Supplementary Material for: The consequences of polyandry for sibship structures, distributions of relationships and relatedness, and potential for inbreeding in a wild population

Supporting Information S1. Quantifying the combined effects of simultaneous and sequential polyandry on sibship structures

We fitted generalized linear models (GLMs) with binomial error structures (where $N_{\text {sibs }}$ represents the binomial denominator) to test whether Diff $_{\text {social-gen }}$ (i.e., the absolute difference between each female's value of Prop $_{\text {Full-sibs }}$ given the social and genetic pedigrees) or Diff $_{\text {life_monandry-gen }}$ (the difference between Prop $_{\text {Full-sibs }}$ given the genetic pedigree versus the expectation given strict lifelong monandry) varied with whether or not any of a female's lifetime offspring were sired by an extra-pair male (i.e., a two-level factor), or alternatively by the overall proportion of a female's lifetime offspring that were sired by extra-pair males. Linear and quadratic effects of the latter variable were fitted since low Diff social-gen and Diff $_{\text {life_monandry-gen }}$ could occur if a small proportion of a female's offspring were sired by extra-pair males or if a large proportion of offspring were sired by the same extra-pair male.

As expected, Diff ${ }_{\text {social-gen }}$ varied with whether or not a female produced any banded extra-pair offspring, with a raw mean difference of 0.32 ± 0.30 (median 0.2 , range $0.00-1.00$) for females that produced at least one extra-pair offspring compared to zero for females that did not (table S1). Diff social-gen also varied with the total proportion of a female's banded
offspring sired by extra-pair males, and increased up to intermediate proportions of extrapair banded offspring but decreased with higher proportions (table S1; Results fig. 3A). Diff $_{\text {life_monandry-gen }}$ was likewise predicted by whether or not a female produced any banded extra-pair offspring, with means of 0.63 ± 0.23 (median 0.7 , range $0-1.00$) and 0.11 ± 0.22 (median 0, range 0-0.71) for females that did and did not produce any extra-pair offspring respectively (table S1). Difflife_monandry-gen increased up to intermediate proportions of extrapair banded offspring but decreased with higher proportions (table S1; Results fig. 3B).

Similar to sibships among banded offspring, Diff social-gen for recruited offspring varied with whether or not a female produced any extra-pair recruited offspring, with a raw mean difference of 0.33 ± 0.30 (median 0.26 , range $0.00-1.00$) for females that produced at least one extra-pair recruited offspring compared to zero for females that did not (table S1). Diff $_{\text {social-gen }}$ increased up to intermediate proportions of extra-pair recruits and again decreased with higher proportions (table S1; Results fig. 3C). Diff life_monandry-gen was likewise predicted by whether or not a female produced any extra-pair recruited offspring, with means of 0.65 ± 0.30 (median 0.7 , range $0-1.00$) and 0.29 ± 0.40 (median 0 , range $0-1.00$) for females that did and did not produce any extra-pair recruited offspring, respectively (table S1). Difflife_monandry-gen also $_{\text {increased }}$ up to intermediate proportions of extra-pair recruited offspring, but decreased with higher proportions (table S1; Results fig. 3D).

Table S1: Generalized linear models estimating whether changes in sibship structure of females' banded (A-D) and recruited (E-H) offspring given the genetic versus social pedigrees (Diff ${ }_{\text {social-gen }}$), and given the genetic pedigree versus strict lifelong monandry (Diff ${ }_{\text {life_monandry-gen }}$), varied in relation to whether or not females produced any extra-pair offspring over their lifetime (Any EPO; Models A,C,E,G), or with the proportion of a female's lifetime offspring that were extra-pair offspring (Prop EPO; Models B, D,F,H). All models utilized a binomial error structure weighted by total number of sibships ($N_{\text {sibs }}$). Linear and quadratic effects of Prop EPO were modelled. Estimated effects of extra-pair reproduction (on latent scales) are presented ± 1 standard error (SE), $d f$ is the residual degrees of freedom, R^{2} is the coefficient of determination.

Table S1

Response variable	$d f$	R^{2}	Predictor	Estimate (\pm SE)	Z	p
Banded offspring						
A) Diff social-gen	96	0.04	Intercept	-0.96 (0.10)		
			Any EPO	0.38 (0.10)	3.6	0.0002
B) Diff social-gen	95	0.14	Intercept	-2.20 (0.04)		
			Prop EPO	4.90 (0.41)	11.93	<0.0001
			(Prop EPO) ${ }^{2}$	-3.23 (0.57)	-5.65	<0.0001
C) Diff $_{\text {life_monandry-gen }}$	96	0.29	Intercept	-1.73 (0.12)		
			Any EPO	2.64 (0.12)	21.2	<0.0001
D) Diff $_{\text {life_monandry-gen }}$	95	0.25	Intercept	0.59 (0.03)		
			Prop EPO	4.04 (0.32)	12.64	<0.0001
			$\left(\right.$ Prop EPO) ${ }^{2}$	-6.73 (0.39)	17.5	<0.0001
Recruited offspring						
E) Diff social-gen	35	0.25	Intercept	-1.66 (0.30)		
			Any EPO	$1.07 \text { (0.32) }$	3.4	0.0008
F) Diff $_{\text {social-gen }}$	34	0.37	Intercept	-1.37 (0.17)		
			Prop EPO	4.88 (1.21)	4.04	<0.0001
			$\left(\right.$ Prop EPO) ${ }^{2}$	-2.49 (1.09)	-2.47	0.01
G) Diff life_monandry-gen $^{\text {l }}$	35	0.34	Intercept	-0.81 (0.24)		
			Any EPO	1.56 (0.26)	6.0	<0.0001
H) Diff life_monandry-gen $^{\text {a }}$	34	0.50	Intercept	0.29 (0.14)		
			Prop EPO	2.77 (1.14)	2.43	0.02
			$\left(\right.$ Prop EPO) ${ }^{2}$	-4.56 (0.83)	5.47	<0.0001

