1 SUPPLEMENTARY MATERIALS

2 Foster et al.

3	
4	
5	ALB1 the native locus at the target sequence
6	GCCAC <mark>AACCTCCCTCACCAACCCC</mark> ACGGCCATC <mark>ECC</mark> GTCTACGGCCCGTACCACGC
7	TGGGCCTCAACAACCCCGAGATGATTGACACCTTCCTCAACACCAAGCCCCGCTCCTCCGTCATGTCC
8	
9	Alb-(1)top (donor DNA to introduce a stop codon within the genomic target sequence)
10	CTCCCTCACCAAGGCCACCCCCCCCCCCCCCCCCCCCCC
11	Alb-(1)bot (this oligo is annealled to Alb1-(1)top to form a dsDNA donor)
12	GTCGACATCCTCAGGGCGGTGGAGGTGGGGGGGGGGGGG
13	
14	Alb1-(2)top (donor DNA to introduce a stop codon at a distance from the genomic target
15	sequence)
16	CTCCCTCACCAAGGCCACCCCCCCCCCCCCCCCCCCCCC
17	Alb-(2)bot (this oligo is annealled to Alb1-(1)top to form a dsDNA donor)
18	GTCGACATCCTAAGGGCGGTGGAGGTGGGGGGGGGGGGG
19	
-	

Figure S1. Oligonucleotide donors used in RNP-CRISPR-Cas9 co-editing experiments to introduce a premature stop codon in *ALB1*.

22 The oligonucleotide donors used to target *ALB1* by introducing a premature stop codon are

23 illustrated together with the genomic target sequence for the ALB1 targeting RNP-CRISPR-Cas9

24 complex. In the case of donor 1-1 the edit is within the genomic target sequence whereas in the case

25 of donor 1-2 the edit is located 40 bp away from the PAM site used. DsDNA donors were generated

26 by mix equimolar concentrations of the 'top' and 'bot' oligo together heating at 95oC for 5 mins and

- 27 then cooling on the bench top. 2 μ g of annealed oligo was transformed together with the *ALB1*
- 28 targeting RNP
- 29
- 30
- 31
- 32

Figure S2. Oligonucleotide donors used in RNP-CRISPR-Cas9 co-editing experiments targeting *TUB2* or *ILV2* and plates showing the selection procedure and the results of the transformation with the

36 appropriate RNP complex.

С

D

33

- **a.** Transformation plates are shown for the *ILV2*-targeting RNP transformed together with the donor
- 38 DNAs shown in **c. b.** Transformation plates are shown for the *TUB2*-targeting RNP transformed
- 39 together with the donor DNAs shown in **d**. In **c** and **d** the design of the oligonucleotides conferring
- 40 resistance to sulfonylurea and benomyl respectively is illustrated with their location relative to the
- 41 genomic target sequence for the respective RNP complex.
- 42

44 Table S1. Raw data for the transformation numbers presented in Fig. 1a using constructs expected

45 to stably and constitutively express Cas9

	Empty vector ^a	ALB1 targeting vector ^b	PKS1 targeting vector ^c
Number of transformants			
Experiment 1	67	2	2
Experiment 2	52	1	6
Experiment 3	64	0	1
Experiment 4	83	3	1

Agrobacterium compatible vectors containing the Cas9-NLS encoding gene under the control of the TrpC promoter and terminator were introduced into Guy 11 using *Agrobacterium*-mediated transformation. Transformant numbers were assessed after 7 days on selective medium (transformants were subsequently sub-cultured for assessment of pigmentation after growth on CM). None of the transformants isolated exhibited pigmentation defects. Three different versions (including the version functional in N. crassa (Matsu-Ura et al., 2015) shown used here) of the Cas9-NLS-encoding gene codon optimised for different fungi were tested in all every time with the same result that very few transformants were generated and none of these exhibited pigmentation alterations (data not shown).

