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1 Generalised linear model

1.1 Methods

One limitation of the spike-train probability model is that the history effects can not extend over
the last spike. To evaluate the effects past the last spike we considered the generalised linear
model (GLM; Truccolo et al. 2005, Czanner et al. 2015) with conditional intensity λGLM(t|{ti})
of the form

λGLM(t|{ti}) = exp

(
s(t) +

∑
i

h(t− ti)

)
(1)

where s(t) is the driving force and h(τ) is the spike history kernel.
Note that the intensity function q(t) of the STPM can be identified with exp(s(t)) and recovery

function w(∆t) with exp (
∑

i h(t− ti)). However, in contrast to the spike-train probability model
the effects of the previous spikes can extend infinitely in time. In practice, we reduce the number
of free parameters by setting the history horizon above which the spikes can not contribute to
the responses any more, such that h(t > tmax) = 1. The horizon tmax = 8 ms was selected the
by means of the Akaike Information Criterion (AIC), which balances the goodness of fit with the
number of free parameters of the model.

The likelihood of the GLM is defined analogously to the spike-train probability model:

L(s;h|{ti}) = −
∫ T

0

λGLM(tj |{ti < t})dt+
∑
j

lnλGLM(tj |{ti < t}) (2)

= −
∫ T

0

exp

(
s(t) +

∑
i

h(t− ti)

)
dt+

∑
j

(
s(tj) +

∑
i

h(tj − ti)

)
(3)

where the sums go over all spikes.
Since the log-likelihood function is a convex function of the parameters, the parameters can

be found using standard optimization techniques. In the results presented here we used the
conjugate gradient optimization.

We compared the goodness-of-fit of the STPM and the GLM using the time-wrapping method
[Brown et al., 2002]: The inter-spike intervals in the experimental data were rescaled to account
for temporal variations in firing probability. If the model perfectly reproduced the data the
distribution of the rescaled inter-spike intervals would be uniform (the diagonal in Supplementary
Figure 1C).
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1.2 Results

The STPM and GLM fitted the data almost equally well (Supplementary Figure 1D). They also
showed similar goodness-of-fit in terms of the correlation of the residuals with the PSTH (see
Figure 1F in the main text).

Increasing the bin size, thus decreasing the number of fitted parameters, degraded the perfor-
mance of both models, but the GLM deteriorated at a slower rate than the STPM. We found that
GLM produced satisfactory results already with a bin size of 0.25 ms (Supplementary Figure 1C,
right). With this binning the fitted GLM parameters vary smoothly (Supplementary Figure 1A-
B). In particular, the prominent peaks of the PSTH were absent from the intensity function,
confirming our hypothesis that these peaks appear due to combination of the high-amplitude
intensity function and the refractory period. Importantly, the recovery function displayed os-
cillations at time scales above 4 ms, which might be related to the adaptation mechanisms or
after-hyperpolarising currents (see Conclusions).

We conclude that the input-driven models with spike frequency adaptation spanning several
inter-spike intervals [Benda and Herz, 2003] can explain the distribution of the spike patterns in
somatosensory cortex.

2 Biophysical model

2.1 Neuron model

Single cortical neuron is represented by a leaky integrate-and-fire (LIF) neuron model whose
membrane potential dynamics is described by:

Cm
dV

dt
= −gL(V − Vrest)− Isyn(V, t) (4)

where Cm is membrane capacitance, gL is the leak conductance, Vrest is the resting potential
and Isyn are the synaptic currents (described below). When the membrane potential reaches
the threshold Vthr a spike is generated and the potential is reset to Vreset putting the cell into a
hyperpolarised state.

2.2 Intracortical inputs

The LIF neuron receives horizontal inputs from other cortical cells and feedforward inputs from
the thalamus. The cortical inputs consist of nexc excitatory and ninh inhibitory fibers which are
tonicaly active with constant firing rate fexc = finh. The input spike trains are generated from
Poisson distribution. Each spike results in a transient increase of the synaptic conductance which
is given exponential function:

gi(t− tsp) =

{
wi exp((t− tsp)) /τi), t− tsp ≥ 0
0, t− tsp < 0

, i = exc, inh (5)

where winh and wexc are the inhibitory and excitatory synaptic weights, τexc and τinh stand for
the synaptic time constants, tsp is the arrival time of the presynaptic spike. The inhibitory and
excitatory synaptic weights are adjusted to achieve approximate balance between excitation and
inhibition [Destexhe et al., 2003, Shadlen and Newsome, 1998].

The synaptic current contributed by intracortical connections is defined by:

ICortex = gexc(t)(V − Eexc) + ginh(t)(V − Einh) (6)
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where gexc(t) and ginh(t) are synaptic conductances and Einh and Eexc are the reversal potentials
of inhibitory and excitatory synapses respectively.

2.3 Thalamocortical inputs

The LIF neuron receives also nTh excitatory inputs from the thalamus. In contrast to intracortical
inputs, they are assumed to be activated only after presenting the stimulus and are silent before
that. The post-stimulus activity in each thalamocortical fiber is modelled by a Poisson process
with the constant firing rate fTh.

