
, ψ := bC

σ
,

we find that

∆ (α?) = p

α?
+ θφÑ (α?)− ψ

(1− α?)ψ + (η + θφα?) Ñ (α?)
= 0,

⇐⇒ (p− (1 + p)α?)ψ + (pη + (p+ α?) θφ) Ñ (α?) = 0. (S20)

As noticed in the previous subsection, this equation has a solution only if p is small enough (for735

the first term to be negative) and θ is small enough (for the second term not to be too positive).

Hereafter, and because we are seeking for an intermediate evolutionary attracting virulence, we

assume that p and θ are small enough such that this equation has a solution in ]0, 1[.

The complexity of Ñ (α?) prevents us from having a closed-form expression of α?. However, α?

can be bounded by an underestimate α?− on the one hand, and an overestimate α?+ on the other740

hand.

First, notice that the left hand side of equation (S20) has the following upper bound, replacing

Ñ (α?) by its maximum S0 = λ
µ
,

17



(p− (1 + p)α?)ψ + (pη + (p+ α?) θφ)S0,

which cancels out only if α? is replaced by a greater value we denote by α?+ (since the first term is

a decreasing function of the CFR). This leads to745

α?+ = ((η + θφ)S0 + ψ) p
(1 + p)ψ − θφS0

. (S21)

Notice that α?+ > 0 requires that ψ (1 + p) > θφS0 that is θ small.

Second and analogously, the left hand side of equation (S20) has the following lower bound,

replacing Ñ (α?) by its minimum Ñ (1) = 1
η+θφ ,

(p− (1 + p)α?)ψ + pη + (p+ α?) θφ
η + θφ

,

which cancels out only if α? is replaced by a smaller value we denote α?− (since the first term is a

decreasing function of the CFR). This leads to750

α?− = (1 + ψ) p
(1 + p)ψ − θφ

η+θφ
. (S22)

Notice that α?− < 1 requires that p < ψ − θφ
η+θφ . Since b̂C

σ̂
= 10−2, the approximations 1 + ψ ≈ 1

and 1 + p ≈ 1 holds, which makes this expression even simpler:

α?− ≈
p

ψ − θφ
η+θφ

,

which in turn is positive only if θ < ψη
(1+ψ)φ ≈

ψη
φ
. Therefore, the two conditions on p and θ related

to the cancellation of ∆ are retrieved.

18



Figure S1: Boundaries of the evolutionary attracting values of CFR.
Underestimate (α?− , left) and the overestimate (α?+, right) values of the evolutionary attractor
α? as a function of unsafe burial ratio θ and trade-off exponent p. The solid, the dashed and the
dotted lines correspond to α? = 1, 0.7 and 0.3 respectively. Other parameter values are default
(Table 1).

As one can see by comparing Figure S1 with Figure 3, α?+ but moreover α?− are accurate755

estimates of α?.
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E Sensitivity analysis

For the sake of both generality and graphical readability, we reduced the dimensionality of the

parameter space by defining:

η := bI
γ
, δ := bD

ε
· γ
bI
, κ := bC

σ
· γ
bI
, (S23)

where η is the average number of infectious contacts between one susceptible and one symptomatic760

individual over the symptomatic individual’s symptomatic period, δ is the ratio between the equiv-

alent of η for dead bodies and η itself, and κ is the ratio between the equivalent of η for convalescent

individuals and η itself. Quantity η is equal to the symptomatic individual relative (that is nor-

malised by S0) contribution to the basic reproduction number, and is used for defining both δ and

κ. Therefore, η is a primary scaling factor that can be eliminated through any estimated value of765

the R0. δ and κ are secondary scaling factors that can be studied independently.

First, the basic reproduction number can be rewritten using definitions (S23),

R0 = ((1 + αθδ)S0 + (1− α)κ) ηαp.