Supporting Information S2. Sibship structure among banded offspring of females that produced recruits

We quantified whether differences between females' banded and recruited offspring for both the number of male sires and proportion of full-sibships (Prop $_{\text {full-sibs }}$) across pedigrees (Results, table 1; fig. 2) were consistent across the exact same females over different offspring life-stages, rather than an artefact of the reduced sample size of females for analyses of recruits. To do so, we conducted further analysis of sibship structures among banded offspring of the 37 females that had at least two recruited offspring (see main manuscript Methods, Sibship structure).

Results from the subset of 37 females were quantitatively similar to those from the full dataset of 98 females, in that the number of different males that sired each female's banded offspring was greater given the genetic pedigree than given the social pedigree, but did not differ significantly between the genetic pedigree and the 'distinct males' pedigree (Results, table 1). Mean Prop Full-sibs among females' banded offspring was greater given the social versus genetic pedigrees, which was in turn greater than given the 'distinct males' pedigree (Results, table 1). Prop Full-sibs among the banded offspring of most (81\%; 30/37) females was lower given the genetic versus social pedigrees, for $14 \%(5 / 37)$ of females there was no change in lifetime sibships among banded offspring between the pedigrees, and $0.5 \%(2 / 37)$ of females had greater Prop Full-sibs among banded offspring given the genetic pedigree than given the social pedigree. Most females (57\%; 21/37) had even lower Prop Full- $^{\text {(}}$ sibs given the 'distinct males' pedigree than given the genetic pedigree, whereas $43 \%(16 / 37)$
of females had no change between the two pedigrees, and no females had greater Prop Fullsibs given the 'distinct males' pedigree (fig. S1).

Thus, results reported in the main manuscript (Results, table 1) regarding the lack of change in mean Prop Full-sibs $^{\text {given }}$ the 'distinct males' pedigree compared to the genetic pedigree, as well as the lack of difference in mean number of male sires among all three pedigrees for recruited offspring are likely not an artefact of the relatively small sample size for recruit sibship structures. Rather, these differences in sibship structures among banded and recruited offspring may be due to differential survival among within-pair (i.e., sired by social male) offspring versus their extra-pair brood-mates, as found previously in song sparrows (Sardell et al. 2011). These results suggest that the ultimate consequences of polyandry for the potential for different degrees of inbreeding and consequent fitness among descendants of polyandrous females in natural populations, with natural levels of offspring mortality, could be smaller than expected from laboratory populations (e.g., Power and Holman 2014).

Figure S1: The (A) numbers of different males that sired offspring, and (B) sibship structures of females' banded offspring given the social pedigree ('Social'), genetic pedigree ('Genetic'), and given the 'distinct males' pedigree ('Distinct males') using a restricted dataset of 37 females that produced >1 recruited offspring. In (A), box lines represent the median, upper and lower quartiles, whiskers demarcate $1.5 \times$ the interquartile range, and ' + ' shows the mean. In (B) the left and right axes respectively show the proportions of sibships among each female's offspring that are full-sibships ($\operatorname{Prop}_{\text {Full-sibs }}$) and half-sibships (Prop $_{\text {Half-sibs }}$), where points denote individual females (jittered for clarity), and lines join observations for individual females given the three pedigrees.

Unlike our main analyses involving all females which produced >1 banded offspring, Diff $_{\text {socialsen }}$ did not vary with whether or not a female produced any banded extra-pair offspring, with a raw mean of 0.21 ± 0.22 (median 0.13 , range $0.00-0.72$) for females that produced at least one extra-pair offspring compared to zero for females that did not (table S2). However, similar to our main analyses, Diff social-gen varied with the proportion of a female's total banded offspring that were sired by extra-pair males, showing that Diff $_{\text {social-gen }}$ increased significantly with intermediate proportions of extra pair offspring (linear slope, table S2), but tended to decrease with higher proportions, though this later relationship was not significant (quadratic slope, table S2). Difflife_monandry-gen likewise varied with whether or not a female produced any banded extra-pair offspring, with means of 0.63 ± 0.25 (median 0.7 , range $0-0.90$) and 0.31 ± 0.37 (median 0.3 , range $0-0.71$) for females that did and did not produce any extra-pair offspring respectively. Diff life_monandry-gen also $_{\text {varied }}$ with the proportion of a female's total banded offspring that were sired by extra-pair males, where Diffliffe_monandry-gen increased with up to intermediate proportions of extra-pair offspring (linear slope, table S2) but once again decreased with higher proportions (quadratic slope, table S2).

