
Supplementary Information

To accompany Jakobson, Slininger, Tullman-Ercek, and Mangan; A Systems-Level
Model Reveals That 1,2-Propanediol Utilization Microcompartments Enhance Pathway
Flux Through Intermediate Sequestration.

The following describes the equations used in the numerical and analytical code used
to generate the plots and other figures in the text. The codebase will be made available
on GitHub following publication under an XXX license.

Governing equations

As described in the Models section, the equations describing the concentrations of P
and A in the MCP are as follows:

D∇2P (r)−RCDE = 0 (1)

D∇2A(r) +RCDE −RPQ = 0 (2)

And the concentrations in the cytosol are described by the following:
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The following boundary conditions hold at the cell and MCP membranes,

respectively:
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Non-dimensional equations

We then recast the system in terms of the following non-dimensional variables:
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ρ =
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(9)
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Applying the non-dimensionalization and letting κ = KCDE

KPQ
, we obtain the following

governing equation for A in the MCP:
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Similarly for P in the MCP,
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We can then nondimensionalize the boundary conditions as follows:
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Similarly for P,
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These nondimensional equations can then be solved numerically by a finite-difference
approach to find the steady-state concentrations in the MCP, and the solutions in the
cytosol follow directly. We solve the spherical finite-difference equations using the
ODE15s solver in MATLAB.

Analytical solution

For ease of computation, we cast the analytical solution (assuming constant
concentrations in the MCP) differently than in the Models section.

2/4



First, consider the mass balance on AMCP :
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And similarly for PMCP :
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First we solve for PMCP , as this does not depend on AMCP due to the irreversibility
of PduCDE:
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Now we can find AMCP similarly, given the solution for PMCP .
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Again, the solutions in the cytosol follow directly from these MCP solutions.
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Equations for no MCP case

In the case when there is no Pdu MCP, we assume that the same number of enzymes
are now distributed throughout the cell. The equations in the cell are therefore now as
follows:

0 = D∇2A+RCDE −RPQ (31)

0 = D∇2P −RCDE (32)

These can be non-dimensionalized as follows (c.f. with above for MCP case):

ξ
1

ρ2
∂

∂ρ

(
ρ2
∂a

∂ρ

)
= ξ∇2a = γ

a

1 + a
− p

1 + p
(33)

Similarly for P,
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Now considering the boundary conditions,
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These equations can once again be solved numerically by the same finite difference
approach described above.
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Supplementary Figures 

 

 
 

Figure S1. Comparison of analytical solution assuming constant concentrations in the MCP 

(solid lines) and numerical solutions from the edge (circles) and center (triangles) of the MCP for 

1,2-PD (blue) and propionaldehyde (orange). The baseline parameter values are shown with a 

black dashed line. The KM of the PduCDE and PduP/Q enzymes are plotted in blue and orange 

lines, respectively. 

  



 
 

Figure S2. Concentration profiles as a function of r for a cell with (A) no MCPs; (B) a scaffold 

with no diffusion limitation (kc = 1010); (C) MCPs (kc = 10-5); and (D) sparingly permeable MCPs 

(kc = 10-10). 1,2-PD in the MCP (PMCP) and in the cytosol (Pcyto) are plotted in blue and 

propionaldehyde in the MCP (AMCP) and in the cytosol (Acyto) in orange. The KM of the PduCDE 

and PduP/Q enzymes are plotted in blue and orange dashed lines, respectively. 

  



 
 

Figure S3. (A) Cytosolic aldehyde concentration (Acyto) with and without MCPs and MCP 

aldehyde concentration (AMCP) with MCPs; (B) relative carbon flux through PduP/Q 

(fluxMCP/fluxNoMCP) and relative aldehyde leakage rate (leakageNoMCP/leakageMCP); and (C) 

relative flux through the PduP/Q enzymes (with MCPs/without MCPs) and relative 

propionaldehyde leakage across the cell membrane (without MCPs/with MCPs) as a function of 

kmA. The baseline kmA value is shown with a black dashed line. 

  



 
 

Figure S4. Relative flux through the PduP/Q enzymes (with MCPs/without MCPs) and relative 

propionaldehyde leakage across the cell membrane (without MCPs/with MCPs) as a function of 

external 1,2-PD concentration. The baseline external 1,2-PD concentration is shown with a black 

dashed line. 

  



 
 

Figure S5. Saturation phase spaces of PduCDE and PduP/Q with respect to (A) jc and kc, (B) 

with respect to jc and kmP, and (C) with respect to jc and kmA when Pout is 0.5 mM. Regions of 

saturation (concentration of substrate > KM of the appropriate enzyme) are plotted in blue when 

both enzymes are saturate, orange when only PdyCDE is saturated, and in grey when neither 

enzyme is saturated. Red solid lines indicate when Acyto is 1 μM; red dashed lines indicate when 

Acyto is 10 nM. Black dashed lines indicate the baseline parameter values used in the model of 

the Pdu MCP. 

  



 
 

Figure S6. Saturation phase spaces of PduCDE and PduP/Q with respect to (A) Pout and jc, and 

(B) with respect to Pout and kmP. Regions of saturation (concentration of substrate > KM of the 

appropriate enzyme) are plotted in blue when both enzymes are saturate, orange when only 

PdyCDE is saturated, and in grey when neither enzyme is saturated. Red solid lines indicate 

when Acyto is 1 μM; red dashed lines indicate when Acyto is 10 nM. Black dashed lines indicate 

the baseline parameter values used in the model of the Pdu MCP. 

  



 
 

Figure S7. Mean concentrations of 1,2-PD and propionaldehyde in the MCP (PMCP; AMCP) and 

cytosol (Pcyto; Acyto) as a function of (A) kcA when kcP = 0.1 x kcA and (B) kcA when kcP = 10 x 

kcA. KM of PduCDE and PduP/Q are shown as solid lines. The baseline permeabilities are shown 

with a black dashed line. 

  



 
 

Figure S8. (A,D,G) Cytosolic aldehyde concentration (Acyto) with and without MCPs and MCP 

aldehyde concentration (AMCP) with MCPs; (B,E,H) absolute flux through PduP/Q and aldehyde 

leakage from the cell with and without MCPs; and (C,F,I) relative carbon flux through PduP/Q 

(fluxMCP/fluxNoMCP) and relative aldehyde leakage rate (leakageNoMCP/leakageMCP); as a function 

of (A,B,C) kc = kcA = kcP; (D,E,F) kcA; and (G,H,I) kcP. The baseline permeabilities are shown 

with a black dashed line. 

  



 
 

Figure S9. (A, C, E) Saturation phase space of PduCDE and PduP/Q with respect to kcA and kcP 

and (B, D, F) saturation phase space of PduCDE and PduP/Q with respect to kcA and jc for 

external propionaldehyde concentrations of (A, B) 1μM, (C, D) 1 mM, and (E, F) 10 mM. 

Regions of saturation (concentration of substrate > KM of the appropriate enzyme) are plotted in 

blue when both enzymes are saturated, orange when only PduCDE is saturated, and in grey when 

neither enzyme is saturated. Red solid lines indicate when Acyto is 1 μM; red dashed lines 

indicate when Acyto is 10 nM. Black dashed lines indicate the baseline parameter values used in 

the model of the Pdu MCP. Green line in (A, C, E) indicates when kcA = kcP. 
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