Therefore, any given a set of estimated epidemiological data (α̂, θ̂, Ŝ0, R̂0) can be used to scale

η, while keeping undetermined the trade-off exponent p, that is to say

η̂ = R̂0α̂
−p(

1 + α̂θ̂δ
)
Ŝ0 + (1− α̂)κ

. (S24)
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Rewriting the selection gradient at α = 1 with definitions (S23),770

∆ (1) ≈ p+ θδ

1 + θδ
− κη,

and imputing estimated data with equation (S24),

∆ (1) ≈ p+ θδ

1 + θδ
− R̂0α̂

−pκ(
1 + α̂θ̂δ

)
Ŝ0 + (1− α̂)κ

,

we find that

∆ (1) < 0⇐⇒ ((1 + θδ) p+ θδ)
((

1 + α̂θ̂δ
)
Ŝ0 + (1− α̂)κ

)
< (1 + θδ) R̂0α̂

−pκ,

⇐⇒ ((1 + θδ) p+ θδ)
(
1 + α̂θ̂δ

)
Ŝ0 <

(
(1 + θδ) R̂0α̂

−p − ((1 + θδ) p+ θδ) (1− α̂)
)
κ.

Further investigation requires to study the inequality

R̂0 ≷

(
p+ θδ

1 + θδ

)
(1− α̂) α̂p.

Elementary calculus then shows that for any couple (p, α̂) ∈ R+ × [0, 1], we have the following

upper bound (
p+ θδ

1 + θδ

)
(1− α̂) α̂p ≤ (p+ 1) (1− α̂) α̂p ≤ 1,

By definition, epidemiological data originate from outbreaks for which R̂0 > 1, therefore we775

get the inequality used to plot our figure

∆ (1) < 0⇐⇒ κ

Ŝ0
>

((1 + θδ) p+ θδ)
(
1 + α̂θ̂δ

)
(1 + θδ) R̂0α̂−p − ((1 + θδ) p+ θδ) (1− α̂)

, (S25)
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with values α̂ = 0.7, θ̂ = 0.25, Ŝ0 = 4.44444 · 106 and R̂0 ∈ [1.26, 2.53], according to reference

(World Health Organization Ebola Response Team, 2014; Nyenswah et al., 2016; Abbate et al.,

2016) respectively.
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F Application of the Price equation780

Introducing a diversity of n ∈ N? non-coinfecting strains of EBOV, system (S1) becomes a set of

4n+ 1 ordinary differential equations, where for all i ∈ {1, . . . , n},



dS
dt = λ− µS −∑n

i=1 (βI,iIi + βD,iDi + βC,iCi)S,

dEi
dt = (βI,iIi + βD,iDi + βC,iCi)S − ωiEi,

dIi
dt = ωiEi − γiIi,

dDi
dt = αiθγiIi − εiDi,

dCi
dt = (1− αi) γiIi − σiDi.

(S26)

The total population size of each class, denoted by H• :=
n∑
i=1
Hi, therefore satisfies



dS
dt = λ− µS −

(
βI

I
I• + βD

D
D• + βC

C
C•
)
S,

dE•
dt =

(
βI

I
I• + βD

D
D• + βC

C
C•
)
S − ωEE•,

dI•
dt = ωEE• − γII•,

dD•
dt = θαγII• − εDD•,

dC•
dt = γII• − αγII• − σDD•.

(S27)

By definition, an average value of a trait x in a compartment H is given by xH = ∑n
i=1 xi

Hi
H•

.

If we assume that the trait value of a strain is constant and neglect mutational variance (i.e.785
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dxi
dt = 0), the dynamics of any trait x in the I compartment are thus given by

dxI
dt =

n∑
i=1

(
1
I•

dIi
dt −

Ii
I2
•

dI•
dt

)
xi,

=
n∑
i=1

(
(ωiEi − γiIi)

1
I•
−
(
ωEE• − γII•

) Ii
I2
•

)
xi,

=
n∑
i=1

(
ωi
Ei
E•
− ω Ii

I•

)
xi
E•
I•
−

n∑
i=1

(
γ
Ii
I•
− γ Ii

I•

)
xi,

= E•
I•

n∑
i=1

(
ωi
Ei
E•
− ωEi

E•
+ ω

Ei
E•
− ω Ii

I•

)
xi −

n∑
i=1

(γ − γ)xi
Ii
I•
,

dxI
dt =

(
covE (x, ω) +

(
xE − xI

)
ωE
) E•
I•
− covI (x, γ) , (S28)

where cov indicates a genetic covariance between two traits, xH is the average value of trait x in

host compartment X and xyH is the average value of the product xy in the same compartment.

