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1 quantro: An R-package to test for global differences in distributions

across groups

The quantro R-package can be used to test for global differences in distributions between groups to guide the choice

of whether it is appropriate to use global normalization methods, such as quantile normalization. Our method uses

the raw unprocessed high-throughput data and computes a test statistic to compare the variability of distributions

within each group to the variability of distributions between the groups. If the variability between the groups is

sufficiently larger than the variability within each group, then there may be global differences between the groups of

distributions suggesting quantile normalization may not appropriate, depending on the type and source of variation.

The main function quantro() will perform two tests:

1. An ANOVA to test if the medians of the distributions are different across groups. Differences across groups

could be attributed to unwanted technical variation (such as batch effects) or real global biological variation.

This is a helpful step for the user to verify if there is any technical variation unaccounted for.

2. A test for global differences between the distributions across groups which returns a test statistic called

quantroStat. This test statistic is a ratio of two variances (similar to the idea of ANOVA): the variability of

the distributions within groups relative to the variability between groups. If the variability between groups is

sufficiently larger than the variability within groups, then this suggests global adjustment methods may not

be appropriate. As a default, we perform this test on the median normalized data, but the user may change

this option.

1.1 Deriving the test statistic Fquantro

Assume we have a set of nT samples representing K groups (e.g. K = 2 if case/control comparison). Within the kth

group, assume there are nk samples. We let each sample have N observations. Assume the distribution representing

the ith sample in the kth group (Fik) has some common distribution (Fk). Using the raw observed data, we apply

a median normalization to the set of samples by removing each sample median. Let the median normalized data

be given by X where (Xik)j represents the jth observation (row) from the ith individual in the kth group (column).

We assume

(Xik)j ∼ Fik where E[(Xik)j ] = µk and V ar[(Xik)j ] = σ2

and define F−1
ik (u) as the quantile function (or inverse distribution function) of Xik where u ∈ [0, 1]. Consider

F̄−1
·k (u) =

1

nk

nk∑
i=1

F−1
ik (u) and F̄−1

·· (u) =
1

K

1

nk

K∑
k=1

nk∑
i=1

F−1
ik (u)
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where F̄−1
·k (u) represents the uth quantile averaged across samples in the kth group and F̄−1

·· (u) represents the uth

quantile averaged across all samples and groups.

Under the null hypothesis of no global differences in distributions between groups, we formally define our null and

alternative hypotheses in terms for the quantile functions for each of K groups:

H0 : F1 = F2 = . . . = FK

Ha : Fi 6= Fj for at least one i, j

To quantify the variability within and between groups of distributions, we define the “total variance” as the sum

of squared differences (SStotal) between F−1
ik and F̄−1

·· using Mallow’s distance. Mallow’s distance [1] (also more

generally known as Earth mover’s distance or the Wasserstein metric) is defined as the distance between two

probability distributions (say F , G ∈ R) over a region

Mp(F,G) =
(∫ 1

0

|F−1(u)−G−1(u)|pdu
)(1/p)

(1)

where F−1 and G−1 represent the quantile functions corresponding to the distributions F and G. Here, we show

the “total variance” (or sum of squares) of all the distributions (SStotal) can be written as the sum of the “variance

between groups” (SSbetween) and the “variance within groups” (SSwithin):

SStotal =

K∑
k=1

nk∑
i=1

(
M2(F−1

ik , F̄
−1
·· )

)2
(2)

=

K∑
k=1

nk∑
i=1

∫ 1

0

(F−1
ik (u)− F̄−1

·· (u))2du (3)

=

K∑
k=1

nk∑
i=1

∫ 1

0

[
(F̄−1

·k (u)− F̄−1
·· (u)) + (F−1

ik (u)− F̄−1
·k (u))

]2
du (4)

=

K∑
k=1

nk∑
i=1

∫ 1

0

(F̄−1
·k (u)− F̄−1

·· (u))2du+

K∑
k=1

nk∑
i=1

∫ 1

0

(F−1
ik (u)− F̄−1

·k (u))2du (5)

=

K∑
k=1

nk∑
i=1

(
M2(F−1

·k , F̄−1
·· )

)2
+

K∑
k=1

nk∑
i=1

(
M2(F−1

ik , F̄
−1
·k )

)2
(6)

= SSbetween + SSwithin (7)

where the cross product terms cancel out because
∑nk

i=1(F̄−1
·k (u)− F̄−1

·· (u)) = 0.

We propose using a data-driven test statistic, referred to as Fquantro, to test for global differences in distributions

across groups. This test statistic is a ratio of the variability in the distributions between groups (MSbetween) to the
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to the variability in the distributions within groups (MSwithin):

Fquantro =
MSbetween
MSwithin

=
SSbetween/(K − 1)

SSwithin/(nT −K)
(8)

1.2 Assessing the statistical significance of Fquantro

To assess statistical significance, we use permutation testing. We permute the variable defining the group level

information B times and re-calculate the test statistic for each permuted sampled (F bquantro). The p-value from the

permutation test is calculated as

p =

B∑
b=1

I[F b
quantro>Fquantro] (9)

Using some α significance level, if p ≥ α, then we fail to reject H0. If p < α, then we would reject H0.
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2 Description of high-throughput data used

To investigate global differences in distributions between groups of samples from high-throughput data sets, we

considered several publicly available gene expression and DNA methylation data sets. Table 1 contains a list of the

data sets used for this analysis. We considered several experimental design scenarios such as comparing samples

across tissues, populations, cell types, and outcomes such as ‘normal’ and ‘tumor’ samples. We used a significance

level of α = 0.05, but refer the reader to the simulation studies in Section 4 for a more detailed discussion on other

choices for α.

Table 1: Summary of high-throughput data sets used

Comparison Name of data set # Samples Reference/GEO accession ID

ge
n

e
ex

p
re

ss
io

n

eQTL status in YRI: rs7639979 pickrellRNASeq 69 Ref [2]. Available on Recount [3]1

Two mouse strains: B6, D2 mouseStrainsRNASeq 21 Ref [4]. Available on Recount [3]1

Nonsmokers, smokers, asthma alveolarSmokingAffyData 45 Ref [5]. GEO: GSE2125
Disease status: COPD lungCOPDAffyData 238 Ref [6]. GEO: GSE37147
Two regions of the brain brainParkinsonsAffyData 22 Ref [7]. GEO: GSE19587
Two tissues: brain, liver brainLiverAffyData 82 GSE17612, GSE21935, GSE14668,

GSE29721, GSE38941
Disease status: normal, tumor lungCancerAffyData 444 GSE18842, GSE19188, GSE19804,

GSE10445, GSE12667, GSE2109
Disease status: normal, tumor breastCancerAffyData 931 GSE10780, GSE10810, GSE29431,

GSE30010, GSE2109, GSE5460,
GSE653, GSE9195

Disease status: normal, tumor prostateCancerAffyData 167 GSE17951, GSE32448, GSE2109
Disease status: normal, tumor thyroidCancerAffyData 98 GSE29265, GSE33630, GSE2109
Disease status: normal, tumor stomachCancerAffyData 82 GSE13911, GSE2109
Disease status: normal, tumor liverCancerAffyData 176 GSE14668, GSE29721, GSE38941,