65 Table S2. Summary of transformation experiments targeting *ALB1* and *RSY1* using the RNP-Crispr method

66 and donor only controls

RNPs donors used	Number of	Number that	Efficiency (%)
	transformants	are albino/rosy	
ALB1 Donor DNA + ALB1 - RNP	4	4	100 %
Control: ALB1 Donor DNA only	2	0	0 %
ALB1 Donor DNA + ALB1 RNP	112	96	86 %
ALB1 Donor DNA only	64	3	5%
ALB1 Donor DNA + ALB1 RNP	16	8	50 %
ALB1 Donor DNA only	11	1	9 %
ALB1 Donor DNA + ALB1 RNP	76	54	71 %
ALB1 Donor DNA only	43	5	12 %
ALB1 Donor DNA + ALB1 RNP	86	69	80 %
Donor DNA only	48	7	14 %
<i>RSY1</i> Donor DNA + <i>RSY1</i> RNP	20	20	100 %
Control: RSY1 Donor DNA only	3	0	0 %
<i>RSY1</i> Donor DNA + <i>RSY1</i> RNP	38	37	97.5 %
Control: RSY1 Donor DNA only	8	1	12.5 %
<i>RSY1</i> Donor DNA + <i>RSY1</i> RNP	12	12	100 %
Control: RSY1 Donor DNA only	13	1	8 %
<i>RSY1</i> Donor DNA + <i>RSY1</i> RNP	61	60	98 %
Control: RSY1 Donor DNA only	47	5	11 %

67 The number of transformants for individual transformation experiments using *ALB1*-trageting-RNP-

68 CRISPR-Cas9 or *RSY1*-targeting RNP-CRISPR-Cas9 complexes are shown. Also shown are donor only

69 controls which show the efficiency obtained in the absence of the RNP complex and illustrate the

ro efficiency of gene targeting which would be obtained in a 'traditional' gene deletion experiment.

72 Table S3. Summary of transformation experiments targeting *ALB1* using the RNP-Crispr method and PCR

amplified donor DNAs with 40 bp or 30 bp regions of homology to ALB1 at either end

74

RNDs	Donor	Number of	No. of albino	Efficiency (%)
<u>INFS</u>	Donor	Number of		
		transformants	mutants	
	40 hp flanks	11	0	72 %
ALDI -KINP	40 bp hanks	11	0	75 70
None	40 bp flanks	5	0	0 %
		40	27	56.04
ALB1 RNP	40 bp flanks	48	27	56 %
None	40 bp flanks	37	0	0%
ALB1 RNP	40 bp flanks	16	10	63 %
None	40 bp flanks	22	0	0 %
ALB1-RNP	30 bp flanks	29	17	59 %
None	30 bp flanks	12	0	0 %
ALB1-RNP	30 bp flanks	50	28	56 %
None	30 bp flanks	59	0	0 %
			-	
ALB1-RNP	30 bp flanks	24	11	46 %
None	30 hn flanks	21	0	0 %
None	So op names	~ *	0	0 /0

75 The number of transformants for individual transformation experiments using *ALB1*-targeting-RNP-

76 CRISPR-Cas9 complexes in combination with the PCR generated donor DNA where a repair template

with either 30 bp or 40 bp *ALB1* homologous regions flank the *BAR* gene conferring glufosinate-

ammonium (basta) resistance. Also shown are donor only controls which show the efficiency

79 obtained in the absence of the RNP complex.

