
1

Sensitive protein sequence searching for analysis of massive data sets

Martin Steinegger and Johannes Söding

ú

Quantitative and Computational Biology group, Max-Planck Institute for Biophysical Chemistry, Am

Fassberg 11, 37077 Göttingen, Germany

Figure S 1. Eliminating random memory access at k-mer match stage MMseqs2 Numbers in this figure are
represented as hexadecimal (e.g. 0xFF is equal to 255 decimal). After the end of loop 2 (Fig. 1B), the matches array
on the left containing single k-mer matches between the query sequence and various target sequences is processed in two
steps to find double k-mer matches. In the first step, the entries (target_ID, i≠j) of matches are sorted into 2B arrays
(bins) according to the lowest B bits of target_ID. (Here, for illustration B = 8.) In the second step, the 2B bins are
processed one by one. For each k-mer match (target_ID, i≠j), we run the code in the magenta frame of Fig. 1B. But
now, the diagonal_prev array fits into L1/L2 CPU cache, because it only needs ceil(N/2B) entries, where N is the
number of sequences in the target database.

2

Figure S 2. Multi core scaling of MMseqs2 Performances of MMseqs and MMseqs2 (fast, normal) using 1,2,4,8
and 16 threads. The optimal scaling is indicated as dashed black line for each method. To measure the multicore
scaling performance we searched with 6370 full length protein queries against 30 Mio. Uniprot sequences. When running
MMseqs2 and MMseqs with 16 cores it archives a 0.58% and 85% throughput of the theoretical maximum of the
interpolated single core performance respectively. This improvement is the result of minimizing random access to the
main memory, as explained in Fig. S1.

3

Figure S 3. MMseqs2 single domain. Cumulative distribution of AUC sensitivity for all 7616 single domain SCOP
sequences. Higher curves signify higher sensitivity. Area under the curve (AUC) up to the first false positive is the
fraction of true positive matches found with better E-value than the first false positive match.

4

Figure S 4. False discovery rate versus E-value threshold. The color code is the same as in supplementary Fig. S3.

5

Figure S 5. False discovery rate versus E-value threshold for profile search.

6

Figure S 6. Cumulative distribution of AUC sensitivity for all 6370 multi domain sequences. The sensitivity of MMseqs2
improves up to the 7th iteration.

7

Figure S 7. Workflow for fast and deep annotation of the Ocean Microbiome Reference Gene Catalog (OM-RGC) using
MMseqs2.

8

Feature MMseqs MMseqs2 Remark

Iterative profile sear-
ches

no yes Iterative profile searches increase sensitivity
much beyond that of BLAST

k-mer match stage Sums up similarity
scores of similar 6-
mers between pairs of
sequences

Finds consecu-
tive double 7-mer
matches on the same
diagonal

MMseqs aggregates scores of spurious matches
across all possible Lquery◊Ltarget start positions.
OK for global alignment, but suboptimal for lo-
cal similarities. MMseqs2 consecutive double-
diagonal k-mer match criterion suppresses most
spurious matches and works well also for local
similarities.

Fast gapless align-
ment stage

no yes (AVX2 / SSE2) Increases sensitivity-versus-speed trade-o� by al-
lowing MMseqs2 to evaluate more matches from
the k-mer matching stage while still reducing the
number of Smith-Waterman alignments

Multicore scalability Speed-up for 16 cores
is 9.3-fold

Speed-up for 16 cores
is 13.7-fold

MMseqs2 minimizes random memory access by
using low-level CPU cache (supplementary Fig-
ures S1, S2)

Suppression of false
positive matches

Compositional bias
score correction on
query side in k-mer
match stage

Compositional bias
score correction on
query and target side
in all three stages

MMseqs2 eliminates high-scoring false positives
much more e�ectively than MMseqs

Clustering methods simple greedy
strategy

Simple greedy,
greedy set-cover,
single-linkage with
depth cut-o�

MMseqs2 has option to reassign of cluster mem-
bers to best representative

Utility scripts 3 37 (see MMseqs2
userguide.pdf at
github)

MMseqs2 has added utility tools for format con-
version, multiple sequence alignment, sequence
profile calculation, ORF extraction, 6-frame
translation, set operations on sequence sets and
results, regex-based filters, and statistics tools to
analyse results

Distribution of jobs
on computer cluster

no yes MMseqs2 uses Message Passing Interface

Option to split tar-
get database across
servers

no yes Allows MMseqs2 to search or cluster arbitrarily
large databases

SIMD parallelization SSE2 AVX2 (SSE4.1 if no
support for AVX2)

AVX2 has two-fold higher parallelism and is
therefore faster

Lines of code 10 000 30 000 A high proportion of the MMseqs code has been
rewritten from scratch and considerably modi-
fied for better performance.

Table S I. Comparison between MMseqs and MMseqs2.

9

Method Version Database Command
MMseqs2 2.0 createindex -k 7 search –k-score (95 | 85) -e 10000.0
(normal | sense) –max-seqs 4000
MMseqs2 2.0 createindex -k 7 prefilter –k-score (145 | 115)
(very fast | fast) –max-seqs 4000
MMseqs 1.0 fasta2�ndex –z-score-thr 10.0 -s 4 –max-seqs 4000 -c 0.0 -e 10000.0
SWIPE 2.0.11 makeblastdb -dbtype prot -e 10000.0 -a 16 -v 4000 -b 4000
RAPsearch2 2.23 makeblastdb -dbtype prot -v 4000 -z 16 -e 4 -t a -b 0
UBLAST 7.0.1090 -makeudb_ublast -threads 16 -evalue 10000.0 -ublast
SWORD sens commit

fcb2117
-t 16 -a 4000 –evalue 10000

LAST last-712 lastdb -cR01 -p -v -P 16 -u3 -D100
LAST sens last-712 lastdb -cR01 -p -v -P 16 -m 4000 -u3 -D100
DIAMOND sens 0.7.9.58 diamond makedb –max-target-seqs 4000 –evalue 10000.0 -t /dev/shm

–threads 16 (–sensitive)
BLAST 2.2.31+ makeblastdb -dbtype prot -num_descriptions 4000 -num_alignments 4000

-num_threads 16 -evalue 10000.0
PSI-BLAST 2.2.31+ makeblastdb -dbtype prot -num_descriptions 4000 -num_alignments 4000

-num_threads 16 -num_iterations (2,3,4)
MMseqs2 profile 2.0 createindex -k 7 –num-iterations (2,3,4) -k 7 –k-score 100 -e 10000.0

–max-seqs 4000 –use-index

Table S II. Program versions and command line parameters of tools used in the benchmark.