GSE2109, GSE9829;GSE9843
Disease status: NAFLD liverNAFLDAffyData 73 Ref [8]. GEO: GSE48452
Two treatments: low and high
levels of c-Myc

mycAffyData 4 Ref [9]. GEO: GSE40784

D
N

A

m
et

h
y
la

ti
on

Disease status: before, after 6
months exercise

adiposeExerciseMethyl 46 Ref [10]. Available online2

Disease status: non-diabetic,
Type 2 diabetes

pancreaticT2DMethyl 49 Ref [11]. Available online2

Six cell types from whole blood cellcompMethyl 36 Ref [12]. GEO: GSE35069

1http://bowtie-bio.sourceforge.net/recount/index.shtml
2http://www.ludc.med.lu.se/research-units/epigenetics-and-diabetes/published-data
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2.1 Gene expression

2.1.1 RNA-Sequencing

We considered several examples of gene expression using RNA-Sequencing (RNA-Seq). The following RNA-

Sequencing data sets are available from ReCount [3] at http://bowtie-bio.sourceforge.net/recount/index.

shtml. ReCount pre-processes the raw sequencing data and provides a table of raw counts for each gene. We re-

moved all the rows with zero counts reported across all the samples. We used the rlogTransformation() function

provided in the DESeq2 [13] R/Bioconductor package to transform the raw counts to the log2 scale.

pickrellRNASeq. We considered a study originally performed to identify expression quantitative trait loci (eQTLs)

using RNA-Seq data [2]. For this analysis, we considered one of the eQTLs identified in the YRI population

(rs7639979) which is discussed in [2]. This eQTL stratifies the n = 69 samples in the YRI population by the

genotypes GG (n = 18), GA (n = 32), AA (n = 15) and NN (n = 4). We removed the four samples with the

missing NN genotype for this analysis. The densities and box plots of the rlogTransformation counts are shown

in Figure 1 and colored by genotype: GG (blue), GA (green) and AA (red). We tested for global differences in the

distributions across the groups stratified by genotype using quantro. We assessed the statistical significance of the

test statistic (Fquantro = 0.376) using permutation testing and report there were no global differences detected at

the α = 0.05 level between the distributions of the groups (p = 0.917).
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Figure 1: Densities and box plots of the rlogTransformed counts from RNA-sequencing samples in pickrellRNASeq.
The plots use n = 65 samples from the groups based on the eQTL identified in the YRI population (rs7639979)
and colored by by genotype: GG (blue), GA (green) and AA (red). Using quantro, we report no global differences
detected at the α = 0.05 level between the distributions using the eQTL status (p = 0.917).
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mouseStrainsRNASeq. We considered a study originally performed to compare the gene expression of two inbred

mouse strains using RNA-Seq data [4]. For this analysis, we considered n = 21 samples from the two inbred mouse

strains: B6 strain (n = 10) and D2 strain (n = 11). The densities and box plots of the rlogTransformation counts

are shown in Figure 2 and colored by mouse strain: B6 (green) and D2 (red). We tested for global differences in the

distributions between the mouse strains using quantro. We assessed the statistical significance of the test statistic

(Fquantro = 1.215) using permutation testing and report there were no global differences detected at the α = 0.05

level between the distributions of mouse strains (p = 0.245).
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Figure 2: Densities and box plots of the rlogTransformed counts from RNA-sequencing samples in mouseStrain-
sRNASeq. The plots use n = 21 samples colored by by mouse strain: B6 strain (green) and D2 strain (red). Using
quantro, we report no global differences detected at the α = 0.05 level between the two mouse strains (p = 0.245).

7



2.1.2 Microarrays

We used the affy R/Bioconductor package [14] to analyze Affymetrix GeneChip arrays. We extract the raw Perfect

Match (PM) probes from the original CEL files.

alveolarSmokingAffyData. We examined 45 Affymetrix Gene Chip arrays (GEO accession GSE2125) [5] which

compared the gene expression of alveolar macrophages of n = 45 from 15 smokers, 15 nonsmokers, and 15 subjects

with asthma (disease control). The densities and box plots of the raw PM values are shown in Figure 3 and colored

by disease status: Nonsmoking (green), Smoking (red), Asthma (blue). We tested for global differences in the

distributions between the three groups using quantro. We assessed the statistical significance of the test statistic

(Fquantro = 0.601) using permutation testing and report there were no global differences detected at the α = 0.05

level between the groups (p = 0.562).
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Figure 3: Densities and box plots of the raw PM values using the n = 45 Affymetrix Human Gene Chip arrays
in the alveolarSmokingAffyData data from [5]. The samples are colored by disease status: Nonsmoking (green),
Smoking (red), Asthma (blue). Using quantro, we report there are no global differences detected at the α = 0.05
level between the distributions across the three groups (p = 0.562).
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lungCOPDAffyData. We examined 238 Affymetrix Human Gene 1.0 ST arrays (GEO accession GSE37147) [6]

which compared the gene expression of bronchial brushings from n = 87 samples with chronic obstructive pulmonary

disease (COPD) and n = 151 samples without COPD. The densities and box plots of the raw PM values are shown

in Figure 4 and colored by disease status: No COPD (green), COPD (red). We tested for global differences in the

distributions between the two groups using quantro. We assessed the statistical significance of the test statistic

(Fquantro = 1.45) using permutation testing and report there were no global differences detected at the α = 0.05

level between the groups (p = 0.218).
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Figure 4: Densities and box plots of the raw PM values using the n = 238 Affymetrix Human Gene 1.0 ST arrays
in the lungCOPDAffyData data from [6]. The samples are colored by disease status: No COPD (green) and
COPD (red). Using quantro, we report there are no global differences detected at the α = 0.05 level between the
distributions of the No COPD and COPD samples (p = 0.218).
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brainParkinsonsAffyData. We examined 22 Affymetrix arrays (GEO accession GSE19587) [7] which compared gene

expression from two regions in the brain using control patients (n = 10) and patients diagnosed with Parkinson’s

disease (n = 12). The two regions of the brain compared were Dorsal Motor Nucleus of the Vagus (DMNV) and

Inferior Olivary Nucleus (ION). The densities and box plots of the raw PM values are shown in Figure 5 and colored

by region in the brain: DMNV (green) and ION (red). We tested for global differences in the distributions between

the two regions of the brain in each set of samples using quantro. We assessed the statistical significance of the test

statistic (Fquantro = 3.097 (only control samples), Fquantro = 1.441 (only Parkinson’s samples)) using permutation

testing. We report there were no global differences detected at the α = 0.05 level between the distributions in both

the control samples (p = 0.119) and in the Parkinson’s samples (p = 0.264). We note there is a large amount of

variation within each group (both in the controls and in the Parkinson’s samples). Therefore, quantro has a limited

amount of power to detect any global differences because the variation is so high within each group and the sample

size is small for each group.
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Figure 5: Densities and box plots of the raw PM values using control samples (top row) and Parkinsons’s samples
(bottom row) from the n = 22 Affymetrix GeneChip arrays in [7]. The samples are colored by region in the brain:
DMNV (green) and ION (red). Using quantro, we report there are no global differences detected at the α = 0.05
level between the distributions of the DMNV and ION samples in both the control samples (p = 0.119) and in the
Parkinson’s samples (p = 0.264).
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brainLiverAffyData. We extracted 82 Affymetrix samples from brain tissues (n = 42) and liver tissues (n = 40).