Table S2: Generalized linear models estimating whether changes in sibship structure of females' banded offspring given the genetic versus social pedigrees (Diff $_{\text {social-gen }}$), and given the genetic pedigree versus strict lifelong monandry (Diff $_{\text {life_monandry-gen }}$) varied in relation to whether or not females produced any extra-pair offspring over their lifetime (Any EPO; Models $A, C, E, G)$, or in relation to linear or quadratic effects of the proportion of a female's lifetime offspring that were extra-pair offspring (Prop EPO; Models B, D,F,H). Models A-D are from the full female dataset (reproduced from table S1 for comparison), and models EH utilise a restricted dataset considering the banded offspring of females that produced at least two recruited offspring. All models utilized a binomial error structure weighted by total number of sibships ($N_{\text {sibs }}$), and Diff social-gen was range scaled 0-1. Estimated effects of extrapair reproduction (on latent scales) are presented ± 1 standard error (SE), $d f$ is the residual degrees of freedom, R^{2} is the coefficient of determination.

Response variable	$d f$	R^{2}	Predictor	Estimate (\pm SE)	Z	p
Banded offspring - Full dataset						
A) Diff $_{\text {social-gen }}$	96	0.04	Intercept	-0.96 (0.10)		
			Any EPO	0.38 (0.10)	3.6	0.0002
B) Diff $_{\text {social-gen }}$	95	0.14	Intercept	-2.20 (0.04)		
			Prop EPO	4.90 (0.41)	11.93	<0.0001
			(Prop EPO) ${ }^{2}$	-3.23 (0.57)	-5.65	<0.0001
C) Diff life_monandry-gen	96	0.29	Intercept	-1.73 (0.12)		
			Any EPO	2.64 (0.12)	21.2	<0.0001
D) Diff $_{\text {life_monandry-gen }}$	95	0.25	Intercept	0.59 (0.03)		
			Prop EPO	4.04 (0.32)	12.64	<0.0001
			(Prop EPO) ${ }^{2}$	-6.73 (0.39)	17.5	<0.0001

Banded offspring - Restricted dataset

E) Diff social-gen	35	0.01	Intercept	-0.63 (0.23)		
			Any EPO	0.37 (0.23)	1.6	0.11
F) Diff ${ }_{\text {social-gen }}$	34	0.12	Intercept	-2.04 (0.04)		
			Prop EPO	2.61 (0.29)	8.97	<0.0001
			$\left(\right.$ Prop EPO) ${ }^{2}$	0.16 (0.37)	0.45	0.66
G) Diff life_monandry-gen	35	0.01	Intercept	0.30 (0.22)		
			Any EPO	0.63 (0.23)	2.8	0.005
H) Diff $_{\text {life_monandry-gen }}$	34	0.14	Intercept	0.96 (0.03)		
			Prop EPO	1.63 (0.27)	6.03	<0.0001
			$\left(\right.$ Prop EPO) ${ }^{2}$	-2.06 (0.28)	7.43	<0.0001

Supporting Information S3. Sibship structure among males' banded and recruited offspring

Analyses of sibship structure among lifetime banded and recruited offspring of male song sparrows given the social and genetic pedigrees were implemented as for females (described in Methods). However the 'distinct males' pedigree is arbitrary for males, and so was not analyzed.

A total of 99 males produced at least two banded offspring (i.e., at least one offspring sibship) given both the social and genetic pedigrees (males with >1 offspring under one pedigree but ≤ 1 under the other were excluded from analyses). These males socially reared a mean of 10.9 ± 8.4 offspring (median 8 , range $2-44$) and sired a mean of 11.3 ± 9.5 genetic offspring (median 8, range 2-52). Both the number of females with which males produced banded offspring and Prop $_{\text {Full-sibs }}$ among banded offspring were greater given the genetic versus social pedigrees (table S3; fig. S2A,B). Similar to females, most males (62\%, 62/99) had fewer full-sibships among lifetime banded offspring given the genetic versus social pedigree, whereas $30 \%(30 / 99)$ males had no change in Prop $_{\text {Full-sibs }}$ between the pedigrees, and 7\% (7/99) of males had greater Prop $_{\text {Full-sibs }}$ given the genetic pedigree.

