RT Journal Article SR Electronic T1 Complete firing-rate response of neurons with complex intrinsic dynamics JF bioRxiv FD Cold Spring Harbor Laboratory SP 028076 DO 10.1101/028076 A1 Maximilian Puelma Touzel A1 Fred Wolf YR 2015 UL http://biorxiv.org/content/early/2015/10/02/028076.abstract AB The response of a neuronal population over a space of inputs depends on the intrinsic properties of its constituent neurons. Two main modes of single neuron dynamics–integration and resonance–have been distinguished. While resonator cell types exist in a variety of brain areas, few models incorporate this feature and fewer have investigated its effects. To understand better how a resonator’s frequency preference emerges from its intrinsic dynamics and contributes to its local area’s population firing rate dynamics, we analyze the dynamic gain of an analytically solvable two-degree of freedom neuron model. In the Fokker-Planck approach, the dynamic gain is intractable. The alternative Gauss-Rice approach lifts the resetting of the voltage after a spike. This allows us to derive a complete expression for the dynamic gain of a resonator neuron model in terms of a cascade of filters on the input. We find six distinct response types and use them to fully characterize the routes to resonance across all values of the relevant timescales. We find that resonance arises primarily due to slow adaptation with an intrinsic frequency acting to sharpen and adjust the location of the resonant peak. We determine the parameter regions for the existence of an intrinsic frequency and for subthreshold and spiking resonance, finding all possible intersections of the three. The expressions and analysis presented here provide an account of how intrinsic neuron dynamics shape dynamic population response properties and can facilitate the construction of an exact theory of correlations and stability of population activity in networks containing populations of resonator neurons.Author Summary Dynamic gain, the amount by which features at specific frequencies in the input to a neuron are amplified or attenuated in its output spiking, is fundamental for the encoding of information by neural populations. Most studies of dynamic gain have focused on neurons without intrinsic degrees of freedom exhibiting integrator-type subthreshold dynamics. Many neuron types in the brain, however, exhibit complex subthreshold dynamics such as resonance, found for instance in cortical interneurons, stellate cells, and mitral cells. A resonator neuron has at least two degrees of freedom for which the classical Fokker-Planck approach to calculating the dynamic gain is largely intractable. Here, we lift the voltage-reset rule after a spike, allowing us to derive for the first time a complete expression of the dynamic gain of a resonator neuron model. We find the gain can exhibit only six shapes. The resonant ones have peaks that become large due to intrinsic adaptation and become sharp due to an intrinsic frequency. A resonance can nevertheless result from either property. The analysis presented here helps explain how intrinsic neuron dynamics shape population-level response properties and provides a powerful tool for developing theories of inter-neuron correlations and dynamic responses of neural populations.