TY - JOUR T1 - A flexible, efficient binomial mixed model for identifying differential DNA methylation in bisulfite sequencing data JF - bioRxiv DO - 10.1101/019562 SP - 019562 AU - AJ Lea AU - J Tung AU - X Zhou Y1 - 2015/01/01 UR - http://biorxiv.org/content/early/2015/10/14/019562.abstract N2 - Identifying sources of variation in DNA methylation levels is important for understanding gene regulation. Recently, bisulfite sequencing has become a popular tool for investigating DNA methylation levels. However, modeling bisulfite sequencing data is complicated by dramatic variation in coverage across sites and individual samples, and because of the computational challenges of controlling for genetic covariance in count data. To address these challenges, we present a binomial mixed model and an efficient, sampling-based algorithm (MACAU: Mixed model association for count data via data augmentation) for approximate parameter estimation and p-value computation. This framework allows us to simultaneously account for both the over-dispersed, count-based nature of bisulfite sequencing data, as well as genetic relatedness among individuals. Using simulations and two real data sets (whole genome bisulfite sequencing (WGBS) data from Arabidopsis thaliana and reduced representation bisulfite sequencing (RRBS) data from baboons), we show that our method provides well-calibrated test statistics in the presence of population structure. Further, it improves power to detect differentially methylated sites: in the RRBS data set, MACAU detected 1.6-fold more age-associated CpG sites than a beta-binomial model (the next best approach). Changes in these sites are consistent with known age-related shifts in DNA methylation levels, and are enriched near genes that are differentially expressed with age in the same population. Taken together, our results indicate that MACAU is an efficient, effective tool for analyzing bisulfite sequencing data, with particular salience to analyses of structured populations. MACAU is freely available at www.xzlab.org/software.html.Author Summary DNA methylation is an important epigenetic modification involved in regulating gene expression. It can be measured at base-pair resolution, on a genome-wide scale, by coupling sodium bisulfite conversion with high-throughput sequencing (a technique known as ‘bisulfite sequencing’). However, the data generated by such methods present several challenges for statistical analysis. In particular, while the raw data generated from bisulfite sequencing experiments are read counts, they are often converted to proportions for ease of modeling, resulting in loss of information. Furthermore, although DNA methylation levels are known to be heritable—and are thus affected by kinship and population structure—existing approaches for modeling bisulfite sequencing data fail to account for this covariance. Such failure can lead to spurious associations and reduced power. Here, we present a new approach that models bisulfite sequencing data using raw read counts, while also taking into account population structure and other sources of data over-dispersion. Using simulations and two real data sets (publicly available data from Arabidopsis thaliana and newly generated data from Papio cynocephalus), we demonstrate that our model provides well-calibrated p-values and improves power compared with previous methods. In addition, the DNA methylation patterns identified by our method agree with those reported in previous studies. ER -