A total of 31 male song sparrows produced at least two recruited offspring under both the social and genetic pedigrees, with means of 4.4 ± 2.9 social offspring (median 3 , range 2-16) produced and 4.7 ± 3.3 genetic offspring sired (median 3 , range $2-17$) over their lifetimes. While Prop $_{\text {Full-sibs }}$ among males' recruits was greater given the genetic than given the social pedigree, the number of females with which males produced recruited offspring did not significantly differ between the two pedigrees (table S3; fig. S2C,D). Once again similar to females, 39% (12/31) of males had fewer full-sibships among their lifetime
recruited offspring given the genetic pedigree than given the social pedigree, while 52% $(16 / 31)$ had no change, and $10 \%(3 / 31)$ had greater Prop $_{\text {Full-sibs }}$ given the genetic pedigree.

Table S3: Summary statistics (left panel) and generalized linear mixed models (right panel) estimating differences in the number of females with which a male sired (A) banded and (C) recruited offspring, and the proportion of full-sibships ($\operatorname{Prop}_{\text {Full-sibs }}$) among males' (B) banded and (D) recruited offspring given the social and genetic pedigrees. Analyses include 99 and 31 males for analyses of banded and recruited offspring, respectively, and assumed (A and C) Poisson or (B and D) binomial error structures. Raw means are presented ± 1 standard deviation (SD). Estimated effects of pedigree are presented ± 1 standard error (SE), $d f$ is the residual degrees of freedom (where the social pedigree represents the intercept), R^{2} is the conditional coefficient of determination, and Z and p values are presented for the effects of the genetic pedigree compared to the social pedigree.

Table S3

Response variable	Pedigree	Mean (\pm SD)	Median (Range)	df	R^{2}	Estimate (\pm SE)	Z	p
Banded offspring								
A) Number of females	Social	1.8 (1.2)	1 (1-7)	195	0.34	0.51 (0.09)		
	Genetic	2.8 (1.9)	2 (2-11)			0.44 (0.10)	4.6	<0.001
B) Prop $_{\text {full-sibs }}$	Social	0.75 (0.30)	1.00 (0.17-1.00)	195	0.55	1.63 (0.25)		
	Genetic	0.58 (0.33)	0.5 (0.00-1.00)			-0.91 (0.04)	24.4	<0.001
Recruited offspring								
C) Number of females	Social	1.6 (0.8)	1 (1-4)	59	0.05	0.48 (0.14)		
	Genetic	2.2 (1.2)	2 (1-5)			0.31 (0.18)	1.7	0.10
D) Prop $_{\text {full-sibs }}$	Social	0.71 (0.38)	1.00 (0.00-1.00)	59	0.61	1.48 (0.50)		
	Genetic	0.56 (0.39)	0.36 (0.00-1.00)			-1.17 (0.18)	6.2	<0.001

Figure S2

Figure S2: The numbers of different females with which male song sparrows produced (A) banded and (C) recruited offspring, and the sibship structures of males' (B) banded and (D) recruited offspring given the social pedigree ('Social') and genetic pedigree ('Genetic'). In (A) and (C), box lines represent the median, upper and lower quartiles, whiskers demarcate $1.5 \times$ the interquartile range, and ' + ' shows the mean. $\ln (B)$ and (D), the left and right axes respectively show the proportions of sibships among each male's offspring that are fullsibships (Prop full-sibs) and half-sibships (Prop $_{\text {Half-sibs }}$), where points denote individual males (jittered for clarity), and lines join observations for individual males given the two pedigrees.

Supporting Information S4. Population-wide effects of polyandry on the distribution of relatedness

To quantify the degree to which the observed individual-level differences in relationship frequencies extended across the population, we calculated the absolute and proportional changes in the total number of possible matings at each relationship level given the genetic versus social pedigrees. To do so, we pooled the number of possible matings among all females for a relationship level given the genetic pedigree and subtracted the number of possible matings at the same relationship level given the social pedigree.

Individual-level differences in the distribution of relatives that were available as possible mates given the genetic versus social pedigrees (Results, table 2) translated into substantial population-level differences; overall, extra-pair reproduction meant that females had more possible matings with half-brothers than with full-brothers, and with $4^{\text {th }}$ degree relatives than with analogous $2^{\text {nd }}$ and $3^{\text {rd }}$ degree relatives (table S4).

Table S4: Total population-wide numbers of possible matings at 15 specified relationships, and with more distant relatives and unrelated individuals, given the social and genetic pedigrees. 'Difference' and 'proportional difference' show the decrease (negative values) or increase (positive values) in the absolute number and proportion of possible matings at each relationship level given the genetic versus social pedigrees. The absolute and proportional net total differences for each degree of relationship are also shown.

