
Supplementary online methods

 1 Simulation...1
 1.1 Inferring the reference tree topology..1
 1.2 Partitioning...1
 1.3 Estimating branch lengths and model parameters..2
 1.4 Generating the simulated alignment...2
 1.5 Generating the simulated taxonomies..3
 1.6 Running mislabels identification algorithms..3
 1.7 Evaluating the results...4

 2 Real-world datasets..4
 2.1 LTP123_T...4
 2.2 SLV123_T..5
 2.3 GG13_T..5
 2.4 RDP11_T..5
 2.5 SLV123_NR99...5
 2.6 NR13_NR99...5
 2.7 SATIVA results post-processing...6

 3 Hardware configuration details..6
 4 Data availability..8
 5 Supplementary Figure Legend...8

 1 Simulation

 1.1 Inferring the reference tree topology

We used SATIVA (epa_trainer.py script) to infer the constrained ML tree on the full LTP123
alignment (11939 taxa). Internally, SATIVA builds a multifurcating constraint tree from the taxo-
nomic annotations of the LTP123 sequences. Then, it calls RaxML (bundled version) as follows:

$ raxmlHPC-PTHREADS-AVX -T 16 -s ltp123_full.phy -g tax_constraint.tre

-m GTRCAT -n reftree --no-seq-check --no-bfgs -p 25204

to resolve the multifurcations and thus obtain the fully bifurcating tree which is congruent with the
taxonomy.

 1.2 Partitioning

It is known that 16S rRNA gene contains both highly variable and conserved regions, which corre-
spond to loops and stems in the secondary structure of rRNA molecule. This results in heterogeneity
of empirical 16S alignments, which comprise interleaving regions of high and low similarity. To ac-
count for this fact in our simulation, we partitioned the original LTP alignment according to 16S
rRNA secondary structure, and estimated all model parameters for each partition individually. It al-
lowed to build a simulated alignment which is structurally similar to the empirical LTP alignment.

Bacterial 16S rRNA contains nine variable regions (v1-v9) with the following E.coli-based coordi-

1

nates :

v1=69-99
v2=137-242
v3=433-497
v4=576-682
v5=822-879
v6=986-1043
v7=1117-1173
v8=1243-1294
v9=1435-1465

We used a custom script (trans_vx_borders.py) to translate the above E.coli positions into
LTP alignment positions, thereby obtaining the coordinates of variable regions in the alignment. We
created a partition file by assigning each variable region (v1-v9) to an individual partition, whereas
all conserved regions were merged into single cons partition. Furthermore, we added the flanks par-
tition for 'flanking' alignment regions which have no correspondence in the reference E.coli se-
quence. The resulting partition file (ltp123_part.txt) is as follows:

DNA, cons=308-489,840-1044,1893-3055,3226-3370,3650-4005,4149-4404,4711-
4874,5162-5287,5411-5751
DNA, flanks=1-307,6002-6880
DNA, v1=490-839
DNA, v2=1045-1892
DNA, v3=3056-3225
DNA, v4=3371-3649
DNA, v5=4006-4148
DNA, v6=4405-4710
DNA, v7=4875-5161
DNA, v8=5288-5410
DNA, v9=5752-6001

 1.3 Estimating branch lengths and model parameters

Next, we used the partition file obtained above as well as the reference tree topology from step 1.1
to optimize the branch lengths and model parameters for each partition individually. For this, we
ran RAxML v8.2.3 as follows:

$ raxmlHPC-PTHREADS-AVX -f e -M -T 16 -s ltp123_full.phy -t reftree.nw

-q ltp123_part.txt -m GTRGAMMA -n eval

 1.4 Generating the simulated alignment

First, we extracted empirical subalignments for individual partitions using the following command:

$ raxmlHPC-PTHREADS-AVX -f s -T 16 -s ltp123_full.phy -q ltp123_part.txt

-m GTRGAMMA -n split

Then, we executed INDELible v1.03 to generate simulated subalignments for each partition.

Following simulation parameters were set to the values obtained previously in step 1.3:

2

• “true” tree ([TREE])

• GTR substitution rates ([submodel])

• Base frequencies ([statefreq])

• Alpha parameter of GAMMA distribution ([rates])

Furthermore, we manually tuned the insertion/deletion rates ([indelmodel]/[indelrate])
such that both width and % gaps in each simulated subalignment matches those values in the corre-
sponding empirical subalignment.

