RT Journal Article SR Electronic T1 Novel strategy for treating neurotropic viral infections using hypolipidemic drug Atorvastatin JF bioRxiv FD Cold Spring Harbor Laboratory SP 639096 DO 10.1101/639096 A1 Suvadip Mallick A1 Surajit Chakraborty A1 Bibhabasu Hazra A1 Sujata Dev A1 Sriparna Mukherjee A1 Masood Ahmad Wani A1 Anirban Basu YR 2019 UL http://biorxiv.org/content/early/2019/05/17/639096.abstract AB Chandipura virus (CHPV) and Japanese Encephalitis Virus (JEV) are known to infect neurons followed by their successful propagation. Increased incidences of central nervous system invasion by the abovementioned viruses have been reported in case of children and elderly thus culminating into severe neurological damage. Literature suggests induction of endoplasmic reticulum (ER)-stress related proteins upon CHPV and JEV infection which help promote viral reproduction. Since earlier studies underscore the pleotropic role of atorvastatin (AT) in neuroprotection against flaviviruses like Hepatitis C and dengue, it was hypothesized that AT might also act as a neuroprotective agent against RNA viruses like CHPV and JEV. AT-mediated antiviral activity was evaluated by assessing survivability of virus-infected mouse pups treated with the drug. Balb C mice were used for in vivo experiments. Neuro2A cell line was used as the model for in vitro experiments. Cells subjected to AT treatment were infected by CHPV and JEV followed by evaluation of ER stress-related and apoptosis-related proteins by immunoblotting technique and immunofluorescence microscopy. Interaction of host protein with viral genome was assessed by RNA-Co-IP. AT treatment exhibited significant anti-viral activity against CHPV and JEV infections via hnRNPC-dependent manner. Viral genome-hnRNPC interaction was found to be abrogated upon AT action. AT was also observed to reduce secretion of proinflammatory cytokines by the neurons in response to viral infection. Moreover, AT treatment was also demonstrated to reduce neuronal death by abrogating virus-induced miR-21 upregulation in hnRNPC-dependent fashion. This study thus suggests probable candidature of AT as antiviral against CHPV and JEV infections.