These samples were from multiple GEO data sets with the largest number of normal brain samples (GSE17612,

GSE21935) and normal liver samples (GSE14668, GSE29721, GSE38941), respectively. We investigated if there

were global differences in the distributions between the two tissues. The densities and box plots of the raw PM

values are shown in Figure 6 and colored by tissue: brain (green) and liver (red). The shades of green and red

represent the different GEO data sets (i.e. different batches) within each tissue. We tested for global differences

in the distributions between the tissues using quantro. We assessed the statistical significance of the test statistic

(Fquantro = 7.373) using permutation testing and report there are global differences between the distributions of

the brain and liver tissues (p = 0.004).
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Figure 6: Densities and box plots of the raw PM values from the n = 82 Affymetrix GeneChip arrays in brainLiv-
erAffyData. The samples are colored by tissue: brain (green) and liver (red). Using quantro, we report there are
global differences between the distributions of the brain and liver tissues (p = 0.004).
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lungCancerAffyData. We extracted 444 Affymetrix lung samples representing normal (n = 170) and tumor (n =

274) samples. These samples were from GEO data sets with the largest number of normal lung samples (GSE18842,

GSE19188, GSE19804) and tumor lung samples (GSE10445, GSE12667, GSE2109). We investigated if there were

global differences in the distributions between the normal and tumor samples. The densities and box plots of the

raw PM values are shown in Figures 7 and colored by tumor status: normal (green) and tumor (red). The shades

of green and red represent the different GEO data sets (i.e. different batches) within each tumor status. We tested

for global differences in the distributions between the groups using quantro. We assessed the statistical significance

of the test statistic (Fquantro = 110.10) using permutation testing and report there are global differences between

the distributions of the normal and tumor lung samples (p < 0.001).
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Figure 7: Densities and boxplots of the raw PM values from the n = 444 Affymetrix GeneChip arrays in lung-
CancerAffyData. The samples are colored by tumor status: normal (green) and tumor (red). Using quantro, we
report there are global differences between the distributions of the normal and tumor lung samples (p < 0.001).
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breastCancerAffyData. We extracted 931 Affymetrix breast samples representing normal (n = 289) and tumor (n =

674) samples. These samples were from GEO data sets with the largest number of normal breast samples (GSE10780,

GSE10810, GSE29431, GSE30010) and tumor breast samples (GSE2109, GSE5460, GSE653, GSE9195). We inves-

tigated if there were global differences in the distributions between the normal and tumor samples. The densities

of the raw PM values are shown in Figure 8 and colored by tumor status: normal (green) and tumor (red). The

shades of green and red represent the different GEO data sets (i.e. different batches) within each tumor status.

We tested for global differences in the distributions between the groups using quantro. We assessed the statistical

significance of the test statistic (Fquantro = 308.8) using permutation testing and report there are global differences

between the distributions of the normal and tumor breast samples (p < 0.001).
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Figure 8: Densities and boxplots of the raw PM values from the n = 931 Affymetrix GeneChip arrays in breast-
CancerAffyData. The samples are colored by tumor status: normal (green) and tumor (red). Using quantro, we
report there are global differences between the distributions of the normal and tumor breast samples (p < 0.001).
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prostateCancerAffyData. We extracted 167 Affymetrix prostate samples representing normal (n = 85) and tumor

(n = 82) samples. These samples were from GEO data sets with the largest number of normal prostate samples

(GSE17951, GSE32448) and tumor prostate samples (GSE2109). We investigated if there were global differences

in the distributions between the normal and tumor samples. The densities and box plots of the raw PM values

are shown in Figure 9 and colored by tumor status: normal (green) and tumor (red). The shades of green and

red represent the different GEO data sets (i.e. different batches) within each tumor status. We tested for global

differences in the distributions between the groups using quantro. We assessed the statistical significance of the

test statistic (Fquantro = 16.95) using permutation testing and report there are global differences between the

distributions of the normal and tumor prostate samples (p < 0.001).
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Figure 9: Densities and box plots of the raw PM values from the n = 167 Affymetrix GeneChip arrays in
prostateCancerAffyData. The samples are colored by tumor status: normal (green) and tumor (red). Using quantro,
we report there are global differences between the distributions of the normal and tumor prostate samples (p <
0.001).

15



thyroidCancerAffyData. We extracted 98 Affymetrix thyroid samples representing normal (n = 65) and tumor

(n = 33) samples. These samples were from GEO data sets with the largest number of normal thyroid samples

(GSE29265, GSE33630) and tumor thyroid samples (GSE2109). We investigated if there were global differences

in the distributions between the normal and tumor samples. The densities and box plots of the raw PM values

are shown in Figure 10 and colored by tumor status: normal (green) and tumor (red). The shades of green and

red represent the different GEO data sets (i.e. different batches) within each tumor status. We tested for global

differences in the distributions between the groups using quantro. We assessed the statistical significance of the test

statistic (Fquantro = 19.94) using permutation testing report there are global differences between the distributions

of the normal and tumor thyroid samples (p < 0.001).
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Figure 10: Densities and box plots of the raw PM values from the n = 98 Affymetrix GeneChip arrays in
thyroidCancerAffyData. The samples are colored by tumor status: normal (green) and tumor (red). Using quantro,
we report there are global differences between the distributions of the normal and tumor thyroid samples (p < 0.001).
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stomachCancerAffyData. We investigated 82 Affymetrix stomach samples representing normal (n = 31) and tumor

(n = 51) samples. These samples were from GEO data sets with the largest number of normal stomach samples

(GSE13911) and tumor stomach samples (GSE13911, GSE2109). We investigated if there were global differences

in the distributions between the normal and tumor samples. The densities and box plots of the raw PM values

are shown in Figure 11 and colored by tumor status: normal (green) and tumor (red). The shades of green and

red represent the different GEO data sets (i.e. different batches) within each tumor status. We tested for global

differences in the distributions between the groups using quantro. We assessed the statistical significance of the

test statistic (Fquantro = 11.81) using permutation testing and report there are global differences between the

distributions of the normal and tumor stomach samples (p < 0.001). Because there were both normal and tumor

stomach samples within the same GEO data set (GSE13911), we tested for global differences using only these n

= 69 samples in Figure 11. Again, we report global differences (Fquantro = 11.46) between the normal and tumor

stomach samples (p < 0.001).
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Figure 11: Densities and box plots of the raw PM values from the n = 82 (top row) and n = 69 (bottom row)
Affymetrix GeneChip arrays in stomachCancerAffyData. The n = 69 samples are a subset of the samples from the
original n = 82, but these samples are all from the same GEO data set (GSE13911). The samples are colored by
tumor status: normal (green) and tumor (red). Using quantro, we report there are global differences between the
distributions of the n = 82 normal and tumor stomach samples (p < 0.001) and the n = 69 normal and tumor
stomach samples (p < 0.001).
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liverCancerAffyData. We extracted 167 Affymetrix liver samples representing normal (n = 40) and tumor (n = 136)

samples. These samples were from GEO data sets with the largest number of normal liver samples (GSE14668,