Table S4

Relationship		Social pedigree	Genetic pedigree	Difference	Proportional difference
$1^{\text {st }}$ degree	Father	105	97	-8	-8\%
	Full-brother	171	103	-68	-40\%
	Son	102	102	0	+0\%
	Net total			-76	-20\%
$2^{\text {nd }}$ degree	Grandfather	46	40	-6	-13\%
	Uncle	89	44	-45	-51\%
	Half-brother	109	290	+181	+166\%
	Double first cousin	8	0	-8	-100\%
	Nephew	159	74	-85	-54\%
	Grandson	42	44	+2	+5\%
	Net total			+39	+9\%
$3^{\text {rd }}$ degree	Great-grandfather	19	17	-2	-11\%
	Single first cousin	266	87	-179	-67\%
	Great-grandson	12	14	+2	+17\%
	Net total			-179	-60\%
$4^{\text {th }}$ degree	Half-uncle	123	228	+105	+85\%
	Half-single first cousin	280	615	+335	+120\%
	Half-nephew	226	322	+96	+43\%
	Net total			+536	+85\%
More distant		5463	5143	-320	-6\%
Unrelated		808	808	0	0\%

Supporting Information S5. Distribution of relatedness excluding all $1^{\text {st }}$ degree relatives

We repeated tests on the distribution of relatedness among possible mates given the social and genetic pedigrees to evaluate how our general conclusions apply to systems where individuals actively avoid close inbreeding with $1^{\text {st }}$ degree relatives through social pairing or extra-pair reproduction. From our full 'relatedness' dataset (main manuscript), we removed all possible matings between females and their $1^{\text {st }}$ degree relatives from both the social (father $=105$, son $=102$, full-sib $=171$) and genetic (father $=23$ additional, son $=$ no additional, full-sib = 1 additional) pedigrees, resulting in a reduced sample size of 7626 possible matings across eight years. We again quantified the effects of extra-pair reproduction on the distributions of relatedness with possible mates for individual females in this subset in two ways, similar to the main manuscript.

First, we calculated each female's mean $k_{S O C}$ and $k_{G E N}$ with all possible mates that were $2^{\text {nd }}$ degree relatives given the social pedigree and tested for differences between them using a Wilcoxon rank sum test. We repeated this process for all possible mates that were $3^{\text {rd }}$ and $4^{\text {th }}$ degree relatives given the social pedigree, as well as for more distantly related and unrelated possible mates, to evaluate whether differences in k given the genetic rather than social pedigree were greater among females and their close or more distant social relatives when excluding all $1^{\text {st }}$ degree social relatives. There was again substantial variation in mean kinship (k) with possible mates that were $2^{\text {nd }}$ degree social relatives (fig. S3A), similar to our main analyses (Results, fig. 5B). The majority of females (85\% [83/98]) had lower mean k given the genetic pedigree for $2^{\text {nd }}$ degree social relationships (fig. S3A), and individual mean $k_{G E N}$ was significantly lower than mean $k_{\text {SOC }}$ (table S5). There was again less
variation in k given both the social and genetic pedigrees for possible mates classified as $3^{\text {rd }}$ and $4^{\text {th }}$ degree social relatives, but $87 \%(68 / 78)$ and $77 \%(75 / 97)$ of females had lower mean k given the genetic pedigree for both degrees of relationship given the social pedigree (fig. S3B,C), and mean $k_{G E N}$ was significantly lower than mean $k_{\text {Soc }}$ for both $3^{\text {rd }}$ and $4^{\text {th }}$ degree relationships given the social pedigree (table S5). The majority of females (68\% [75/110]) likewise had lower mean k given the genetic pedigree for more distant relatives (fig. S3D), but mean $k_{S O C}$ and mean $k_{\text {GEN }}$ did not differ substantially for this degree of relatedness given the social pedigree (table S5). Once again similar to our main analyses (Results, table 3; fig. 5f), there was no difference in mean k for unrelated individuals between the two pedigrees (table S5; fig. S3E).

Second, to quantify continuous differences in k among individual females and their possible mates given the social and genetic pedigrees, we again calculated the difference in k for each possible mating in this data subset as: $k_{\text {DIFF }}=k_{G E N}-k_{S O C}$, calculated mean $k_{\text {DIFF }}$ for each individual female, and evaluated the proportion of females that experienced an increase, decrease, or no change in mean relatedness with all possible mates given the genetic pedigree versus the social pedigree. Mean $k_{\text {DIFF }}$ among all possible matings for individual females in this subset was -0.006 ± 0.01 (median -0.006 , range $-0.033-0.018$), indicating that, on average, females were less related to all possible mates given the genetic pedigree then given the social pedigree (fig. S4), similar to our main analyses. Proportionally, $68 \%(77 / 114)$ of females had lower mean $k_{\text {DIFF }}$ given the genetic pedigree, while $29 \%(33 / 114)$ of females had higher mean $k_{\text {DIFF }}$, and $4 \%(4 / 114)$ of females had no change in mean $k_{\text {DIFF }}$ given the genetic versus social pedigrees (corresponding to immigrants breeding in only one season).

Table S5: Mean \pm SD (and range) of pairwise kinship given the social ($k_{\text {SOC }}$) and genetic ($k_{G E N}$) pedigrees between individual female song sparrows and all possible mates, excluding $1^{\text {st }}$ degree relatives, that were classified as $2^{\text {nd }}, 3^{\text {rd }}$, and $4^{\text {th }}$ degree relatives given the social pedigree, as well as more distantly related and unrelated possible mates. n and q respectively represent the numbers of possible matings and individual females in each category. Mean difference denotes the mean decrease (negative values) or increase (positive values) in mean kinship for individual females given the genetic pedigree. Z and p denote Z value of the Wilcoxon rank sum test statistic and associated p value. Degrees of social relationships where mean k decreased significantly given the genetic pedigree rather than the social pedigree are highlighted in bold.