This illustrates that it might be difficult to disentangle a trait of interest x with the duration of

the latent period (1/ω) if this latter trait varies for different virus genotypes.790

Similarly, in the E compartment we have

dxE
dt =

n∑
i=1

(
1
E•

dEi
dt −

Ei
E2
•

dE•
dt

)
xi,

=
n∑
i=1

(((
βIi Ii + βDi Di + βCi Ci

)
S − ωiEi

) 1
E•

−
((
βI

I
I• + βD

D
D• + βC

C
C•

)
S − ωE•

)
Ei
E2
•

)
xi,

= S

E•

n∑
i=1

((
βIi Ii + βDi Di + βCi Ci

)
−
(
βI

I
I• + βD

D
D• + βC

C
C•

)
Ei
E•

)
xi

−
n∑
i=1

(ωi − ω)xi
Ei
E•
,

= S

E•

 ∑
H∈{I,D,C}

H•
n∑
i=1

(
βHi

Hi

H•
− βH

H Hi

H•
+ βH

H Hi

H•
− βH

H Ei
E•

)
xi

− covE (x, ω) ,

dxE
dt = S

E•

 ∑
H∈{I,D,C}

(
covH (x, βH) +

(
xH − xE

)
βH

H
)
H•

− covE (x, ω) . (S29)
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If we now focus on the dead hosts, we have

dxD
dt =

n∑
i=1

(
1
D•

dDi

dt −
Di

D2
•

dD•
dt

)
xi,

=
n∑
i=1

(
(αiθγiIi − εiDi)

1
D•
−
(
θαγII• − εD•

) Di

D2
•

)
xi,

= θ
I•
D•

n∑
i=1

(
αiγi

Ii
I•
− αγI Di

D•

)
xi −

n∑
i=1

(εi − ε)xi
Di

D•
,

= θ
I•
D•

n∑
i=1

(
αiγi

Ii
I•
− αγI Ii

I•
+ αγI

Ii
I•
− αγI Di

D•

)
xi −

n∑
i=1

(εi − ε)xi
Di

D•
,

dxD
dt =

(
covI (x, αγ) +

(
xI − xD

)
αγI

)
θ
I•
D•
− covD (x, ε) . (S30)

Finally, in the convalescent hosts, we have

dxC
dt =

n∑
i=1

(
dCi
dt

1
C•
− dC•

dt
Ci
C2
•

)
xi,

=
n∑
i=1

(
((1− αi) γiIi − σiCi)

1
C•
−
((
γI − αγI

)
I• − σCC•

) Di

D2
•

)
xi,

= I•
C•

n∑
i=1

(
γi
Ii
I•
− αiγi

Ii
I•
−
(
γI − αγI

) Ci
C•

)
xi −

n∑
i=1

(
σi − σC

)
xi
Ci
C•
,

= I•
C•

n∑
i=1

(
Ii
I•

(
γi − γI − αiγi + αγI

)
+ γI

Ii
I•
− γI Ci

C•
+ αγI

Ci
C•
− αγI Ii

I•

)
xi −

n∑
i=1

(
σi − σC

)
xi
Ci
C•
,

dxC
dt = I•

C•

(
covI (x, γ)− covI (x, αγ) +

(
xI − xC

)
γI −

(
xI − xC

)
αγI

)
− covC (x, σ) . (S31)
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G Numerical simulations

We explored 8 scenarios. For each, we assume that we have n = 100 EBOV strains. The standing

genetic variation for the CFR αi (i ∈ {1, . . . n}) is drawn from a Gaussian distribution with mean795

α̂ = 0.7 and standard deviation ς = 0.1

We only explored positive correlations between CFR and transmissions rates, consistently with

our trade-off hypothesis. We also did not investigate correlations between CFR and post mortem

elimination rate because we assume that the period over which an unsafe buried body is still a

suitable environment for virion survival is independent from the initial number of virions. Finally,800

we ignored convalescent-related variables received since this component of EBOV transmission is

much smaller than the others two.