GSE29721, GSE38941) and tumor liver samples (GSE2109, GSE9829;GSE9843). We investigated if there were

global differences in the distributions between the normal and tumor samples. The densities and box plots of the

raw PM values are shown in Figure 12 and colored by tumor status: normal (green) and tumor (red). The shades

of green and red represent the different GEO data sets (i.e. different batches) within each tumor status. We tested

for global differences in the distributions between the groups using quantro. We assessed the statistical significance

of the test statistic (Fquantro = 3.502) using permutation testing and report there are global differences detected at

the α = 0.05 level between the distributions of the normal and tumor liver samples (p = 0.044).
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Figure 12: Densities and box plots of the raw PM values from the n = 167 Affymetrix GeneChip arrays in
liverCancerAffyData. The samples are colored by tumor status: normal (green) and tumor (red). Using quantro,
there are global differences detected at the α = 0.05 level between the distributions of the normal and tumor liver
samples (p = 0.044).
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liverNAFLDAffyData. We examined 73 Affymetrix arrays (GEO accession GSE48452) [8] which compared the

gene expression of liver tissues grouped into n = 14 control, n = 27 healthy obese, n = 14 steatosis, and n = 18

nash samples. The densities and box plots of the raw PM values are shown in Figure 13 and colored by disease

status: Control (orange), Healthy obese (red), Steatosis (green), Nash (blue). We tested for global differences in

the distributions between the two groups using quantro. We assessed the statistical significance of the test statistic

(Fquantro = 4.286) using permutation testing and report there are global differences between the distributions of

the NAFLD samples (p = 0.004).
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Figure 13: Densities and box plots of the raw PM values using the n = 73 Affymetrix arrays in the liverNAFLDAffy-
Data data from [8]. The samples are colored by disease status: Control (orange), Healthy obese (red), Steatosis
(green), Nash (blue). Using quantro, we report there are global differences between the distributions of NAFLD
samples (p = 0.004).
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2.2 DNA methylation

2.2.1 Microarrays

We used the minfi R/Bioconductor package [16] to analyze Illumina Infinium 450K arrays. We extracted the

raw methylated and unmethylated signal using the preprocessRaw() function the cellcompMethyl data set. The

raw methylated and unmethylated counts were provided as text files for the pancreaticT2DMethyl and adiposeEx-

erciseMethyl data sets (http://www.ludc.med.lu.se/research-units/epigenetics-and-diabetes/published-data). The

“beta”-values were computed from the methylated and unmethylated counts using the getBeta() function using

Illumina’s formula with an offset = 100.

β =
M

M + U + 100

21



adiposeExerciseMethyl. We examined the DNA methylation of 46 adipose tissue samples comparing men before and

after six months of exercise [10]. This study was performed to find differentially methylated CpGs between healthy

men before (n = 23) and after (n = 23) six months of exercise on the Illumina Infinium HumanMethylation450

BeadChip array. For this analysis, we used the raw beta values to test for global differences in the distributions

between the two groups: before exercise, after exercise. The densities and box plots of the raw beta values are

shown in Figure 14 and colored by disease status: before 6 months of exercise (green) and after 6 months of exercise

(red). We tested for global differences in the distributions between the groups using quantro. We assessed the

statistical significance of the test statistic (Fquantro = 2.092) using permutation testing and report there were no

global differences detected at the α = 0.05 level between the distributions of healthy men before and after six

months of exercise (p = 0.132).
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Figure 14: Densities and box plots of the raw beta values from the n = 46 Illumina Infinium HumanMethylation450
BeadChip arrays in the adiposeExerciseMethyl data from [10]. The samples are colored by disease status: before
(green) and after six months of exercise (red). Using quantro, we report there are no global differences detected at
the α = 0.05 level between the distributions using the raw beta values of healthy men before and after six months
of exercise (p = 0.132).
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pancreaticT2DMethyl. We examined the DNA methylation of 49 pancreatic tissue samples from non-diabetic

and type 2 diabetes (T2D) patients [11]. This study was performed to find differentially methylated CpGs in

T2D patients compared to donors not diagnosed with diabetes using the Illumina Infinium HumanMethylation450

BeadChip array. The authors analyzed n = 15 T2D samples and n = 34 non-diabetic samples. For this analysis,

we used the raw beta values to test for global differences in the distributions between the two groups: non-diabetic

and T2D. The densities and box plots of the raw beta values are shown in Figure 15 and colored by disease status:

non-diabetic (green) and T2D (red). We tested for global differences in the distributions between the groups

using quantro. We assessed the statistical significance of the test statistic (Fquantro = 2.854) using permutation

testing and report there were no global differences detected at the α = 0.05 level between the distributions of the

non-diabetic and T2D samples (p = 0.069).
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Figure 15: Densities and box plots of the raw beta values from the n = 49 Illumina Infinium HumanMethylation450
BeadChip arrays in the pancreaticT2DMethyl data from [11]. The samples are colored by disease status: non-
diabetic (green) and T2D (red). Using quantro, we report there were no global differences detected at the α =
0.05 level between the distributions of the non-diabetic and T2D samples (p = 0.069).
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cellcompMethyl. We examined the DNA methylation of 36 samples of purified cell types from whole blood [12]. This

study was originally performed to determine if whole blood is a valid source for DNA methylation analysis using the

Illumina Infinium HumanMethylation450 BeadChip array. The authors analyzed 60 samples (10 cell populations

from 6 healthy male blood donors ages 38 ± 13.6 years) to compare cell populations and identify differentially

methylated CpG sites unique to each cell type. For this analysis, we used the raw beta values to test for global

differences in the distributions across purified cell types. The 6 purified cell types were CD14+ Monocytes (Mono),

CD19+ B-cells (Bcell), CD4+ T-cells (CD4T), CD56+ NK-cells (NK), CD8+ T-cells (CD8T), and Granulocytes

(Gran). The sample ‘CD8+ 105’ was identified as an outlier sample and removed from this analysis. The densities

and box plots of the beta values are shown in Figure 16 and colored by cell type. We tested for global differences

in the distributions between the groups using quantro. We assessed the statistical significance of the test statistic

(Fquantro = 6.797) using permutation testing and report there are global differences between the distributions of

purified cell types (p < 0.001).
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Figure 16: Densities and box plots of the raw beta values from the n = 35 Illumina Infinium HumanMethylation450
BeadChip arrays in the cellcompMethyl data across n = 6 purified cell types [12]. The samples are colored by cell
type. Using quantro, we report there are global differences between the distributions across the six cell types using
the raw beta values (p < 0.001).
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3 quantroSim: An R-package to simulate gene expression and DNA

methylation data

To evaluate the performance of quantro and quantile normalization, we developed an R-package, referred to as

quantroSim, to simulate gene expression and DNA methylation data. The models to simulate gene expression (and

DNA methylation data) start by defining true biological differences (unobserved) between a set of groups that is not

based on using any platform technology. Next, we define a set of platform-specific parameters that create observed

technical variability and simulate a set of samples from each group. Our model controls the proportion of true

differences between groups and controls of the magnitude of the technical variation from the platform technology.