Relationship given social pedigree	$k_{\text {soc }}$	$k_{\text {GEN }}$	Mean difference	$\begin{gathered} Z \\ (p) \end{gathered}$
$2^{\text {nd }}$ degree $(n=452, q=98)$	$\begin{gathered} 0.197 \pm 0.033 \\ (0.147-0.361) \end{gathered}$	$\begin{aligned} & 0.155 \pm 0.038 \\ & (0.03-0.226) \end{aligned}$	$\begin{gathered} -0.042 \pm 0.042 \\ (-0.165-0.022) \end{gathered}$	$\begin{gathered} 7.3 \\ (<0.001) \end{gathered}$
$3^{\text {rd }}$ degree $(n=296, q=78)$	$\begin{gathered} 0.145 \pm 0.026 \\ (0.094-0.255) \end{gathered}$	$\begin{gathered} 0.112 \pm 0.028 \\ (0.057-0.198) \end{gathered}$	$\begin{aligned} & -0.033 \pm 0.031 \\ & (-0.14-0.063) \end{aligned}$	$\begin{gathered} 6.8 \\ (<0.001) \end{gathered}$
$\begin{aligned} & 4^{\text {th }} \text { degree } \\ & (n=624, q=97) \end{aligned}$	$\begin{gathered} 0.125 \pm 0.022 \\ (0.084-0.174) \end{gathered}$	$\begin{gathered} 0.106 \pm 0.03 \\ (0.031-0.168) \end{gathered}$	$\begin{gathered} -0.019 \pm 0.023 \\ (-0.099-0.023) \end{gathered}$	$\begin{gathered} 4.9 \\ (<0.001) \end{gathered}$
More distant $(n=5446, q=110)$	$\begin{gathered} 0.087 \pm 0.017 \\ (0.034-0.119) \end{gathered}$	$\begin{gathered} 0.088 \pm 0.018 \\ (0.041-0.121) \end{gathered}$	$\begin{gathered} -0.0002 \pm 0.011 \\ (-0.032-0.03) \end{gathered}$	$\begin{gathered} 0.04 \\ (0.97) \end{gathered}$
Unrelated $(n=808, q=114)$	0.000 ± 0.000	0.000 ± 0.000	0.00 ± 0.00	$\begin{gathered} 0.0 \\ (1.00) \end{gathered}$

Figure S3

Figure S3: Mean coefficient of kinship (k) given the social and genetic pedigrees for individual female song sparrows and all possible mates, excluding $1^{\text {st }}$ degree relatives, classified as $(A) 2^{\text {nd }}$ degree, $(B) 3^{\text {rd }}$ degree, and $(C) 4^{\text {th }}$ degree relatives given the social pedigree, as well as (D) more distantly related, and (E) unrelated possible mates. Points denote individual females and are jittered for clarity, and lines join observations for individual females given the two pedigrees. Sample sizes for each category of relatedness are presented in table S5.

Figure S4: Distribution of the mean difference in coefficient of kinship ($k_{\text {DIFF }}$) given the genetic and social pedigrees ($k_{G E N}-k_{\text {SOC }}$) among all possible matings for individual female song sparrows, excluding those between $1^{\text {st }}$ degree relatives. Dashed line demarcates $k_{\text {DIFF }}=$ 0 , negative values indicate a lower mean k given the genetic pedigree.

Across all pooled possible matings for all females in this subset, results were again very similar to those from the full dataset (Results, fig. 6), such that the distributions of $k_{\text {GEN }}$ and $k_{\text {soc }}$ were significantly different (two-sample Anderson-Darling test, $A D=30.31, T=$ 38.50, $p<0.001$), again based on resampling of each for 10,000 permutations (fig. S5). Specifically the distribution of $k_{G E N}$ included fewer possible matings at higher k (fig. S5, black bars), but more possible matings at lower but non-zero k (fig. S5, white bars), and again no difference in the number of possible matings among unrelated individuals (i.e., $k=0$, fig. S5). Note that despite the removal of all first order relatives, kinship among some possible mates exceeded that between $1^{\text {st }}$ degree relatives in an outbred population (i.e., $k=0.25$, fig. S5).

Thus, results from analyses on this subset of possible matings were highly congruent with those presented throughout the main text (Results), indicating that our results and interpretations are likely applicable to systems where individuals avoid mating with $1^{\text {st }}$ degree relatives (e.g., Stow and Sunnucks 2004; Gerlach and Lysiak 2006; Archie et al. 2007; Brouwer et al. 2011).