Finally, we used a custom script (merge.py) to merge all simulated subalignments into a single
PHYLIP alignment file.

 1.5 Generating the simulated taxonomies

Because of the way we generated the simulated alignment (see above), it ought to be absolutely
consistent with the original LTP taxonomy. In other words, we assume LTP taxonomy to be misla-
bels-free on the simulated alignment. Therefore, we can deliberately introduce taxonomic mislabels
by changing the original sequence annotations at random. We used this approach to generate six test
taxonomies: three replicates with 1% mislabels and three replicates with 5% mislabels. The distri-
bution of mislabels among the taxonomic rank levels was as follows:

Phylum 5%
Class 10%
Order 15%
Family 35%
Genus 35%

For instance, given that the overall number of sequences is 11939 and the mislabel rate of 5%, ap-

proximately 597 sequences will be mislabeled. From those,  597 * 0.05  = 29 will have an incorrect

Phylum,  597 * 0.05  +  597 * 0.10  = 88 – an incorrect Class,  597 * 0.05  +  597 * 0.10  +  597

* 0.15  = 177 – an incorrect Order, and so on. This distribution approximately represents the pro-

portion of mislabels at each taxonomic level that we identified in the empirical LTP123 dataset.

Finally, we constructed six test datasets by combining the aforementioned six taxonomies with the
simulated alignment.

 1.6 Running mislabels identification algorithms

• SATIVA was executed as follows:

$ sativa.py -t sim<T>.tax -s sim_full.phy -x BAC -n sativa<T> -m
thorough -N 1 -v -T 16

where <T> = (1..6) is the number of test dataset (input/output paths and other non-essential
details were trimmed from the command line).

• UCLUST was executed via a custom script (mis_tests.py) which implements a leave-

one-test with UCLUST. More specifically, for each of the N sequences in the dataset, it gen-

3

erates the QUERY.FA file containing this sequence, the REF.FA file containing the remain-
ing N-1 sequences as well as the REF.TAX file containing the taxonomic annotations for the
sequences in REF.FA. Then, it calls QIIME v1.8 taxonomy assignment script as follows:

$ assign_taxonomy.py -i QUERY.FA -r REF.FA -t REF.TAX -m uclust

Finally, the script compares the suggested taxonomic annotation to the original annotation of
the query sequence. In case of disagreement, the query sequence is considered to be misla-
beled; the corresponding mislabel record is printed to the output file in a SATIVA-like for-
mat. Mislabel confidence value was set equal to the assignment confidence provided by
UCLUST.

• RDP Classifier was executed via a similar custom script (mis_tests2.py) . This script,

however, allows to specify a range of sequences to test. This became necessary because ac-
ceptable running time could be only achieved by parallelization over several cluster nodes.
The QIIME taxonomy assignment script was called as follows:

 $ assign_taxonomy.py -i QUERY.FA -r REF.FA -t REF.TAX -m rdp
--rdp_max_memory 7500

As above, RDP assignment confidence was used as mislabel confidence, where applicable.

 1.7 Evaluating the results

In this step, custom scripts (calc_stats_mis.py & calc_stats.py) were used to compare
mislabels identified by each method to the 'ground truth', i.e., to the list of deliberately mislabeled
sequences for each particular dataset (see Section 1.5). Only the mislabels with the confidence
above the respective method-specific threshold were considered (see main text).

Finally, summarize_stats.py script was used to average over all replicates and generate the
final statistics for each accuracy metric (identification/correction), mislabel level (1% / 5%) and
method (SATIVA / UCLUST / RDP). These final statistics are shown in Table 3 in the main text.

 2 Real-world datasets

 2.1 LTP123_T

We downloaded an ARB database file for LTP release 123 (September 2015) from

http://www.arb-silva.de/fileadmin/silva_databases/living_tree/LTP_release_123/LTPs123_SSU.arb

Then, we used ARB software to export both alignment and taxonomic annotations for all 11939 se-
quences included in LTP123.