To simulate gene expression and DNA methylation samples using a microarray platform technology, we use the

Langmuir adsorption model [17] to model the background noise of non-specific binding, the optical noise from the

florescence intensity of the scanner and the chemical saturation in the hybridization of the probes.

3.1 Simulating gene expression samples

To simulate the real gene expression in a given sample, we start with gene-level information. If at least one copy of

a given RNA molecule exists in the sample, then that molecule transcribed from a given gene is being expressed.

Let ng = the number of RNA molecules expressed from gth gene where g ∈ (1, . . . , G). We assume ng follows a

zero-inflated Poisson distribution:

P (ng = 0) = π + (1− π)e−λg

P (ng = c) = (1− π)
(λg)

ce−λg

c!
where c ≥ 1

where π is the parameter representing the inflated proportion of zeros and log2(λg) ∼ N(µg, σ
2
g).

To compare the gene expression between K = 2 groups, we define ngk as the number of RNA molecules expressed

from the gth gene in the kth group. We define pDiff as the proportion of genes that have increased gene expression

between the first group (k = 1) and the second group (k = 2). Define D as the set genes that are different between

the first group and the second group. We define ngk in the following way:

ngk =


ng if k = 1,∀g ∈ (1, . . . G)

ng if k = 2, g /∈ D

ng ∗ γg if k = 2, g ∈ D

where γg is a fold change (e.g. γg = 5).
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3.1.1 Microarrays

In Affymetrix arrays each gene is represented by 11-20 probes pairs: perfect matches (PM) and mismatches (MM).

For our purposes, we only simulate PM probes. To simulate probe-level fragments, let Ng = the number of probes

for the gth gene

Ng ∼ Binomial(20, 0.6)

Each RNA molecule from the gth gene in the kth group is sheared into fragments and zTgk = (z1gk, . . . , zNg,gk)

are the number fragments in the sample represented by the Ng probes. If there are ngk RNA molecules, then

zjgk ≤ ngk. Let pjg be the probability of successfully creating a matching fragment for the jth probe from the ngk

RNA molecules. We assume pjg ∼ Unif(0, 1), then we can simulate

zjgk ∼ Binomial(ngk, pjg)

PCR amplification is sometimes used to amplify the RNA. This is not a requirement for the simulations, but the

option is available. To simulate PCR, we use probability generating functions [18]. Let qjg = probability that the

RNA fragment in the jth probe in gth gene replicates itself during one PCR cycle. If there are zjgk RNA molecules

before PCR, then the expected number of RNA molecules after NPCR PCR cycles is

xjgk = zjgk(1 + qjg)
NPCR

where qjg ∼ Unif(0, 1). If PCR is not used in the simulation then, xijk = zijk. To keep the notation simple, we

drop the gth gene notation and consider just xjk. To model the saturation probe effect in microarrays, we use the

Langmuir adsorption model [17]. The “intensity” of the PM probes can be modeled using

PMijk = oijk + dijk + aijk(
xjk

xjk + bijk
)εijk

where i ∈ (1, . . . , nk) represents the sample, j ∈ (1, . . . , J) represents the probe and k ∈ (1, . . . ,K) represents the

group index. Let T = total number of samples.

We define the optical noise (oijk) to be written as a product of sample-level optical noise (oik) and probe-level

optical noise (oj) or oijk = oik ∗ oj to allow for global shifts between samples. Both optical noise parameters are

simulated using a lognormal normal distribution. Similarly, the florescence intensity from the scanner (aijk = aik∗aj)

and the parameter (bijk = bik ∗ bj) are also a product of sample-level parameter and probe-level parameter to allow

for global scaling between samples. The background noise (dijk), measurement error (εijk) are also simulated using

a lognormal distribution. Table 2 contains a list of the example parameters used to simulate gene expression samples

using microarrays. Each of the parameters sample-level noise (aik) and probe-level noise parameters (aj) have their
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own hyperparameters to allow for global shifts. Similarly, bijk = bik ∗ bj and oijk = oik ∗ oj (optical noise) with

their own set of hyperparameters.

Using the multivariate normal distribution, we simulate log2(a), log2(b) and log2(o) with a given set of hyper-

parameters (see Table 2). In the quantroSim R-package, the variance hyperparameters are referred to as siga,

sigb and sigOpt in the simulateGEx() function. In quantroSim, the level of technical variation induced from

the platform technology is controlled using the covariance matricies of siga, sigb and sigOpt in the function

simulateGEx(). There is a vignette available in the quantroSim R-package that contains more details about

the simulateGEx() function. Here we define “low” technical variation as the default parameters in the functions

simulateGEx() (Table 2) and “high” technical variation as ten fold increase. An example of simulated gene ex-

pression arrays with “low” and “high” technical variation and default parameters otherwise is given in Figure 17

and 18, respectively.

library(quantroSim)

set.seed(999)

siga = sigb = sigOpt = 0.1 * diag(10)

geneTruth <- simulateGExTruth(nGenes = 2e4, nGroups = 2, pDiff = 0.05,

foldDiff = 5, verbose = FALSE)

sim <- simulateGEx(geneTruth, GEx.platform = "GExArrays", nSamps = 5,

siga = siga, sigb = sigb, sigOpt = sigOpt, verbose = FALSE)

plotGEx(sim)
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Figure 17: An example using the simulateGExTruth() and simulateGEx() functions in the quantroSim package
to simulate 10 gene expression arrays each with nGenes = 20000 genes and 5% of the genes differentially expressed
between two groups (5 samples in each group). The differentially expressed genes were simulated with a five fold
increase in expression. The default parameters in simulateGEx() are used for the level of technical variability.
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set.seed(999)

siga = sigb = sigOpt = 1 * diag(10)

geneTruth <- simulateGExTruth(nGenes = 2e4, nGroups = 2, pDiff = 0.05,

foldDiff = 5, verbose = FALSE)

sim <- simulateGEx(geneTruth, GEx.platform = "GExArrays", nSamps = 5,

siga = siga, sigb = sigb, sigOpt = sigOpt, verbose = FALSE)

plotGEx(sim)
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Figure 18: An example using the simulateGExTruth() and simulateGEx() functions in the quantroSim package
to simulate 10 gene expression arrays each with nGenes = 20000 genes and 5% of the genes differentially expressed
between two groups (5 samples in each group). The differentially expressed genes were simulated with a five fold
increase in expression. The parameters of siga, sigb and sigOpt were increased to increase the level of technical
variability.

3.2 Simulating DNA methylation samples

To simulate real (unobservable) DNA methylation in a given sample, we start with CpG-level information. A given

CpG can be considered to be unmethylated (state 0), semi-methylated (state 1), methylated (state 2). Using these

three states, we define θj as the true proportion of methylation at the jth CpG site where j ∈ (1, . . . , J) and

θj =
1

1 + exp(zj)

and zj follows a mixture of three normal distributions

zj ∼ π0N(µ0, σ
2
0) + π1N(µ1, σ

2
1) + (1− π0 − π1)N(µ2, σ

2
2)

and Sj ∈ {0, 1, 2} represents the true state of methylation for the jth CpG.
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Table 2: Default parameters for distributions to simulate gene expression samples using microarrays.