Figure S5: Overall distributions of pairwise coefficients of kinship across all possible song sparrow matings excluding those between $1^{\text {st }}$ degree relatives (female-father, female-son, full-siblings), calculated from the social pedigree (black bars) and from the genetic pedigree (white bars), where grey bars denote overlap between the two distributions. Dotted, dashed, and dot-dashed lines are included for visualization and depict kinship values equivalent to first cousin (0.0625), half-sib (0.125), and full-sib (0.25) matings, respectively. Box plots further visualize the distribution in values of k given each pedigree, where box lines represent the median, upper and lower quartiles, whiskers demarcate $1.5 \times$ the interquartile range and ' + ' represents the mean. Mean $k_{\text {soc }}$ was 0.090 ± 0.05 (range $0.00-$ 0.36) and mean $k_{G E N}$ was 0.085 ± 0.05 (range $0.00-0.31$), again corresponding to a significant (Wilcoxon signed rank test: $Z=17.30, p<0.001$) but relatively small decrease in mean k given the genetic versus social pedigrees for this restricted dataset.

Supporting Information S6. Distribution of relatedness within cohorts

A potential limitation of our approach of comparing social and genetic pedigrees is that analyses of relationships and relatedness implicitly assume that all pairings (and hence assumed matings) that resulted in offspring in the social pedigree are the same as the matings that would have occurred if all ancestral social parents had been the true genetic parents of the offspring that they reared. This in turn requires that mating decisions are not affected by pedigree structure, which might imply an absence of active inbreeding preference or avoidance, and that recruitment and subsequent mating among females' descendants does not depend on paternity. Indeed, there is little evidence of active inbreeding avoidance (or preference) through social pairing or extra-pair reproduction in song sparrows (Reid et al. 2015), and no genetic correlation between female extra-pair reproductive rate and the subsequent survival (to recruitment) of her offspring (Reid 2012), but pre-reproductive mortality may differ somewhat between females' within-pair versus extra-pair offspring offspring (Sardell et al. 2011). To examine the potential implications of this assumption, we additionally quantified differences in k at the level of individual cohorts, where the social and genetic pedigrees differed only in the sires of individuals in that cohort, and not in previous years, to quantify the effects of extra-pair reproduction on the potential for inbreeding within that cohort. In doing so, we lose effects of polyandry on different degrees of relationships and relatedness in the population that are generated across multiple generations, but gain additional insight on the effects of polyandry within a single generation.

To quantify differences in k at the level of individual cohorts, we modified the social pedigree such that, beginning in ~ 1993, paternity was assigned to true genetic sires (i.e., a female's socially-paired or extra-pair male) up to year t-1 (where t represents the year of hatching for the focal cohort) and to a female's socially-paired males in year t. We then calculated pairwise k from this modified social pedigree ($k_{\text {soc_cohort }}$) for all possible matings of offspring produced in year t which survived to independence from parental care (~ 24 days after hatching). We quantified differences in relatedness for independent offspring in year t rather than adults in year $t+1$ to ensure adequate sample sizes for each cohort (mean $=2577.5 \pm 1476.8$ possible cross-sex matings per cohort, range 1665-6048).

Because 'relationships' within each cohort are restricted to full- and half-sibs, single and half-single first cousins, and double first cousins (because all offspring are hatched in the same year) unlike our main analyses which incorporate overlapping generations, we binned values of pairwise k into six categories to evaluate whether differences in the number of possible matings given the genetic rather than modified social pedigree were greater among females and their closely (i.e., higher values of k) or more distantly related (i.e., lower values of k) possible mates. Categories of k were: (1) $k \geq 0.25$; (2) $0.125 \leq k<$ 0.25 ; (3) $0.0625 \leq k<0.125$; (4) $0.0313 \leq k<0.0625$; (5) $0.00<k<0.0313$; and (6) $k=0$, where $k=0.25,0.125,0.0625,0.0313$, and 0 represent matings among outbred full-sibs, half-sibs, single first cousins, half-single first cousins, and unrelated individuals, respectively. There were fewer possible matings among close relatives (i.e., $k \geq 0.25$) and more possible matings among distant relatives (i.e., $0.00<k<0.03125$) given the genetic pedigree versuses the modified social pedigree within cohorts (table S6). However, there was little change in the mean number of possible matings among pairs with intermediate levels of
kinship ($0.03125 \leq k<0.25$), and no change in the number of possible matings among unrelated pairs (table S6). We further evaluated the proportion of females that experienced an increase, decrease, or no change in the number of matings in each kinship category. Proportionally, $\sim 38 \%$ of females had fewer possible matings at $k \geq 0.25$ given the genetic pedigree versus the modified social pedigree across cohorts, but 57\% of females experienced no change in the number of possible matings in this kinship category given the genetic pedigree (table S7). Higher proportions ($\sim 47 \%$ and 40%, respectively) of females experienced decreases in the number of matings at kinship levels greater than 0.0625 but less than 0.125 given the genetic pedigree, but more females experienced increases in the number of matings given the genetic pedigree at $0.125 \leq k<0.25$ and $0.00<\mathrm{k}<0.03125$ (table S7). Thus, differences in ($k_{\text {soc_cohort }}$) and ($k_{G E N}$) within cohorts appear to be driven by fewer possible matings at $k \leq 0.25$ and more possible matings at $0.00<k<0.03125$, leading to greater differences in k at these levels of kinship, whereas increases/decreases in the number of matings at intermediate levels cancel each other out, leading to smaller differences in mean k (table S6).