To avoid spurious mislabels, we consistently removed the “Unclassified” prefix in taxonomic rank
names (e.g., “Unclassified Alphaproteobacteria” → “Alphaproteobacteria”).

4

http://www.arb-silva.de/fileadmin/silva_databases/living_tree/LTP_release_123/LTPs123_SSU.arb

 2.2 SLV123_T

This dataset includes only type strains sequences from SILVA release 123 (more specifically, the
same sequence set as in LTP123_T). Since the aforementioned ARB database for LTP123 provides
alternative taxonomic classifications for each sequence it contains, we used ARB export functional-
ity to obtain SILVA classification from this database (stored in “tax_slv” field).

 2.3 GG13_T

As above, we exported Greengenes (version 13.8) taxonomic classification for type strain sequences
from the LTP123 database (“tax_greengenes” field).

Sequences labeled as “Unclassified” were excluded, which resulted in a dataset comprising 10635
sequences.

 2.4 RDP11_T

Although LTP123 database provides RDP classification, it is not in the most recent version (release
10). Therefore, we extracted taxonomic annotations anew from the files provided by RDP.

We downloaded the RDP release 11.4 (May 2015) from

http://rdp.cme.msu.edu/misc/resources.jsp#aligns

Then, we used custom scripts (available at https://github.com/amkozlov/mislabels16-data) to extract
taxonomic annotations from the FASTA files and save them in the text format as required by
SATIVA.

RDP11_T dataset comprises 11868 sequences (71 LTP123 sequences are missing in RDP).

 2.5 SLV123_NR99

SILVA SSU Ref NR database (release 123, July 2015) was downloaded from:

http://www.arb-silva.de/fileadmin/silva_databases/release_123/ARB_files/
SSURef_NR99_123_SILVA_12_07_15_opt.arb.tgz

We used ARB software to export both alignment and taxonomic annotations for 536224 prokaryotic
SSU rRNA sequences (Bacteria and Archaea clades).

 2.6 NR13_NR99

Taxonomic annotations of 99% identity OTUs and MSA of the representative sequence set were
downloaded from

ftp://greengenes.microbio.me/greengenes_release/gg_13_8_otus/

Placeholder ranks ('s__', 'g__' etc.) were trimmed.

All 203452 sequences were included into analysis.

5

http://www.arb-silva.de/fileadmin/silva_databases/release_123/ARB_files/SSURef_NR99_123_SILVA_12_07_15_opt.arb.tgz
http://www.arb-silva.de/fileadmin/silva_databases/release_123/ARB_files/SSURef_NR99_123_SILVA_12_07_15_opt.arb.tgz
ftp://greengenes.microbio.me/greengenes_release/gg_13_8_otus/
https://github.com/amkozlov/mislabels16-data
http://rdp.cme.msu.edu/misc/resources.jsp#aligns

 2.7 SATIVA results post-processing

Before computing mislabels statistics for real-world datasets, we manually checked SATIVA out-
puts and corrected following errors:

• Re-classifications to/from a “placeholder” taxon, e.g.,

“Gammaproteobacteria Incertae Sedis” → “Chromatiales”

were discarded. Following taxon names were considered placeholders: “uncultured *”,
“Unclassified *”, “Unknown *”, “*Incertae Sedis” (unless numbered, s. below).
Rationale: placeholders represent 'empty' ranks (lack of classification at this level). Accord-
ing to the SATIVA algorithm, re-classifications to/from an 'empty' rank are not considered as
mislabels (see main text).

• Re-classifications to an obviously synonymous taxon, e.g.,

“Clostridiales; Clostridiales_Incertae_Sedis_XI” → “Clostridiales;Incertae_Sedis_XI”

were discarded.

• Rank levels which were incorrectly identified by SATIVA or missing from the standard 7-

level taxonomy (e.g. Suborder) were corrected.

Please note, that Supplementary File 1 contains the full list of mislabels as identified by SATIVA.
The aforementioned manual changes are marked in yellow.

 3 Hardware configuration details
Hardware configuration and running time for each dataset are summarized in the Table S1.

Table S1.