80

81

82

- 84
- 85

86 Table S4. Co-editing experiments based on selection for carboxin, sulfonylurea or benomyl

87 resistance

RNPs	Donors	Strain	No.	No. of alb1	No with	Efficiency (%)
			examined	mutants	correct edit	
SDI1 + ALB1	SDI1R (80 bp oligos) +	Guy 11	191	5	3	1.6%
	ALB1 STOP inside					
	target					
SDI1 + ALB1	As above	Guy 11	276	3	3	1.1 %
SDI1 + ALB1	As above	Guy 11	339	4	3	0.9 %
SDI1 + ALB1	As above	Guy 11	369	11	6	1.6 %
SDI1 + ALB1	As above	ΔKu70	37	3	3	12.3%
SDI1 + ALB1	As above	ΔKu70	23	0	0	0 %
SDI1 + ALB1	As above	Δ <i>Ku</i> 70	29	1	1	3.4 %
SDI1 + ALB1	As above	ΔKu70	45	3	3	6.7 %
SDI1 + ALB1	SDI1 carboxinR(80 bp	Guy 11	275	5	3	1.1%
	oligos) ALB1 STOP					
	outside target					
SDI1 + ALB1	As above	Guy 11	241	2	2	0.8 %
SDI1 + ALB1	As above	Guy 11	298	2	2	0.7 %
SDI1 + ALB1	As above	Guy 11	351	4	2	0.5 %
TUB2 + ILV2	SulfonylureaR+	Guy 11	259	2	2	0.7 %
	BenomylR					
TUB2 + ILV2	SulfonylureaR +	Guy 11	384	4	4	1.0 %
	BenomylR					
TUB2 + ILV2	SulfonylureaR +	Guy 11	256	4	4	1.5 %
	BenomylR					

The number of transformants generated in co-editing experiments using Guy 11 or the *Ku70*⁻ strain (23) are shown. Transformants were picked before any pigmentation was apparent. Co-editing-based mutation of *ALB1* used the oligonucleotides shown in Fig. S1 where the edit is either within the genomic target sequence (donor 1-1) of 40 bp distant to the PAM site (donor 1-2). Because *ALB1* mutants might also contain indels rather than integrations of the donors all albino strains were also checked by PCR amplification of DNA surrounding the

93	target site and the efficiency is defined as the total number of transformants from those picked that have the
94	correct integration of the donor DNA confirm by sequencing. In the case of co-editing with the TUB2 and ILV2
95	targeting CRISPR-Cas9-RNPs sequencing was only performed to check that the desired edits were present. In
96	the case of TUB2 indels can be expect to lead to loss of viability so that the efficiency was assessed directly as
97	the proportion of the sulfonylurea resistant transformants that were also benomyl resistant. TUB2 is
98	MGG_00604 and <i>ILV2</i> is MGG_06868
99	
100	
101	
102	
103	
104	
105	
106	

	Strain	Number of reads ^a	Size of	Number of	N50 contig length (bp) ^b	Mean Coverage ^c
			assembly (bp) ^b	scaffolds ^b		
	Alb1_3	25,418,446	38,054,642	3,676	49,277	132.1x
	Alb1_6	10,549,692	38,356,752	1,900	78,092	52.9x
	R1	30,222,537	38,313,674	3,985	53,480	158.7x
	R2	26,471,457	38,078,197	3,727	53,653	139.8x
108	°125 base	e paired-end				
109	^b Genome	e assembled 'de novo	o' using SPAdes 3.	11.0 (46)		
110	^c mapped	l against reference g	enome 70-15 (47)	using BWA (48	3)	
111 112 113 114 115 116 117 118 119	transform Sequence producin utils pack https://g 3.11.0 (44	generated by CRISPR nation procedure and swere generated us g 125 base paired-er age, ea-utils (45): "C ithub.com/Expressio 6).	ger mutations had R-Cas9-RNP and th d regenerated but sing an Illumina H nd reads. Reads we command-line too onAnalysis/ea-utils	t occurred in the te two strains t iSeq 2500 with ere filtered usi ls for processir s). Genomes we	hat had been through the to RNP complexes were sec standard reagents and pro ng the fastq-mcf program f ng biological sequencing da ere assembled 'de novo' us	juenced. itocols rom the ea- ta"; ing SPAdes
120						
121						
122						
123						
124						
125						
126						
127						
128						
129						
130						
131						
132						