Relatedness category	$\boldsymbol{k}_{\text {soc_cohort }}$	$\boldsymbol{k}_{\text {GEN }}$	Mean difference	\boldsymbol{Z} (\boldsymbol{p})
$k \geq 0.25$	2.00 ± 1.59	1.43 ± 1.44	-0.57 ± 1.21	5.3
	$(0-7)$	$(0-6)$	$(-6-3)$	(<0.001)
$0.125 \leq k<0.25$	8.66 ± 7.30	9.38 ± 7.62	$+0.72 \pm 4.51$	1.4
	$(0-33)$	$(0-37)$	$(-22-26)$	(0.16)
$0.0625 \leq k<0.125$	31.10 ± 14.16	30.10 ± 13.60	-1.00 ± 6.76	0.8
	$(1-79)$	$(1-77)$	$(-57-24)$	(0.41)
$0.03125 \leq k<0.0625$	9.86 ± 9.61	10.35 ± 10.28	$+0.49 \pm 6.28$	0.1
	$(0-55)$	$(0-65)$	$(-23-55)$	(0.94)
$0.00<k<0.03125$	1.11 ± 2.47	1.47 ± 3.00	$+0.36 \pm 1.79$	$\mathbf{2 . 6}$
	$(0-21)$	$(0-23)$	$(-6-18)$	(0.01)
		0.00 ± 0.00	0.00 ± 0.00	0.0
$k=0$	--	--	--	(1.00)

Table S6: Mean \pm SD (and range) of the number of possible matings independent (from parental care) female song sparrows experienced with all independent males in their cohort in six categories of pairwise kinship (k) given a modified social pedigree ($k_{\text {soc_cohort }}$) among their parents, and given the genetic pedigree ($k_{G E N}$). Mean difference denotes the mean decrease (negative values) or increase (positive values) in the number of matings at each kinship level given the genetic pedigree. Analyses include 391 individual females across eight cohorts. Z and p denote Z value of the Wilcoxon rank sum test statistic and associated p value. Kinship categories where frequencies decreased or increased significantly given the genetic pedigree rather than the social pedigree are highlighted in bold.

Relatedness category	Decrease given genetic pedigree	Increase given genetic pedigree	No change
$k \leq 0.25$	147	21	223
	(37.6%)	(5.4%)	(57.0%)
$0.125 \leq k<0.25$	109	191	91
	(27.9%)	(48.8%)	(23.3%)
$0.0625 \leq k<0.125$	182	158	51
$0.0313 \leq k<0.0625$	(46.6%)	(40.4%)	(13.0%)
$0.00<k<0.03125$	155	147	89
	(39.6%)	(37.6%)	(22.8%)
$k=0$	22	81	288
	(5.6%)	(20.7%)	(73.7%)

Table S7: Absolute and proportional (\%) number of independent (from parental care) female song sparrows that experienced a decrease, increase, or no change in the number of possible matings with independent males in their cohort across six categories of pairwise kinship (k) given the genetic pedigree $\left(k_{G E N}\right)$ versus given the modified social pedigree ($k_{\text {soc_cohort }}$) among their parents. Analyses include 391 individual females across eight cohorts.

Literature cited

Archie, E. A., J. A. Hollister-Smith, J. H. Poole, P. C. Lee, C. J. Moss, J. E. Maldonado, R. C. Fleischer, et al. 2007. Behavioural inbreeding avoidance in wild African elephants. Molecular Ecology 16:4138-4148.

Brouwer, L., M. Van De Pol, E. Atema, and A. Cockburn. 2011. Strategic promiscuity helps avoid inbreeding at multiple levels in a cooperative breeder where both sexes are philopatric. Molecular Ecology 20:4796-4807.

Gerlach, G., and N. Lysiak. 2006. Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Animal Behaviour 71:1371-1377.

Power, D. J., and L. Holman. 2014. Polyandrous females found fitter populations. Journal of Evolutionary Biology 27:1948-1955.

Reid. 2012. Predicting evolutionary responses to selection on polyandry in the wild: additive genetic covariances with female extra-pair reproduction. Proceedings of the Royal Society of London B 279:4652-4660.

Reid, J. M., P. Arcese, L. F. Keller, R. R. Germain, A. B. Duthie, S. Losdat, M. E. Wolak, et al. 2015. Quantifying inbreeding avoidance through extra-pair reproduction. Evolution 69:5974.

Sardell, R. J., P. Arcese, L. F. Keller, and J. M. Reid. 2011. Sex-specific differential survival of extra-pair and within-pair offspring in song sparrows, Melospiza melodia. Proceedings of the Royal Society of London B 278:3251-3259.

Stow, A. J., and P. Sunnucks. 2004. Inbreeding avoidance in Cunningham's skinks (Egernia cunninghami) in natural and fragmented habitat. Molecular Ecology 13:443-447.