Parameter Distribution

sample-level
log2(oik) N(5, 0.1)
log2(aik) N(20, 0.1)
log2(bik) N(18, 0.1)

probe-level

log2(oj) N(0, 0.01)
log2(aj) N(0, 0.01)
log2(bj) N(0, 0.01)
log2(dj) N(5, 0.1)
log2(εj) N(0, 0.1)

To compare the DNA methylation between k = 2 groups, we define θjk as the true proportion of methylation at

the jth CpG site in the kth group. We define pDiff as the proportion of CpG sites that are different between the

first group (k = 1) and the second group (k = 2) and pUp as the proportion of pDiff CpGs that change from an

unmethylated (Sj = 0) to a semi-methylated or a methylated (Sj = {1, 2}) state. If we start with J = 1000 CpGs

and initially 40% are in state Sj = 0 and 60% are in state Sj = {1, 2}, then there can be at most 400 CpGs that

move from Sj = 0 to Sj = {1, 2}, or

min(1000 ∗ pDiff ∗ pUp, 400)

Similarly, there are (1 - pUp) CpGs of the pDiff CpGs that will change from a semi-methylated or a methylated

(Sj = {1, 2}) to an unmethylated (Sj = 0) state. Continuing with the example above, if we start with J = 1000

CpGs and intially 40% are in state Sj = 0 and 60% are in state Sj = {1, 2}, then there can be at most 600 CpGs

that move from Sj = {1, 2} to Sj = 0, or

min(1000 ∗ pDiff ∗ (1− pUp), 600)

Now, define D as the set CpG sites that are different between the first group and the second group. We simulate

zjk in the following way:

zjk =


zj + ε if k = 1,∀j ∈ (1, . . . J)

zj + ε if k = 2, j /∈ D

znewj + ε if k = 2, j ∈ D

where ε ∼ N(0, 0.01) and

znewj =

 0.20 ∗N(µ1, σ
2
1) + 0.80N(µ2, σ2)2 if Sj = 0

N(µ0, σ0)2 if Sj = {1, 2}

Then, we can compute θjk as

θjk =
1

1 + exp(zjk)
(10)
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The expected number of methylated and unmethylated molecules at jth CpG site is xMjk = θjkN and xUjk = (1−θjk)N

where N is a scaling factor (e.g. N = 106).

3.2.1 Microarrays

To model saturation probe effect, we use the Langmuir adsorption model [17]. The “intensity” of methylated and

unmethylated probes observed can be modeled using

Mijk = oijk + dijk + aijk(
xmjk

xmjk + bijk
)εijk

Uijk = oijk + dijk + aijk(
xujk

xujk + bijk
)εijk

where i ∈ (1, . . . , nk) represents the sample, j ∈ (1, . . . , J) represents the CpG site (or probe) and k ∈ (1, . . . ,K)

represents the group index. Let T = total number of samples.

To calculate the “beta”-values which are values between 0 and 1 (where 1 is highly methylated), use

βijk =
Mijk

Mijk + Uijk + offset
(11)

where offset is a value to prevent dividing by 0 (e.g. offset = 100 which is the default from Illumina). Then we can

compare the βijk’s to the true proportion of methylation θjk for the jth probe in the kth group.

We define the optical noise (oijk) to be written as a product of sample-level optical noise (oik) and probe-level

optical noise (oj) or oijk = oik ∗ oj to allow for global shifts between samples. Both optical noise parameters are

simulated using a lognormal normal distribution. Similarly, the florescence intensity from the scanner (aijk = aik∗aj)

and the parameter (bijk = bik ∗ bj) are also a product of sample-level parameter and probe-level parameter to allow

for global scaling between samples. The background noise (dijk), measurement error (εijk) are simulated using

a lognormal distribution. Table 3 contains a list of the example parameters used to simulate DNA methylation

samples using microarrays. Each of the parameters sample-level noise (aik) and probe-level noise parameters (aj)

have their own hyperparameters to allow for global shifts. Similarly, bijk = bik ∗ bj and oijk = oik ∗oj (optical noise)

with their own set of hyperparameters.

Using the multivariate normal distribution, we simulate log2(a), log2(b) and log2(o) with a given set of hyper-

parameters (see Table 3). In the quantroSim R-package, the variance hyperparameters are referred to as siga,

sigb and sigOpt in the simulateMeth() function. In quantroSim, the level of technical variation induced from

the platform technology is controlled using the covariance matricies of siga, sigb and sigOpt in the function

simulateMeth(). There is a vignette available in the quantroSim R-package that contains more details about

the simulateMeth() function. Here we define “low” technical variation as the default parameters in the functions
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simulateMeth() (Table 3) and “high” technical variation as ten fold increase for siga and sigb and a two fold

increase for sigOpt. An example of simulated DNA methylation arrays with “low” and “high” technical variation

and default parameters otherwise is given in Figure 19 and 20, respectively.

library(quantroSim)

set.seed(999)

siga = sigb = 0.1 * diag(10)

sigOpt = 1 * diag(10)

methTruth <- simulateMethTruth(nProbes = 1e4, nGroups = 2,

pDiff = 0.05, pUp = 0.80, verbose = FALSE)

sim <- simulateMeth(methTruth, meth.platform = "methArrays", nSamps = 5,

siga = siga, sigb = sigb, sigOpt = sigOpt,

nMol = 10^6, verbose = FALSE)

plotMeth(sim)
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Figure 19: An example using the simulateMethTruth() and simulateMeth() functions in the quantroSim package

to simulate 10 DNA methylation arrays each with 10000 CpGs where 5% of the CpGs are differentially methylated

two groups (5 samples in each group). The default parameters in simulateMeth() are used for the level of technical

variability.

31



set.seed(999)

siga = sigb = 1 * diag(10)

sigOpt = 2 * diag(10)

methTruth <- simulateMethTruth(nProbes = 1e4, nGroups = 2,

pDiff = 0.05, pUp = 0.80, verbose = FALSE)

sim <- simulateMeth(methTruth, meth.platform = "methArrays",

nSamps = 5, nMol = 10^6, siga = siga,

sigb = sigb, sigOpt = sigOpt, verbose = FALSE)

plotMeth(sim)
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Figure 20: An example using the simulateMethTruth() and simulateMeth() functions in the quantroSim package

to simulate 10 DNA methylation arrays each with 10000 CpGs where 5% of the CpGs are differentially methylated

two groups (5 samples in each group). The parameters of siga, sigb and sigOpt were increased to increase the

level of technical variability.
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Table 3: Default parameters for distributions to simulate DNA methylation samples using microarrays.