107 Table S5. Summary of genome reads and assemblies used in the current study

Name	Sequence
	Primers used in construction of vectors
ALB1-for-EcoRI	ctaatcaatcgaattcGGATTCCTCGCCGAGTTCTAC
ALB1-rev-Spel	ctatacaactagtTCACGCCAGTCATCGGAAGTC
ALB1-for	GGATTCCTCGCCGAGTTCTAC
ALB1-rev	CATGCCAGGCTTCTCAATCCAG
RSY-donor-f	gccgactttgagccaagaagc
RSY-donor-r	cccggtgcaagccttacctag
Cas9-recom-f	GGATAATTCAATAGGCCAACAACACGTTGACGGAGAAGATGATATTGAAGGAGCATTTTTGG
Cas9-recom-r	GGTTCAATTGCGATTCATGTGGTGCGAGCAGTCTTTGTCCTCTAGAAAGAA
PKS1gRNA-f	TCTTTGAAAAGATAATGTATGATTATGCTTTCACTC
PKS1gRNA-r	CTTATTTTAACTTGCTATTTCTAGCTCTAAAACCTCGTTTAGTTGTTGCAGTGGATCATTTATCTTTCACTGCGGAGAAG
	TTTCGAACGCC
SDH1-sg-r	CTTATTTTAACTTGCTATTTCTAGCTCTAAAACGAGCTTGTCGAGGAAGGA
	GTTTCGAACGCC
gRNAto315Cas-R	GTTCAATTGCGATTCATGTGGTGCGAGCAGTCTTTGTCTCTTTGAAAAGATAATGTATGATTATGCTTTCACTC
sgRNA-rec-R	GAGCAGTCTTTGTCCTCTAGAAAGAAGGATTACCTCTAAACAGACATAAAAAAAA
	Primers used as templates for sgRNA synthesis
sgSDI1	TTCTAATACGACTCACTATAGAATGGTGTGGCAACGGTACGTTTTAGAGCTAGA
SgTUB2	TTCTAATACGACTCACTATAGACCAGCTGGTGGACCGAGAGTTTTAGAGCTAGA
sgILV2	TTCTAATACGACTCACTATAGGCGTCGCTTCCAATAGCAGGTTTTAGAGCTAGA
Sg-SEP5-n-gfp	TTCTAATACGACTCACTATAGAACTTGAAAGGAATTTGGTGTTTTAGAGCTAGA
sgSEP5ts	TTCTAATACGACTCACTATAGTCTGTGGAGCCTCAGGAACGTTTTAGAGCTAGA
sgSDH1	TTCTAATACGACTCACTATAGCTCCTTCCTCGACAAGCTCGTTTTAGAGCTAGA
sgPKS-2	TTCTAATACGACTCACTATAGCGTGGTACGGGCCGTAGACGTTTTAGAGCTAGA
	Primers used for PCR amplification of donor DNAs with BAR or GFP
ALB-BARkoF	GCCGCCACAAGCTCCCTCACCAAGGCCACGGCCATCCCGGTCGTCGACAGAAGATGATATTGAAGGAGC
ALB-BARkoR	GCAGAGCCTCTTGCATGAAACCTTGAAGCTGCTTGGCCTGGTCGACCTAAATCTCGGTGACGG