Dataset Pipeline step Hardware
configuration

Running time
(hh:mm:ss)

RAM usage
(peak, per node)

cyanoEMBL

ALL

Intel Xeon
E5-2650 v2
2.6 GHz
8 cores
64 GB RAM

00:59:14

< 350 MB

cyanoRDP 01:23:32

cyanoSILVA 01:01:13

cyanoCTU 00:54:22

cyanoGG 00:59:56

GG13_T

ALL

2x Intel Xeon
E5-2697 v3
2.6 Ghz
28 cores
64 GB RAM

34:15:27

~ 10,000 MB
RDP11_T 41:27:26

LTP123_T 47:04:28

SLV123_T 44:08:53

6

Dataset Pipeline step Hardware
configuration

Running time
(hh:mm:ss)

RAM usage
(peak, per node)

GG13_NR99

Reference tree
inference

Intel Xeon
E5-2650 v2
2.6 GHz
16 cores
128 GB RAM

93:41:52 ~ 18,000 MB

Leave-one-out test

24 nodes:
2x Intel Xeon
E5-2697 v3
2.6 Ghz
28 cores
64 GB RAM

07:20:08 ~ 13,000 MB

Final EPA test

4x Intel Xeon
E5-4620
2.2 GHz
32 cores
512 GB RAM

01:44:55 ~ 60,000 MB

Total: 102:46:55

SLV123_NR99

Reference tree
inference

4x Intel Xeon
E5-4620 v2
2.60 GHz
32 cores
1024 GB RAM

264:25:00 ~ 200,000 MB1

Leave-one-out test

104 nodes:
4x Intel Xeon
E7-4870
2.4 GHz
40 cores
256 GB RAM

~ 156:00:002 ~ 100,000 MB1

Final EPA test

4 nodes:
4x Intel Xeon
E5-4620
2.2 GHz
32 cores
512 GB RAM

~ 54:00:002 ~ 350,000 MB1

Total: ~ 475:00:00

Notes:

1With “memory saving” option enabled ('-S' command line option in SATIVA which correspond to
the '-U' option in RAxML).

2Estimated wall time. These analysis steps were divided into subtasks and executed as multiple job
submissions. Thus the actual parallelism level was varying as it depended on the job scheduler. It
makes direct runtime measurement problematic. Therefore, we estimated the corresponding
runtimes based on the average number of nodes allocated at once (specified in the 3rd column).

7

 4 Data availability
Scripts and datasets that were used to produce the results described in this paper are available at
https://github.com/amkozlov/mislabels16-data. In particular, this repository includes:

• Simulated alignment and Indelible control files used to generate it

• Scripts used to run UCLUST, RDP Classifier (both via QIIME) and SATIVA on simulated

test datasets

• Scripts used to evaluate UCLUST/RDP/SATIVA results and to compute accuracy statistics

• Taxonomic classification files for real-world datasets and scripts used to obtain them

• SATIVA results for real-world datasets (mislabel lists)

 5 Supplementary Figure Legend
Figure S1. A dendrogram showing all genera of the novel Cyanobacteria taxonomic framework
(CyanoCTU), superimposed with order-level taxa groups from four existing taxonomies. The tree
was obtained as described in the Materials and methods section of the main text. Ten Actinobacteria
type strain sequences serve as the out-group. Bootstrap values are shown only when they are above
50%. The bar indicates 0.1 substitutions per nucleotide position. Sub=Subsection, Fam=Family,
Chr=Chroococcales, Nos=Nostocales, Osc=Oscillatoriales, Ple=Pleurocapsales, Pro=Prochlorales,
Pse=Pseudanabaenales, Sti=Stigonematales, Syn=Synechococcales.

8

https://github.com/amkozlov/mislabels16-data

	1 Simulation
	1.1 Inferring the reference tree topology
	1.2 Partitioning
	1.3 Estimating branch lengths and model parameters
	1.4 Generating the simulated alignment
	1.5 Generating the simulated taxonomies
	1.6 Running mislabels identification algorithms
	1.7 Evaluating the results

	2 Real-world datasets
	2.1 LTP123_T
	2.2 SLV123_T
	2.3 GG13_T
	2.4 RDP11_T
	2.5 SLV123_NR99
	2.6 NR13_NR99
	2.7 SATIVA results post-processing

	3 Hardware configuration details
	4 Data availability
	5 Supplementary Figure Legend