The efficiency of thalamocortical synapses is assumed to be modulated by their activity.
This phenomenon called short-term synaptic depression (STSD) was shown to take place in
intracortical and thalamocortical synpases. Here, we employed a phenomenological description of
STSD developed by Tsodyks and Markram [1997] with subsequent adaptations to conductance-
based synapses. In the model, the effective synaptic strength is determined by the factor yi,
which evolves according to the equations:

dxi
dt

=
zi
τrec
− Uxiδ(t− tsp) (7)

dyi
dt

= Uxiδ(t− tsp) (8)

dzi
dt

=
yi
τ1
− zi
τrec

(9)

where τ1 is the decay constant of synaptic conductance, τrec is the recovery time from synaptic
depression and U describes the fraction of available resources used by each presynpatic spike.

The postsynaptic current due to the thalamocortical inputs is then:

ITh = GTh(t)(V − Eexc), (10)

and

GTh(t) =

nTh∑
i=1

yi(t)gTh,i(t) (11)

where GTh is the total conductance due to thalamic inputs, gTh,i stands for conductance of a
single synapse and yi its efficiency. The contribution of a single presynaptic spike to postsynaptic
conductance is assumed to be the same as for an excitatory cortical synapse (i.e. gexc(t)).

The total synaptic current in the LIF neuron is a sum of intracortical and thalamocortical
currents: Isyn(t) = ICortex(t) + ITh(t).

2.4 Parameter fitting

All of the fixed and adjustable parameters are listed in SupplementarySupplementary Table 1.
We used Monte Carlo method to generate responses of the cell to repeated stimulations. To this
end, we ran the model simulations 500 times, each time obtaining the timings of action potentials
(spike trains). From these responses we calculated post-stimulus time histogram (PSTH) and
compared it to experimental data. The parameters of the model were fitted by means of evolu-
tionary approach (Differential Evolution) and manually tuned to obtain the minimum difference
between real and simulated PSTH.
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Supplementary Figure 1: The generalised liner model (GLM) with time-varying firing rate and
history effects. (A) The intensity function of the GLM (bin size 0.25 ms) characterises the time-
dependence of the firing rate, which is modulated by synaptic inputs. The intensity function
rises rapidly, but decays smoothly. Importantly, it does not follow the prominent peaks visible
in the PSTH. (B) The history filter characterising the refractoriness. The filter consists of
an absolute refractory period of 0.5 ms (strongly negative values were clipped) followed by a
relative refractory period and an over-shoot (spike facilitation). (C) Goodness-of-fit test based
on time-rescaling theorem. Inter-spike intervals of the experimental spike trains were rescaled
according to the conditional intensity function of three models: Poisson, spike-train-probability
model (STPM), generalised linear model (GLM). If the model perfectly reproduced the data the
inter-spike intervals would be distributed uniformly on 0-1 interval (diagonal). The difference
between the theoretical and the empirical distributions was evaluated by means of Kolmogorov-
Smirnov statistics (K-S). This procedure was repeated for two different bin sizes (0.25 ms, left;
and 0.05 ms, right). (D) The goodness-of-fit, as measured by the Kolmogorov-Smirnov distance
(maximum divergence from diagonal in C), decreased with bin size in both STPM and GLM,
but the decrease was slower for GLM.
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Supplementary Figure 2: Recovery function estimated from simulated spike trains with (solid
black line) and without (solid red line) trial-to-trial gain modulation. The spike trains were
generated with exponentially decaying intensity function 4000 Hz × exp[−t/(5 ms)] and a step-
like recovery function (dashed red line). The overshoot appearing after the absolute recovery
period (τref = 1.5 ms) is an artifact of the trial-to-trial variation and not a marker of a genuine
spike facilitation mechanism. The estimated recovery functions were normalised by dividing
them with their value at time t = 7 ms. The trial-to-trial variations were simulated as in the
population model described in main text where G was drawn independently for each trial from
an uniform distribution on the interval [0.2, 0.8].
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Parameter Symbol Units Value References

LIF neuron:
– membrane capacitance Cm nF 0.5 Johnston and Wu [1995]
– leak conductance gL µS 0.025 Johnston and Wu [1995]
– rest potential Vrest mV -70 Johnston and Wu [1995]
– spike threshold Vthr mV -40 Johnston and Wu [1995]
– reset potential Vreset mV -70 Johnston and Wu [1995]

Cortical excitatory inputs:
– synaptic weight wexc µS 0.0072 (*)
– synaptic time constant τexc ms 0.9 (*) Stern et al. [1992]
– synaptic reversal potential Eexc mV 0 Johnston and Wu [1995]
– number of connections nexc – 200 Douglas and Martin [2007]
– firing rate fexc Hz 10 (*)

Cortical inhibitory inputs:
– synaptic weight winh µS 0.022 (*)
– synaptic time constant τinh ms 4 Johnston and Wu [1995]
– synaptic reversal potential Einh mV -70 Johnston and Wu [1995]
– number of connections ninh – nexc Douglas and Martin [2007]
– firing rate finh Hz fexc

Thalamocortical inputs:
– synaptic weight wTh µS 0.035 (*)
– time constant τTh ms τexc
– reversal potential ETh mV Eexc

– number of connections nTh – 28 (*) Douglas and Martin [2007]
– firing rate fTh Hz 700 (*) Hanajima et al. [2004]
– use of synaptic resources U – 0.6− 0.9 (*) Gil et al. [1997, 1999]
– decay of synaptic conductance τ1 ms τexc
– recovery time τrec ms 700 Gil et al. [1997]

Supplementary Table 1: List of parameters used in the leaky integrate-and-fire model. “Value”
column indicates typical parameter values or ranges found in the literature (where available).
(*) denotes the parameters which were adjusted to fit the experimental data.
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