ALB-BARkoS-f	AAGCTCCCTCACCAAGGCCACGGCCATCCCGGTCGTCGACAGAAGATGATATTGAAGGAGC
ALB-BARkos-r	TTGCATGAAACCTTGAAGCTGCTTGGCCTGGTCGACCTAAATCTCGGTGACGG
SEP5-N-GFP-f	CAACATCGATCTAACCAACCAAATTCCTTTCAAGTTCAACACATGGTGAGCAAGGGCGAG
SEP5-N-GFP-r	gaaacggtccagaaggttgcggtcaacgtacGGCGGGAAACGACATCTTGTACAGCTCGTCCATGCC
	Primers used to anneal together to form dsDNA donor DNAs
Alb-(1)top	CTCCCTCACCAAGGCCACGGCCATCCCGGTCTACGGCCCGTAGCACGCCCCCACCTCCACCGCCCTGAGGATGTCGA
	C
Alb-(1)bot	GTCGACATCCTCAGGGCGGTGGAGGTGGGGGGGGGGGGG
	GGAG
Alb1-(2)top	CTCCCTCACCAAGGCCACGGCCATCCCGGTCTACGGCCCGTACCACGCCCCCACCTCCACCGCCCTTAGGATGTCGAC
Alb-(2)bot	GTCGACATCCTAAGGGCGGTGGAGGTGGGGGGGGGGGGG
	GGAG
SDI1-80bp-top	CGCCTGGCCCTTGACAACTCCATGAGCCTGTACCGTTGCCTCACCATTCTTAACTGCACAAGGACCTGCCCGAAGGGC
	CT
SDI1-80bp-bot	AGGCCCTTCGGGCAGGTCCTTGTGCAGTTAAGAATGGTGAGGCAACGGTACAGGCTCATGGAGTTGTCAAGGGCCA
	GGCG
SDI1-60bp-top	TTGACAACTCCATGAGCCTGTACCGTTGCCTCACCATTCTTAACTGCACAAGGACCTGCC
SDI1-60bp-bot	GGCAGGTCCTTGTGCAGTTAAGAATGGTGAGGCAACGGTACAGGCTCATGGAGTTGTCAA
SDI1-50bp-top	TTGACAACTCCATGAGCCTGTACCGTTGCCTCACCATTCTTAACTGCACA
SDI1-50bp-bot	TGTGCAGTTAAGAATGGTGAGGCAACGGTACAGGCTCATGGAGTTGTCAA
SDI1-40bp-top	TTGACAACTCCATGAGCCTGTACCGTTGCCTCACCATTCT
SDI1-40bp-bot	AGAATGGTGAGGCAACGGTACAGGCTCATGGAGTTGTCAA
SDI1-30bp-top	AACTCCATGAGCCTGTACCGTTGCCTCACC
SDI1-30bp-bot	GGTGAGGCAACGGTACAGGCTCATGGAGTT
SDI1-20bp-top	GAGCCTGTACCGTTGCCTCA
SDI1-20bp-bot	TGAGGCAACGGTACAGGCTC
benR-top	GTCGTTGAGCCCTACAACGCTACCCTCTCGGTCCACCAGCTGGTCGAGAACTCTGACGcGACCTTCTGCATTGACAAC
	GA

benR-bot	TCGTTGTCAATGCAGAAGGTCgCGTCAGAGTTCTCGACCAGCTGGTGGACCGAGAGGGTAGCGTTGTAGGGCTCAAC
	GAC
TUB2-wt-top	GTCGTTGAGCCCTACAACGCTACCCTCTCGGTCCACCAGCTGGTCGAGAACTCTGACGAGACCTTCTGCATTGACAAC
	GA
TUB2-wt-bot	TCGTTGTCAATGCAGAAGGTCTCGTCAGAGTTCTCGACCAGCTGGTGGACCGAGAGGGTAGCGTTGTAGGGCTCAAC
	GAC
SURtop	GTATTCTCAGGACAGGTTGTTACCTCTGaTATTGGAAGCGACGCCTTCCAGGAGGCCGACGTCATAGGCATCTCCCGG
	TC
SURbot	GACCGGGAGATGCCTATGACGTCGGCCTCCTGGAAGGCGTCGCTTCCAATAtCAGAGGTAACAACCTGTCCTGAGAA
	TAC
Sep5-ts-donor-top	GAAGGGGATTCAGTTCTGTCTGATGGTCTGTgagGCCTCAGGAACTGgtgagttGCAGGACTACCTTCGTCAACACTCTT
Sep5-ts-donor-bot	AAGAGTGTTGACGAAGGTAGTCCTGCaactcacCAGTTCCTGAGGCctcACAGACCATCAGACAGAACTGAATCCCCTTC
	Primers used for generating PCR products to confirm mutations
PKS-ck-f	GGATTCCTCGCCGAGTTCTAC
PKS-ck-r	
	CAATCATCTCGGGGTTGTTGAGG
SEP6ts?-f	CAATCATCTCGGGGTTGTTGAGG CACACCCTGAAGCCCCTTGATATC
SEP6ts?-f SEP6ts?-R	CAATCATCTCGGGGTTGTTGAGG CACACCCTGAAGCCCCTTGATATC CTCCTCGGTTGTGTGGATGAG