RT Journal Article SR Electronic T1 Hierarchical Bayesian model of population structure reveals convergent adaptation to high altitude in human populations JF bioRxiv FD Cold Spring Harbor Laboratory SP 002816 DO 10.1101/002816 A1 Matthieu Foll A1 Oscar E. Gaggiotti A1 Josephine T. Daub A1 Laurent Excoffier YR 2014 UL http://biorxiv.org/content/early/2014/02/19/002816.abstract AB Detecting genes involved in local adaptation is challenging and of fundamental importance in evolutionary, quantitative, and medical genetics. To this aim, a standard strategy is to perform genome scans in populations of different origins and environments, looking for genomic regions of high differentiation. Because shared population history or population sub-structure may lead to an excess of false positives, analyses are often done on multiple pairs of populations, which leads to i) a global loss of power as compared to a global analysis, and ii) the need for multiple tests corrections. In order to alleviate these problems, we introduce a new hierarchical Bayesian method to detect markers under selection that can deal with complex demographic histories, where sampled populations share part of their history. Simulations show that our approach is both more powerful and less prone to false positive loci than approaches based on separate analyses of pairs of populations or those ignoring existing complex structures. In addition, our method can identify selection occurring at different levels (i.e. population or region-specific adaptation), as well as convergent selection in different regions. We apply our approach to the analysis of a large SNP dataset from low- and high-altitude human populations from America and Asia. The simultaneous analysis of these two geographic areas allows us to identify several new candidate genome regions for altitudinal selection, and we show that convergent evolution among continents has been quite common. In addition to identifying several genes and biological processes involved in high altitude adaptation, we identify two specific biological pathways that could have evolved in both continents to counter toxic effects induced by hypoxia.