Parameter Distribution

sample-level
log2(aik) N(16, 0.1)
log2(bik) N(22, 0.1)
log2(oik) N(5, 1)

probe-level

log2(aj) N(0, 0.1)
log2(bj) N(0, 0.1)
log2(oj) N(0, 0.1)
log2(dj) N(5, 1)
log2(εj) N(0, 1)
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4 Simulation Study: Assessing the Performance of quantro

In the previous section, we discussed the quantroSim R-package that we developed to simulate gene expression and

DNA methylation data. Here, we investigate the relative improvement of using quantro to the naive approach of

always using quantile normalization in the context of targeted and global changes in distributions with the goal of

detecting differential methylation. We performed several simulation studies to evaluate the bias, mean squared error

(MSE), false discovery rate (FDR), true positive rate (TPR) and false positive rate (FPR) of quantro and quantile

normalization where quantro uses the Fquantro test statistic (8) to decide if quantile normalization is appropriate

(no normalization otherwise) (see Table 4 for a description of the performance metrics).

For the following simulation studies, we simulate DNA methylation arrays with a goal of detecting differentially

methylated CpGs, but note these results also translate for differential gene expression. We consider two groups

with five samples (total of 10 samples). For each set of 10 simulated samples, we control pDiff (the proportion of

CpGs differentially methylated between the two groups). Once a set of 10 DNA methylation samples are simulated,

we process the raw “beta”-values using both quantile normalization (using the function normalize.quantiles()

in the preprocessCore [19] R/Bioconductor package) and quantro. The function quantro() in the quantro

R/Bioconductor package uses the Fquantro test statistic and the significance level α in a permutation test to assess

the statistical significance:

If p =

B∑
b=1

I[F b
quantro>Fquantro] ≥ α ⇒ Quantile normalization

If p =

B∑
b=1

I[F b
quantro>Fquantro] < α ⇒ No normalization

Finally, we estimate the difference in group means between the two groups and find the top differently methylated

probes using a t-test (specifically rowttests() in the genefilter [20] R/Bioconductor package for efficiency). The

plots containing the results from the simulation studies were created using the ggplot2 R package [21].

4.1 Performance metrics

We considered five performance metrics to assess the relative improvement of quantro to quantile normalization

(Table 4). In Section 3.2, we defined θjk (10) as the true “beta”-values at the jth probe and kth group. We also

defined the simulated “beta”-values βijk for the ith sample, jth probe and kth group (11). Here, we compute β̄.j1

and β̄.j2 which are the “beta”-values averaged across the samples within each group at the jth probe to estimate the

bias and MSE when detecting differentially methylated CpGs after using quantro or just quantile normalization.

The false discovery rate (FDR), true positive rate (TPR) and false positive rate (FPR) are computed using the

notation of true positives (TP), false positives (FP), false negatives (FN) and true negatives (TN). We selected the

top differentially methylated CpGs using p-values from a t-test that have been adjusted using the Benjamini and
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Hochberg adjustment to correct for multiple testing (p.adjust() function in the stats R-package). The number of

top CpGs selected is the threshold that is varied to compute FDR, TPR and FPR. The false discovery rate (FDR)

is calculated using as the number of incorrectly selected CpGs from a given set of top differentially methylated

CpGs. The true positive rate (TPR) is calculated as the number of correctly selected CpGs from the set of true

differentially methylated CpGs. The false positive rate (FPR) is calculated as the number of incorrectly selected

CpGs from the set of CpGs that are not differentially methylated. The receiver operating characteristic (ROC)

curve is used to depict the relative trade-offs between TPR and FPR. We used partial area under the curve (pAUC)

[22] to compare the ROC curves.

Table 4: Performance Metrics

Performance Metrics Formula

Bias E
[∣∣∣Ej [|β̄.j1 − β̄.j2|]− |θj1 − θj2|∣∣∣]

MSE E
[
Ej

[(
|β̄.j1 − β̄.j2| − |θj1 − θj2|

)2]]
FDR FP / (FP + TP)
TPR TP / (TP + FN)
FPR FP / (FP + TN)

4.2 Bias-Variance trade-off

In this first simulation study, we illustrate the bias-variance tradeoff of using normalization methods with and

without global adjustments in the context of distributions with and without global differences. We assessed the

relative bias (bias from quantro to the bias from quantile normalization) and relative mean squared error (MSE)

while varying the threshold α from quantro (Section 4.2.1) and for a fixed cutoff threshold (Section 4.2.2).

We repeat the following procedure N = 1000 times:

1. Define the proportion of differentially methylated CpGs (pDiff) as 0 if no differences between groups or ran-

domly sample pDiff from a uniform distribution with parameters a and b: U(a, b). Using the simulateMethTruth()

and simulateMeth() functions in the quantroSim R-package, simulate 10 DNA methylation samples each

with 10,000 CpGs where pDiff defines the proportion of the CpGs that are differentially methylated two

groups (5 samples in each group). We consider two levels of technical variability “low” and “high” which are

discussed in Figures 19 and 20. Default parameters are used unless stated otherwise.

2. Normalize the 10 samples using both quantro and quantile normalization where quantro uses the Fquantro test

statistic (8) to decide if quantile normalization is appropriate with a significance level of α (no normalization

otherwise).

3. Compute the bias and MSE when using quantro and quantile normalization.
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We average the bias and MSE across the N = 1000 simulations.

4.2.1 Bias-Variance trade-off as a function of the cutoff used by quantro

To determine which threshold should be used when assessing the statistical significance of Fquantro, we compared

the relative bias and relative MSE while varying the cutoff threshold used by quantro. We also considered different

ranges for pDiff. If pDiff = 0, then there no differentially methylated CpGs between the two groups. As pDiff

increases, the proportion of differentially methylated CpGs increases. Figure 21 gives examples of the relative bias

and relative MSE under four ranges of pDiff:

1. pDiff = 0

2. pDiff ∼ U(0, 0.05)

3. pDiff ∼ U(0, 0.08)

4. pDiff ∼ U(0, 0.10)

When there are no differences between the groups, quantile normalization reduces the bias and MSE in detecting

true differences between groups of samples as it removes unwanted technical variation. As the number of differen-

tially methylated CpGs increases, quantile normalization will remove both the unwanted technical and interesting

biological variation resulting in higher bias and MSE when detecting differential methylation. In contrast, quantro

reduces the bias and MSE compared to using quantile normalization because the method is able to detect when

there are global differences.
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Figure 21: Bias-Variance trade-off as a function of the cutoff used by quantro. The figures show the relative

bias (bias from quantro using a cutoff of α = 0.05 to the bias from quantile normalization (QN)) and relative

MSE. Differences between the distributions were simulated with four ranges: pDiff = 0 and pDiff ∼ U(0, 0.05),

U(0, 0.08), U(0, 0.10) using low (pink) and high (blue) technical variation. The black vertical line is the α = 0.05

cutoff.

4.2.2 Bias-Variance trade-off using quantro threshold of α = 0.05

Here we focus on using one significance level from quantro. Using a significance level of α = 0.05 (black line in

Supplemental Figure 21), we compare the relative bias and relative MSE of quantro to quantile normalization. In

Figure 22, we show that when there are global changes in distributions between the two groups, quantro reduces

the bias and MSE compared to using quantile normalization because the method is able to detect when there are

global differences.
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Figure 22: Bias-variance trade-off using quantro using cutoff of α = 0.05. (A) Relative bias (bias from quantro

using a cutoff of α = 0.05 to the bias from quantile normalization) when considering no differentially methylated

CpGs (pDiff = 0) and targeted and global changes in distributions between the two groups where pDiff was

randomly sampled from a Uniform distribution ranging from 0 to 0.10. (B) Relative MSE (MSE from quantro using

a cutoff of α = 0.05 to the MSE from quantile normalization) with same pDiff.