The description of the 9 scenarios is as follows:

1. No genetic correlation between the CFR α and other traits (“all constant” panel, also shown

in the main text).805

2. Addition of a negative correlation between α and the rate of end of latency period ω.

3. Addition of a positive correlation between α and the transmission rates βH (“+bH” panel)

that will be kept for the next six scenarios.

4. Addition of a positive correlation between α and the inverse of the latency period ω (“+bH+O”

panel).810

5. Reversing the correlation between α and ω (“+bH-O” panel).

6. positive correlations between α and βH , α and ω and α and the inverse of the symptomatic

period γ (“+bH+O+G” panel)

26



7. positive correlations between α and βH and between α and γ, negative correlation between

α and ω (“+bH-O+G” panel)815

8. positive correlations between α and βH and between α and ω, negative correlation between

α and γ (“+bH+O-G” panel)

9. positive correlation between α and βH , negative correlations between α and ω and between

α and γ (“+bH-O-G” panel)

Positively and negatively correlated traits were drawn according to the formulas xi =
(
%αi
α̂

+ (1− %) ξi
)
x̂820

and xi =
((
− (max (α)− α̂) αi

α̂
+ max (α)−min (α)

)
%

α̂−min(α) + (1− %) ξi
)
x̂ respectively, where x̂

the estimated value of x ≡ βH , ω, γ according to Table 1, % = 0.5 denotes the strength of the

correlation and ξi a Gaussian random variable with mean 1 and standard deviation ς = 0.1. Initial

conditions are given by S (0) = λ
µ
≈ 4.4 · 106 ind and Hi (0) = 1 ind for all i ∈ {1, . . . , n} and all

H ≡ E, I,D,C.825

Results for 8 of the scenarios are shown in Figure S2 (scenario 2 is only shown in the main text

for space constraint reasons).
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Figure S2: Short-term evolution of CFR with standing genetic variation.
The CFR averaged over the exposed individuals (αE) is depicted in cyan, over the symptomatic
individuals (αI) in pink and over the infectious dead bodies (αD) in brown.
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H Virulence and transmission routes

We have showed that EBOV’ reproduction numbers can be split into three additive components

that correspond to each of the three transmission routes namely symptomatic (through regular830

contact with symptomatic individuals), post mortem (through contact with unsafe buried infectious

dead bodies) and sexual (through sexual contact with convalescent individuals). According to our

trade-off assumption, the intensity of each of these components is modulated by virulence: both

symptomatic and post mortem components always increase with virulence while sexual component

is maximum for an intermediate virulence level (unless there is no trade-off, in which case the835

symptomatic component is constant and the sexual component decreases with virulence), as in

Figure S3.

This come from the fact that virulence increases all transmission rates and infectious bodies

inflows, while decreasing the convalescent individuals inflow. Virulence then also acts as an invest-

ment cursor between the exclusive post mortem and sexual transmission routes. It thus appears840

that the cost of virulence is strictly limited to loss in sexual transmission. Therefore, it is only if

the sexual component is the dominant route of the virus’ life cycle that this cost can really balances

with the overall transmission
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Figure S3: Relative variation of transmission route component intensity as a function
of virulence and trade-off shape.
Post mortem (left), symptomatic (middle), and sexual (right) transmission components as a func-
tion of virulence and trade-off shape (p = 0 in black, 0.05 in red, 0.5 in orange, 1 in blue and 2 in
green).
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