4.3 Number of false discoveries

In the second simulation study, we estimate the number of false discoveries out of the top differentially methylated

CpGs.

We repeat the following procedure N = 100 times:

1. Define the proportion of differentially methylated CpGs (pDiff) as one of the following: 0.01, 0.05, 0.10, 0.25.

Using the simulateMethTruth() and simulateMeth() functions in the quantroSim R-package, simulate 10

DNA methylation samples each with 450,000 CpGs where pDiff defines the proportion of the CpGs that are

differentially methylated two groups (5 samples in each group). Default parameters are used unless stated

otherwise.

2. Normalize the 10 samples using both quantro and quantile normalization where quantro uses the Fquantro test

statistic (8) to decide if quantile normalization is appropriate with a significance level of α (no normalization

otherwise).

3. Compute the number of false discoveries or false positives (FP) as a function of the number of top differentially
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methylated CpGs selected (FP + TP) when using quantro and quantile normalization.

We average the number of false discoveries across the N simulations.
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Figure 23: The number of false discoveries as a function of the number of top differentially methylated CpGs selected

with a goal of detecting differentially methylated CpGs. Ten DNA methylation samples were simulated with 450K

CpGs and an increasing proportion of differentially methylated CpGs between two groups: (A) pDiff = 0.01. (B)

pDiff = 0.05. (C) pDiff = 0.10. (A) pDiff = 0.25.

4.4 Receiver operating characteristic curves

Here we illustrate the trade-off between the true positive rate (TPR) and the false positive rate (FPR) using an

ROC curve. We measure the performance using partial area under the curve (pAUC).

We repeat the following procedure N = 1000 times:

1. Randomly sample the proportion of differentially methylated CpGs (pDiff) from a uniform distribution: Fig

(A) U(0, 0.05), Fig (B) U(0, 0.10), Fig (C) U(0, 0.25), Fig (D) U(0, 0.50). Using the simulateMethTruth()
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and simulateMeth() functions in the quantroSim R-package, simulate 10 DNA methylation samples each

with 10,000 CpGs where pDiff defines the proportion of the CpGs that are differentially methylated two

groups (5 samples in each group). Default parameters are used unless stated otherwise.

2. Normalize the 10 samples using both quantro and quantile normalization where quantro uses the Fquantro test

statistic (8) to decide if quantile normalization is appropriate with a significance level of α (no normalization

otherwise).

3. Compute TPR and FPR as a function of the number of top differentially methylated CpGs selected (FP +

TP) when using quantro and quantile normalization.

We average the TPRs across N simulations (similar for the FPRs). We compute the partial area under the curve

(pAUC) as the area under the curve restricted to a false positive rate of less than 0.25.
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Figure 24: ROC curves depicting the trade-off between TPR and FPR with a goal of detecting differentially methy-

lated CpGs as a function the number of top differentially methylated CpGs selected (FP + TP). The proportion

of differentially methylated CpGs (pDiff) was randomly sampled from different Uniform distributions: (A) pDiff

∼ U(0, 0.05). (B) pDiff ∼ U(0, 0.10). (C) pDiff ∼ U(0, 0.25). (D) pDiff ∼ U(0, 0.50).
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5 Alternatives to Global Normalization Methods

5.1 Application-specific normalization methods

If global adjustment methods are not appropriate, other methods such as application-specific methods [23] can be

used. These are normalization methods where the adjustments are directly incorporated into the experiment or

main analysis. Examples of these methods include the use of positive and negative control genes [24, 25, 23], the

use of spike-in controls [26, 27, 28, 29, 30, 9, 31], and explicitly modeling known or unknown effects of unwanted

variation in a linear model [32, 33, 34, 35, 36, 37]. Previous studies have evaluated and discussed normalization

methods with and without global adjustments [38, 19, 39, 23], but the decision of which type of normalization

method to use depends on the outcome of interest.

5.1.1 Impact of experimental normalization in the context of global changes in gene expression

A recent study [9] discussed the use of normalization procedures in global gene expression analysis comparing

two schematics: targeted changes in gene expression and global changes in gene expression such as transcriptional

amplification [40, 41] or transcriptional shutdown [42]. The authors performed a gene expression experiment using

P493-6 cells expressing low or high levels of c-Myc. Expression of high levels of c-Myc is considered to be a

transcriptional amplification resulting in a 2-3 fold increase in RNA for each gene compared to cells with low

levels of c-Myc. Therefore, the expression of high levels of c-Myc is expected to cause global changes in the

distributions. As part of the experimental procedure, an experimental normalization was performed by introducing

similar amounts of RNA from the two groups with global differences into the assay. The experiment consisted of

four Affymetrix GeneChip arrays (GEO accession GSE40784) where 2 arrays were expressed low levels of c-Myc

and 2 arrays expressed high levels of c-Myc. This data is the mycAffyData in Table 1.

We investigated if there were global differences in the distributions between the low and high c-Myc samples

using the raw PM values from the original CEL files for this analysis. An AffyBatch object is available as R data

package at https://github.com/stephaniehicks/mycAffyData. To visualize the true biological variation in the

experimentally normalized samples, we divided the raw PM values by the sample mean of the PM values across the

spike-ins on the log scale. Figure 25 plots the densities of the PM values before experimental normalization and the

PM values from the CEL files (after experimental normalization). We tested for global differences in the distributions

between the two groups using quantro using the PM values from the original CEL files (experimentally normalized

samples). We assessed the statistical significance of the test statistic (Fquantro = 1.548) using permutation testing

and report there were no global differences detected at the α = 0.05 level between the distributions of the groups

(p = 0.318).

Not surprisingly, the authors show global normalization methods are not appropriate if the total RNA is not

the same across the samples. In this case, if normalization is performed at the experimental level (introducing
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similar amounts of RNA into the assay from the two groups with global changes), then we suggest using control

genes or spike-ins controls as no differences between the distributions will be detected (Figure 25). However, for

the great majority of studies such strategies are not available. Furthermore, if one knows a priori that most genes

are differentially expressed then it is not clear why one would use these high-throughput technologies.
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Figure 25: Global differences in distributions using n = 4 samples comparing expression of ‘low’ (green) and ‘high’

(red) levels of c-Myc which are expected to cause global biological changes in gene expression. No global differences

in distributions are observed due to experimental normalization prior to measuring gene expression on microarrays.

In this case, if normalization is performed at the experimental level by introducing similar amounts of RNA from

the two groups with global differences into the assay, then we suggest to use control genes or spike-ins controls as

no global differences between the distributions will be detected.
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6 Software Available

The R-package quantro is available in Bioconductor 3.0 (http://www.bioconductor.org/packages/release/

bioc/html/quantro.html) and the quantroSim R-package is available on Github (https://github.com/stephaniehicks/

quantroSim).
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